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Abstract

A new framework is explored for combining imprecise
Bayesian methods with likelihood inference, and it is pre-
sented in the context of reliability growth models. The main
idea of the framework is to divide a set of the model pa-
rameters of interest into two subsets related to fundamen-
tally different aspects of the overall model, and to com-
bine Walley’s idea of imprecise Bayesian models related
to one of the subsets of the model parameters with max-
imum likelihood estimation for the other subset. In accor-
dance with the first subset and statistical data, the impre-
cise Bayesian model is constructed, which provides lower
and upper predictive probability distributions depending on
the second subset of parameters. These further parame-
ters are then estimated by a maximum likelihood method,
based on a novel proposition for maximum likelihood es-
timation over sets of distributions following from imprecise
Bayesian models for the other subset of parameters. Use
of this hybrid method is illustrated for reliability growth mod-
els and regression models, and some essential topics that
need to be addressed in order to fully justify and further
develop this framework are discussed.

1. Introduction

GROWTH MODEL: X1, ..., Xn is a series of r.v. Xi is gov-
erned by a probability distribution function pi(x | b,d)

depending on two vectors of parameters b and d. b con-
tains parameters of the probability distribution under con-
sideration. d characterizes the growth, i.e., the growth is
modelled by a function f (i,d). In software reliability anal-
ysis, the function f shows how parameters b of pi change
with the number of corrected errors or faults i.
A typical regression model is

Y = f (X,d) + ε.

Here X = (1, X1, ..., Xn); d is the vector of parameters; ε
are uncorrelated random errors, usually assumed to have
expected value 0 and unknown variance σ2. d can be a set
of growth parameters, for instance, coefficients in a linear
regression model, b = (σ2).

2. The likelihood principle for constructing standard
models

Let K = (k1, ..., kn) be a realization ofX1, ..., Xn, with ki non-
negative integers. If probability distributions pi(ki | b,d) of
the r.v. Xi, i = 1, ..., n, are known, then the standard way
for obtaining the parameters b and d is to maximize the
likelihood function

L(K | b,d) =

n∏
i=1

pi(ki | b,d)

over a set of b and d.

3. Maximization of the likelihood function over a set
of distributions

Suppose that the r.v. Xi is governed by an unknown CDF
Fi(k) which is only known to belong to the set Mi(d) de-
fined by the lower and upper CDFs

F i(k | d) = inf
Mi(d)

F (k), (1)

F i(k | d) = sup
Mi(d)

F (k). (2)

The likelihood function can be written in the following form:

L(K | d) = Pr {X1 = k1, ..., Xn = kn} .
Proposition 1 Suppose that discrete r.v. X1, ..., Xn are gov-
erned by a probability distribution F (k) from sets Mi de-
fined by bounds (1)-(2), respectively. If X1, ..., Xn are inde-
pendent, then there holds

max
M1,...,Mn

Pr {X1 = k1, ..., Xn = kn}

=

n∏
i=1

{
F i(ki)− F i(ki − 1)

}
. (3)

4. A general scheme of the model construction

1. We divide the set of parameters into two subsets. The
first subset contains the parameters b of the assumed
probability distribution p of the r.v. X1, ..., Xn. The second
subset consists of the growth parameters d.

2. For the assumed distribution p, we choose an appropri-
ate type of the conjugate prior π(b | c) with parameters
c.

3. We construct the corresponding Bayesian imprecise
model on the basis of results of Walley or Quaeghebeur
and de Cooman. We replace the parameters c by new
parameters including the hyperparameter s. The pro-
duced set P depends on the hyperparameter s.

4. By using n observations k1, ..., kn, we write the lower
F i(k | d, s) and upper F i(k | d, s) predictive CDFs as
functions of the parameters d and the hyperparameter
s for every debugging period. These functions form the
setsM1(d), ...,Mn(d).

After completing the four steps of the first task, the sets
M1(d), ...,Mn(d) have been derived and these sets do not
depend on b or c and they depend only on d, the hyper-
parameter s, and the number of debugging periods i. The
second task is to estimate the parameters d, it consists of
two steps.
1. The likelihood function L(K | d, s) is derived by applying

Proposition 1.
2. Values of the parameters d for a fixed s should be chosen

in such a way that makes L(K | d, s) achieve its maxi-
mum.

5. A software run reliability growth model and the
imprecise beta-geometric growth model

Let X be a run lifetime of software, that is, X is a discrete
r.v. taking the value k if the software fails during the k-th run
after k − 1 successful runs, p(k) = Pr{X = k}.
we assume that the r.v. X is governed by the geometric dis-
tribution with parameter r and the probability mass function

p(k | r) = (1− r)k−1r, k = 1, 2, ...,

Suppose that the probability r = ri is a r.v. having a beta
distribution with prior parameters α and β + f (i, ϕ). Here
f (i, ϕ) is a function characterizing the software reliability
growth. Assume for simplicity that f (i, ϕ) = (i− 1) · ϕ.
Denote the parameters of the i-th posterior beta distribution
after n observations

α∗ = α + n− 1, β∗i = β + Di(ϕ),

where

Di(ϕ) = Kn + f (i, ϕ), Kn =

n−1∑
j=1

(kj − 1).

The predictive CDF for the i-th step of the software debug-
ging after n observations is

Fi(k | ϕ, α, β) =

∫ 1

0
(1− (1− p)k) · Beta(α∗, β∗i )dp

= 1−
B(α∗ + β∗i , k)

B(β∗i , k)
.

