Characterizing Factuality in Normal Form Sequential Decision Making

Background

What is Normal Form?
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m A normal form decision of a decision tree
T describes a subject’s choices in T in all
eventualities.

m A normal form operator norm maps every
decision tree T to a set of normal form
decisions of T.

What is Counterfactuality?
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This subject is counterfactual as his choice
between cake and ice cream depends on
the tree in which the choice is embedded.

Factuality can be represented by a
commuting diagram:
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Choice Functions

m A normal form decision induces a gamble,
which maps each outcome to a reward.

m A choice function opt maps any set X of
gambles, conditional on an event A, to an
optimal subset:

0 £ opt(X|A) C X.

Gambles are convenient for defining a
normal form operator. To compare normal
form decisions, compare their gambles:

normopt(T) ={
normal form decision U of T:
gamb(U) C opt(gamb(T)|ev(T))}.
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Main Result

Factuality Theorem

A normal form operator induced by a choice
function is factual if and only if opt satisfies
these three properties:

m Conditioning property. If {X, Y} C X and
AX = AY, then

X e opt(X|A) <= Y € opt(X|A).

m Intersection property. If Y C X and
opt(X|A)NY # 0, then

opt(YV|A) = opt(X|A) N Y.
m Mixture property.
opt(AX @ AZ|B) = Aopt(X|ANB) @ AZ.

Note: in the above, we have omitted some
technical detalls.

Necessity

Necessity of the three properties can be
observed from these two simple trees.

Sufficiency

See forthcoming paper [1] (summary of
proof in conference paper).
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Consequences

Total Preorder Theorem

The intersection property is equivalent to:
m [otal preorder property. For every event
A = (), there is a total preorder = 4 on

gambles such that

opt(X|A) = max(X)
“A

Hence, any choice function that is not
induced by a total preorder induces a
counterfactual normal form operator.

Backward Induction Theorem

Backward induction solves a decision tree
by recursively applying normgpt from right to
left, so gambles that are (hopefully!)
non-optimal can be removed early on: call
this normal form operator backgqp;.

If normgpt is factual, then normgp = backyp
(but not the other way around!).

“No Imprecision” Theorem
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We are not aware of any choice functions,
other than maximizing expected utility, that
iInduce factual normal form operators.

Discussion & Conclusions

m Factuality imposes strong restrictions.

m All imprecise probability choice functions,
that we know of, violate intersection or
mixture.

m Factuality provides a compelling argument
against imprecision (or at least, against
iIncomplete orderings).

m Factual normal form operators other than
those induced by choice functions are
possible, but often have unwelcome
properties [2].

m Factual extensive form solutions are
easier to find [3].
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