On general conditional random quantities

Veronica Biazzo, Angelo Gilio, Giuseppe Sanfilippo

vbiazzo@dmi.unict.it, gilio@dmmm.uniroma1.it, sanfilippo@unipa.it

1. Outline

- We consider the notion of general conditional prevision of the form $\mathbb{P}(X|Y)$, where both X and Y are random quantities, introduced in (Lad and Dickey, 1990).
- ullet We integrate the analysis of Lad and Dickey by properly managing the case $\mathbb{P}(Y)=0$
- ullet We propose a definition of coherence for the conditional prevision of 'X given Y'
- We obtain some results on coherence of a conditional prevision assessment $\mathbb{P}(X|Y) = \mu$ in the finite case

2. Basic notions

In the setting of coherence, given any r. q. X and any events E,H, with P(E|H)=p and $\mathbb{P}(X|H)=\mu$, if you pay p (resp., μ) you receive E|H (resp., X|H); then, *operatively*, it is

$$E|H = EH + pH^c = EH + p(1 - H),$$

 $X|H = XH + \mu H^c = XH + \mu (1 - H).$

A general conditional r. q. X|Y is obtained by replacing in the last formula the event H (and its indicator) by a r. q. Y.

Definition 1. (Lad & Dickey)

Given two r. q. X and Y, the conditional prevision for 'X given Y', denoted $\mathbb{P}(X|Y)$, is a number you specify with the understanding that you accept to engage any transaction yielding a random net gain $G = sY[X - \mathbb{P}(X|Y)]$.

Definition 2. (Lad & Dickey)

Having asserted your conditional prevision $\mathbb{P}(X|Y)=\mu$, the c. r. q. X|Y is defined as

$$X|Y = XY + (1 - Y)\mu = \mu + Y(X - \mu)$$
.

By computing the prevision on both sides, it follows (*generalized compound prevision theorem*)

$$\mathbb{P}(XY) = \mathbb{P}(X|Y)\mathbb{P}(Y).$$

Some remarks.

1) if $Y \equiv 0$, you always receive the same amount $\mu = \mathbb{P}(X|Y)$ that you have payed (the net gain is always 0). To avoid this trivial case we will assume that $(Y = 0) \neq \Omega$.

2) if X and Y are uncorrelated, it is $\mathbb{P}(XY) = \mathbb{P}(X)\mathbb{P}(Y)$; then, assuming $\mathbb{P}(Y) \neq 0$, it follows $\mathbb{P}(X|Y) = \mathbb{P}(X)$.

In other words, under the hypothesis $\mathbb{P}(Y) \neq 0$, X and Y are uncorrelated if and only if the prevision of X given Y coincides with the prevision of X.

3) $\mathbb{P}(Y)=0 \Rightarrow \mathbb{P}(XY)=0$; then, it may happen that doesn't exists any finite value of $\mathbb{P}(X|Y)$ which satisfies the equality

$$\mathbb{P}(XY) = \mathbb{P}(X|Y)\mathbb{P}(Y).$$

A critical example

(where $\mathbb{P}(Y) = 0$, $\mathbb{P}(XY) \neq 0$)

$$(X,Y) \in \{(0,-1),(0,1),(1,-1),(1,1)\};$$
 we set $p(x,y) = P(X=x,Y=y)$, with

$$p(0,-1) = \frac{1}{3}, \quad p(0,1) = \frac{1}{6}, \quad p(1,-1) = \frac{1}{6}, \quad p(1,1) = \frac{1}{3}.$$

We have $Y \in \{-1, 1\}$, $XY \in \{-1, 0, 1\}$, with

$$P(Y = -1) = P(Y = 1) = \frac{1}{2}, \ P(XY = 0) = \frac{1}{2},$$

 $P(XY = -1) = \frac{1}{6}, \ P(XY = 1) = \frac{1}{3};$

so that $\mathbb{P}(Y)=0$ and $\mathbb{P}(XY)=\frac{1}{6}$; hence, the equation $\frac{1}{6}=\mathbb{P}(X|Y)\cdot 0$ has no solutions.

What about coherence of μ when $\mathbb{P}(Y) = 0$?

To properly manage the case $\mathbb{P}(Y)=0$, we integrate the work of Lad and Dickey

(i) by using an explicit definition of coherence for any given assessment $\mathbb{P}(X|Y)=\mu$;

(ii) by discarding, in the definition of coherence, the value 0 of the net gain associated with the case Y=0.

Definition of coherence. Given two r. q. X, Y

and a conditional prevision assessment $\mathbb{P}(X|Y) = \mu$, let $G = s(X|Y-\mu) = sY(X-\mu)$ be the net random gain, where s is an arbitrary real quantity, with $s \neq 0$, and $H = (Y \neq 0)$. The assessment $\mathbb{P}(X|Y) = \mu$ is coherent if and only if: $\inf G|H \cdot \sup G|H \leq 0$, for every s.