By replacing α = sγ, β = s− sγ, we write

Fi(k | ϕ, γ, s) = 1− B(s + n− 1 + Di(ϕ), k)

B(s− sγ + Di(ϕ), k)
.

The lower bound forMi(ϕ) is

F i(k, t | s, b) = 1− I
(

Ti(t, b)

τ (tn, b) + Ti(t, b)
, k + 1, s + Kn

)
,

The upper bound is

F i(k, t | s, b) = 1− I
(

Ti(t, b)

s + τ (tn, b) + Ti(t, b)
, k + 1, Kn

)
.

The likelihood function maximized over Mi(ϕ) by given s
and ϕ is

max
M(ϕ)

L(K | ϕ, s)

=

n∏
i=1

(
B(Ci, ki − 1)

B(s + Di(ϕ), ki − 1)
− B(Ci, ki)

B(Di(ϕ), ki)

)
.

Here Ci = s + n− 1 + Di(ϕ).
The lower and upper software run failure functions after the
n-th software failure are

Fn+1(k, s) = 1− B(s + n + Dn+1(ϕ0), k)

B(s + Dn+1(ϕ0), k)
,

Fn+1(k, s) = 1− B(s + n + Dn+1(ϕ0), k)

B(Dn+1(ϕ0), k)
.

6. NHPP software reliability models and the
imprecise negative binomial growth model

The non-homogeneous Poisson process (NHPP): Let Xi =
N(ti) − N(ti−1) be the random number of failures between
ti−1 and ti. For any time points 0 < t1 < t2 < ... (for ease of
notation, let t0 = 0), the probability that the number of fail-
ures between ti−1 and ti is k, k = 0, 1, 2, ..., can be written
as

Pr {N(ti)−N(ti−1) = k}

=
{m(ti)−m(ti−1)}k

k!
e{−(m(ti)−m(ti−1))}. (4)

Here m(t) is the mean number of failures occurring up to
time t.
The predictive probability of k failures during time t under
condition that K failures were observed during time T is
(α∗ = α + K and β∗ = β + T )

P (k) =

∫ ∞
0

(λt)ke−λt

k!
Gamma(α∗, β∗)dλ

=
Γ(α∗ + k)

Γ(α∗)k!

(
β∗

β∗ + t

)α∗( t

β∗ + t

)k
. (5)

Let m(t; a, b) = a · τ (t, b). The parameter λ of the Poisson
distribution in (5) and the argument t can be replaced by
the parameter a and the discrete time τ (ti, b) − τ (ti−1, b),
respectively. In fact, by replacing λ by a, we get the Pois-
son process with a scaled time of the software testing,
i.e., every time interval [ti−1, ti] is replaced by the interval
[τ (ti−1, b), τ (ti, b)]. Then we can write the predictive CDF of
the number of failures in the time interval between ti and t
(t ∈ [ti, ti+1]) after n observation periods as follows:

Fi(k, t|c, b) = 1−
Bq(i,t)(k + 1, α + Kn)

B(k + 1, α + Kn)

= 1− I (q(i, t), k + 1, α + Kn) .

Here t0 = 0, k0 = 0,

q(i, t) =
Ti(t, b)

β + τ (tn, b) + Ti(t, b)
,

Ti(t, b) = τ (t, b)− τ (ti, b), Kn =

n∑
j=1

kj,

Bq(k+1, r) is the incomplete Beta-function with I (q, k, r) the
regularized incomplete Beta-function.
We choose all vectors (α, β) within the triangle (0, 0), (s, 0),
(0, s). This implies that all possible prior ‘rates of occurrence
of failures’ are represented, as the prior allows interpreta-
tion of α/β = γ as this rate. This prior set leads to the lower
and upper bounds forMi(b) by t ∈ [ti, ti+1]

F i(k, t | s, b) = 1− I
(

Ti(t, b)

τ (tn, b) + Ti(t, b)
, k + 1, s + Kn

)
,

F i(k, t | s, b) = 1− I
(

Ti(t, b)

s + τ (tn, b) + Ti(t, b)
, k + 1, Kn

)
.

The next step is to maximize the likelihood function over the
set of b

L(K|b, s) =

n∏
i=1

(
F i(ki, ti | s, b)− F i(ki − 1, ti | s, b)

)
.

7. Regression model (general scheme)

Y = Xd + ε.

Here X = (1, X1, ..., Xn); d = (d0, ..., dn)T is the vector of
parameters; ε are random errors or noise having zero mean
and the unknown variance σ2.
Let us construct the imprecise Bayesian model for ε. If ε is
governed by some probability distribution p(z | σ) and there
is the corresponding conjugate distribution π(σ | c), then
we can find the predictive CDF Fn(z | s, γ) after having n
observations (y1,x1), ..., (yn,xn) depending on new param-
eters s, γ and its bounds F (z | s), F (z | s).
Denote zi = yi − xid and Z = (z1, ..., zn). Then

max
M

L(Z | s) =

n∏
i=1

(
F (zi | s)− F (zi − 1 | s)

)
.

Denote zi = yi − xid. Hence

max
M

L(Z | s)

=

n∏
i=1

(
F (yi − xid | s)− F (yi − xid− 1 | s)

)
.

Now we can find parameters d by maximizing the obtained
likelihood function.
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