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Introduction

Motivated by the investigation of mechanical sys-
tems under stochastic excitations we consider
stochastic differential equations whose initial value
and integrands depend on some uncertain parame-
ters a = (a1, . . . , ap) ∈ A ⊆ Rp, that is,

dxt,a = f(t, a, xt,a)dt + G(t, a, xt,a)dwt (1)

with initial value xt0,a where t0 ≤ t ≤ t < ∞,
wt denotes an m-dimensional Wiener process on a
probability space (Ωw, Σw, Pw) and

xt0 : A× Ωw → Rd,
f : [t0, t]× A× Rd → Rd,
G : [t0, t]× A× Rd → Rd×m.

The uncertainty of a shall be modelled by random
compact sets which under certain conditions leads
to compact set-valued processes. Furthermore ana-
logues of first entrance times for set-valued pro-
cesses are introduced.

Stochastic differential equations
with random set parameters

We suppose that for each a ∈ A the conditions
for existence and uniqueness (see e.g. [Arnold])
of solutions to Equation (1) are fulfilled. Hence,
we get a family of solution processes which can be
interpreted as a stochastic process on [t0, t]× A:

x : [t0, t]× A× Ωw → Rd, (t, a, ωw) 7→ xt,a(ωw) (2)

Under certain conditions it can be shown that the
process defined by (2) satisfies the inequality

E(‖xs,a − xt,b‖2n) ≤ C

∥∥∥∥
(

s− t
a− b

)∥∥∥∥
n

for some n ≥ p + 2 from which one can conclude
that there is a B([t0, t]) ⊗ B(A) ⊗ Σw-measurable
version of x which is continuous on [t0, t] × A for
all ωw ∈ Ωw.

Random set parameters

The uncertainty of the parameter a in Equation (1)
shall be modelled by a random compact set

A : ΩA → K′(A)

where (ΩA, ΣA, PA) is a probability space and K′(A)
denotes the set of all non-empty compact subsets
of Rp that are also subsets of A endowed with the
Hausdorff metric. By definition for each B ∈ B(A)
it holds that

A−(B) = {ωA : A(ωA) ∩B 6= ∅} ∈ ΣA.

By S(A) we denote the set of measurable selections
α : ΩA → A of A which means that α(ωA) ∈ A(ωA)
for all ωA ∈ ΩA.

If x is the process (2) which is assumed to be mea-
surable and continuous then for each α ∈ S(A) the
map

ξα : [t0, t]× ΩA × Ωw → Rd

(t, ωA, ωw) 7→ x(t, α(ωA), ωw)

is a measurable and continuous process on [t0, t]
and the product space

(Ω, Σ, P ) = (ΩA × Ωw, ΣA ⊗ Σw, PA ⊗ Pw).

The set-valued solution process

Let us define a set-valued function X by

X : (t, ω) 7→ {xt,a(ωw) : a ∈ A(ωA)} (3)

where (t, ω) ∈ [t0, t]× Ω. By using the measurable
selections ξα of X and applying the Fundamental
Measurability Theorem for multifunctions one can
show that

• X is a set-valued process on [t0, t] and the com-

pleted probability space (Ω, Σ
P
, P ) with values

in K′(Rd), i.e., for all t ∈ [t0, t] and B ∈ B(Rd)
it holds that

X−
t (B) = {ω : Xt(ω) ∩B 6= ∅} ∈ Σ

P
,

• all sample functions of X are continuous with
respect to the Hausdorff-metric on K′(Rd),

• X is measurable with respect to the product-

σ-algebra B([t0, t])⊗ Σ
P
.

First entrance and inclusion times

First entrance times are often used to assess the
reliability of a system described by a stochastic
process.

Analogues for a continuous set-valued process
{Xt}t∈[t0,t] with values in K′(Rd) can be defined by

τB : Ω → [t0, t], ω 7→ inf{t : Xt(ω) ∩B 6= ∅},
τB : Ω → [t0, t], ω 7→ inf{t : Xt(ω) ⊆ B}.

If the infimum does not exist, we set τB(ω) = t or
τB(ω) = t, respectively. We call τB the first en-
trance time of X into B, and we call τB the first
inclusion time of X in B. Considering the natural
filtration {Σt}t∈[t0,t] of X defined by

Σt = σ(X−
s (C) : s ∈ [t0, t], C ∈ B(Rd))

one can show that τB and τB are stopping times
w.r.t. the standardized natural filtration (which
is right-continuous and contains all subsets of
measure-zero sets of Σ) if B is an open or a closed
subset of Rd.

Relations to selections

An interesting question is if τB and τB can be at-
tained by first entrance times of selections of X.
For ξ ∈ S(X) and B ⊆ Rd consider the first en-
trance time of ξ into B:

τB
ξ : Ω → [t0, t], ω 7→ inf{t : ξt(ω) ∈ B}

Then for all ω ∈ Ω it holds that

inf
ξ∈S(X)

τB
ξ (ω) = τB(ω),

sup
ξ∈S(X)

τB
ξ (ω) ≤ τB(ω).

If (Ω, Σ, P ) is complete and B is open then for all
ω ∈ Ω the second inequality becomes an equality.

For a set-valued process defined by (3) we can con-
sider for each α ∈ S(A) and a ∈ A the special
entrance times

τB
α : ω 7→ inf{t ∈ [t0, t] : xt,α(ωA)(ωw) ∈ B},

τB
a : ωw 7→ inf{t ∈ [t0, t] : xt,a(ωw) ∈ B}.

where B ⊆ Rd. Then for all ω ∈ Ω it holds that

inf
a∈A(ωA)

τB
a (ωw) = inf

α∈S(A)
τB
α (ω) = inf

ξ∈S(X)
τB
ξ (ω),

sup
a∈A(ωA)

τB
a (ωw) = sup

α∈S(A)

τB
α (ω) ≤ sup

ξ∈S(X)

τB
ξ (ω).

Example

We consider the so-called Ornstein-Uhlenbeck pro-
cess which is the solution of the Langevin equation

dxt = −a1xtdt + a2dwt

with initial value x0 = 0 (d = m = 1,t0 = 0) and
parameters a1 > 0 and a2 ∈ R whose uncertainty
is modelled by a random set A with four focal ele-
ments which are listed in the table below together
with their weights. Furthermore we consider a se-
lection α of A.

i Ai αi Pi

1 [1, 3]× [0.5, 1.5] (1.7, 1.1) 2/15
2 [1, 3]× [1, 2] (2.3, 1.5) 4/15
3 [2, 4]× [0.5, 1.5] (3.0, 0.9) 1/5
4 [2, 4]× [1, 2] (3.2, 1.4) 2/5
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Figure 1: Sample path of X (boundaries in blue
lines) and ξα (red line) on the time interval [0, 3].
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Figure 2: Probability box of Xt (blue lines) and
CDF of ξα

t (red line) at time t = 10.
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Figure 3: CDFs of τB (upper blue line), τB (lower
blue line) and τB

α (red line), B = (0.5,∞).