(without loss of generality, we can set s=1)

Remark. If Y is the indicator |H| of an event H, then X|Y=X|(|H|) and $(Y\neq 0)\equiv (H\ \textit{true})$; then, the coherence of the assessment $\mathbb{P}(X|Y)=\mu$ reduces to the notion of coherence for the assessment $\mathbb{P}(X|H)=\mu$.

3. Some examples.

We continue the study of the critical example, by examining the coherence of a given assessment $\mathbb{P}(X|Y) = \mu$. We recall that $(X,Y) \in \{(0,-1),(0,1),(1,-1),(1,1)\}$; moreover $H=(Y \neq 0) = \Omega\,, \quad G|H=G=Y(X-\mu).$ The values of G|H associated with the values of (X,Y) are respectively:

$$g_1 = \mu$$
, $g_2 = -\mu$, $g_3 = -1 + \mu$, $g_4 = 1 - \mu$;

hence: inf $G|H \cdot \sup G|H \leq 0$, $\forall \mu$.

Another example.

$$(X,Y) \in \left\{(0,-1),(1,1)\right\}, \ \ \mathbb{P}(X|Y) = \mu \, .$$

We have: $H=(Y\neq 0)=\Omega$, $G|H=G=Y(X-\mu)$; the values of G|H are: $g_1=\mu$, $g_2=1-\mu$;

then: inf $G|H \cdot \sup G|H \le 0 \iff \mu \notin (0,1)$.

Notice that, with each μ it is associated a probability distribution on (X,Y), say $(p,1-p)\,,\;0\leq p\leq 1$, where

$$p = P(X = 0, Y = -1) = 1 - P(X = 1, Y = 1)$$
.

By requiring that the prevision of the random gain be 0, i.e. $p\mu+(1-p)(1-\mu)=0$, one has $p=f(\mu)=\frac{1-\mu}{1-2\mu}$, with

$$\frac{1}{2}$$

Notice that $\mu = f^{-1}(p) = \frac{1-p}{1-2p}$; i.e., $f^{-1} = f$.

As shown by this example, the set of coherent assessments μ may be not convex.

A strong generalized compound prevision theorem

We recall that $H=(Y\neq 0)\,,\;\mu=\mathbb{P}(X|Y).$

We assume that μ , $\mathbb{P}(Y|H)$, and $\mathbb{P}(XY|H)$ are finite; then, we remark that

(i) we pay μ and we receive X|Y, under the hypothesis H true; then, *operatively* μ is the prevision of X|Y, *conditional on* H;

(ii) hence, a more appropriate representation of X | Y is given by:

$$X|Y = [\mu + Y(X - \mu)]|H;$$

(iii) then, by computing the prevision on both sides, we have $\mu=\mu+\mathbb{P}[(XY-\mu Y)|H]$ and by linearity of prevision it follows

$$\mathbb{P}(XY|H) = \mathbb{P}(X|Y)\mathbb{P}(Y|H). \tag{1}$$

Remark. If Y is a finite discrete r. q., with $Y \ge 0$, or $Y \le 0$, it is $\mathbb{P}(Y|H) \ne 0$; then, by (1) it follows

$$\mathbb{P}(X|Y) = \frac{\mathbb{P}(XY|H)}{\mathbb{P}(Y|H)}.$$

As $H^c=(Y=0)$, it is $\mathbb{P}(Y|H^c)=\mathbb{P}(XY|H^c)=0$; hence,

$$\mathbb{P}(Y) = \mathbb{P}(Y|H)P(H) + \mathbb{P}(Y|H^c)P(H^c) = \mathbb{P}(Y|H)P(H) \,,$$

$$\mathbb{P}(XY) = \mathbb{P}(XY|H)P(H) + \mathbb{P}(XY|H^c)P(H^c) = \mathbb{P}(XY|H)P(H)$$
(3)

Then, by (1), (2), and (3), one has

$$\mathbb{P}(XY) = \mathbb{P}(XY|H)P(H) = \mathbb{P}(X|Y)\mathbb{P}(Y|H)P(H) = \mathbb{P}(X|Y|H)P(H) = \mathbb{P}(X|Y|H)P(H)$$

(the formula of Lad & Dickey, which we call *weak* generalized compound prevision theorem).

4. The case $Y \ge 0$, or Y < 0

Let C_X , C_Y and C be, respectively, the finite sets of possible values of X, Y and (X,Y).

$$X^{0} = \{x_{h} \in \mathcal{C}_{X} : \exists (x_{h}, y_{k}) \in \mathcal{C} : y_{k} \neq 0\}, \begin{cases} x_{0} = \min X^{0}, \\ x^{0} = \max X^{0}. \end{cases}$$

Theorem 1 Given two finite r. q. X,Y, with $Y \ge 0$ or $Y \le 0$, the prevision assessment $\mathbb{P}(X|Y) = \mu$ is coherent iff $x_0 \le \mu \le x^0$.

Example. $(X,Y) \in \mathcal{C} = \{(0,1),(1,0),(1,1),(2,2)\}.$ One has

$$X^{0} = X$$
, $x_{0} = \min C_{X} = 0$, $x^{0} = \max C_{X} = 2$;

the values of G|H, where $H=(Y\neq 0)$, are

$$g_1 = -\mu$$
, $g_2 = 1 - \mu$, $g_3 = 2(2 - \mu)$;

such values are *all positive* (resp., *all negative*) when $\mu < 0$ (resp., $\mu > 2$);

hence every $\mu \notin [x_0, x^0] = [0, 2]$ is *not coherent*.

Finally, when $\mu \in [0,2]$ one has $-\mu(2-\mu) \le 0$ and the condition $\inf G|H \cdot \sup G|H \le 0$ holds.

5. The case $\min Y < 0 < \max Y$.

$$X^{-} = \{x_h \in \mathcal{C}_X : \exists (x_h, y_k) \in \mathcal{C}, y_k < 0\},\$$

$$X^{+} = \{x_h \in \mathcal{C}_X : \exists (x_h, y_k) \in \mathcal{C}, y_k > 0\};$$

$$\mu_0 = \min(\max X^{-}, \max X^{+}), \quad \mu^0 = \max(\min X^{-}, \min X^{+}),$$

if $\mu_0 < \mu^0$, we set $I = (\mu_0, \mu^0)$; moreover, we set

 $X^- < X^+$, if $\max X^- < \min X^+$; $X^- > X^+$, if $\min X^- > \max X^+$;

 $X^- \nsim X^+$, otherwise. Then, we obtain

1. $X^+ < X^- \Leftrightarrow I \neq \emptyset$ and $I = (\mu_0, \mu^0)$, with $\mu_0 = \max X^+$, $\mu^0 = \min X^-$.

2. $X^+ > X^- \Leftrightarrow I \neq \emptyset$ and $I = (\mu_0, \mu^0)$, with $\mu_0 = \max X^-$, $\mu^0 = \min X^+$.

 $3. X^- \nsim X^+ \Leftrightarrow I = \emptyset.$

We have

Theorem 2 Let be given two r. q. X, Y, with min $Y < 0 < \max Y$.

If case 1, or case 2, holds, then $X^- \cap X^+ = \emptyset$ and the assessment $\mathbb{P}(X|Y) = \mu$ is coherent if and only if $\mu \notin I$.

In the case 3, the assessment $\mathbb{P}(X|Y) = \mu$ is coherent for every real number μ .

Example. We determine the set Π of coherent prevision assessments $\mathbb{P}(X|Y)=\mu$ on X|Y, where

$$(X,Y) \in \mathcal{C} = \{(0,1), (0,2), (1,-1), (1,-2)\}.$$

We have: $X^- = \{1\}$, $X^+ = \{0\}$, so that $X^- \cap X^+ = \emptyset$ and $X^- \nsim X^+$.

Then, I=(0,1) and, by Theorem 2, $\Pi=\Re\setminus(0,1)$; that is, μ is coherent if and only if $\mu\notin(0,1)$.

The same result follows, by observing that: (i) C|H - C:

(i) G|H=G;

(ii) given any μ , the values of G are:

$$g_1 = -\mu$$
, $g_2 = -2\mu$, $g_3 = -1 + \mu$, $g_4 = -2 + 2\mu$;

(iii) if $\mu \in (0,1)$, the values of G are all negative; if $\mu \notin (0,1)$, it is: $\min G < 0$, $\max G > 0$.

6. Final comments

- the notion of general conditional prevision, $\mathbb{P}(X|Y)$, was introduced by Lad & Dickey, in the setting of the operational subjective theory of coherent previsions, to solve decision problems involving "state dependent preferences";

- in particular, it was applied to a "currency exchange problem" suggested by Jay Kadane.

Further developments of the research concern:

(i) coherence of a conditional prevision assessment $\mathcal{M}_n = (\mu_1, \dots, \mu_n)$ on a family of n conditional random quantities $\mathcal{F}_n = \{X_1 | Y_1, \dots, X_n | Y_n\};$

(ii) study of general properties and methods for the checking of coherence;

(iii) generalized coherence of imprecise conditional prevision assessments, for instance interval-valued assessments like $\mathcal{A}_n = ([l_1, u_1], \dots, [l_n, u_n])$, on \mathcal{F}_n .

Some results concerning (i) and (ii) have been obtained in a paper which will be presented on September at WUPES 2009.