Introduction

Motivated by the investigation of mechanical systems under stochastic excitations we consider stochastic differential equations whose initial value and integrands depend on some uncertain parameters $a = (a_1, \ldots, a_p) \in \mathbb{A} \subseteq \mathbb{R}^p$, that is,

$$dx_{t,a} = f(t, a, x_{t,a})dt + G(t, a, x_{t,a})dw_t$$
(1)

with initial value $x_{t_0,a}$ where $t_0 \leq t \leq \overline{t} < \infty$, w_t denotes an *m*-dimensional Wiener process on a probability space $(\Omega_w, \Sigma_w, P_w)$ and

$$\begin{array}{rcccc} x_{t_0} : & \mathbb{A} \times \Omega_w & \to & \mathbb{R}^d, \\ f : & [t_0, \overline{t}] \times \mathbb{A} \times \mathbb{R}^d & \to & \mathbb{R}^d, \\ G : & [t_0, \overline{t}] \times \mathbb{A} \times \mathbb{R}^d & \to & \mathbb{R}^{d \times m}. \end{array}$$

The uncertainty of a shall be modelled by random compact sets which under certain conditions leads to compact set-valued processes. Furthermore analogues of first entrance times for set-valued processes are introduced.

Stochastic differential equations with random set parameters

We suppose that for each $a \in \mathbb{A}$ the conditions for existence and uniqueness (see e.g. [Arnold]) of solutions to Equation (1) are fulfilled. Hence, we get a family of solution processes which can be interpreted as a stochastic process on $[t_0, \overline{t}] \times \mathbb{A}$:

$$x: [t_0, \overline{t}] \times \mathbb{A} \times \Omega_w \to \mathbb{R}^d, (t, a, \omega_w) \mapsto x_{t,a}(\omega_w)$$
(2)

Under certain conditions it can be shown that the process defined by (2) satisfies the inequality

$$\mathbb{E}(\|x_{s,a} - x_{t,b}\|^{2n}) \le C \left\| \left(\begin{array}{c} s - t \\ a - b \end{array} \right) \right\|^n$$

for some $n \ge p+2$ from which one can conclude that there is a $\mathcal{B}([t_0, \bar{t}]) \otimes \mathcal{B}(\mathbb{A}) \otimes \Sigma_w$ -measurable version of x which is continuous on $[t_0, \overline{t}] \times \mathbb{A}$ for all $\omega_w \in \Omega_w$.

Random set parameters

The uncertainty of the parameter a in Equation (1) shall be modelled by a random compact set

$$A:\Omega_{\mathbb{A}}\to\mathcal{K}'(\mathbb{A})$$

where $(\Omega_{\mathbb{A}}, \Sigma_{\mathbb{A}}, P_{\mathbb{A}})$ is a probability space and $\mathcal{K}'(\mathbb{A})$ denotes the set of all non-empty compact subsets of \mathbb{R}^p that are also subsets of A endowed with the Hausdorff metric. By definition for each $B \in \mathcal{B}(\mathbb{A})$ it holds that

The set-valued solution process

Let us define a set-valued function X by

$$X: (t, \omega) \mapsto \{ x_{t,a}(\omega_w) : a \in A(\omega_{\mathbb{A}}) \}$$
(3)

where $(t, \omega) \in [t_0, \overline{t}] \times \Omega$. By using the measurable selections ξ^{α} of X and applying the Fundamental Measurability Theorem for multifunctions one can show that

• X is a set-valued process on $[t_0, \overline{t}]$ and the completed probability space $(\Omega, \overline{\Sigma}^P, \overline{P})$ with values in $\mathcal{K}'(\mathbb{R}^d)$, i.e., for all $t \in [t_0, \overline{t}]$ and $B \in \mathcal{B}(\mathbb{R}^d)$ it holds that

$$X_t^-(B) = \{\omega : X_t(\omega) \cap B \neq \emptyset\} \in \overline{\Sigma}^P,$$

- all sample functions of X are continuous with respect to the Hausdorff-metric on $\mathcal{K}'(\mathbb{R}^d)$,
- X is measurable with respect to the product- σ -algebra $\mathcal{B}([t_0, \overline{t}]) \otimes \overline{\Sigma}^P$.

First entrance and inclusion times

First entrance times are often used to assess the reliability of a system described by a stochastic process.

Analogues for a continuous set-valued process $\{X_t\}_{t\in[t_0,\bar{t}]}$ with values in $\mathcal{K}'(\mathbb{R}^d)$ can be defined by

$$\underline{\tau}^B : \Omega \to [t_0, \overline{t}], \quad \omega \mapsto \inf\{t : X_t(\omega) \cap B \neq \emptyset\}, \\ \overline{\tau}^B : \Omega \to [t_0, \overline{t}], \quad \omega \mapsto \inf\{t : X_t(\omega) \subseteq B\}.$$

If the infimum does not exist, we set $\underline{\tau}^B(\omega) = \overline{t}$ or $\overline{\tau}^B(\omega) = \overline{t}$, respectively. We call $\underline{\tau}^B$ the first entrance time of X into B, and we call $\overline{\tau}^B$ the first inclusion time of X in B. Considering the natural filtration $\{\Sigma_t\}_{t\in[t_0,\bar{t}]}$ of X defined by

$$\Sigma_t = \sigma(X_s^-(C) : s \in [t_0, t], C \in \mathcal{B}(\mathbb{R}^d))$$

one can show that $\underline{\tau}^B$ and $\overline{\tau}^B$ are stopping times w.r.t. the standardized natural filtration (which is right-continuous and contains all subsets of measure-zero sets of Σ) if B is an open or a closed subset of \mathbb{R}^d .

Relations to selections

For a set-valued process defined by (3) we can consider for each $\alpha \in \mathcal{S}(A)$ and $a \in A$ the special entrance times

$$\tau_{\alpha}^{B}: \omega \mapsto \inf\{t \in [t_{0}, \overline{t}]: x_{t,\alpha(\omega_{\mathbb{A}})}(\omega_{w}) \in B\}, \\ \tau_{a}^{B}: \omega_{w} \mapsto \inf\{t \in [t_{0}, \overline{t}]: x_{t,a}(\omega_{w}) \in B\}.$$

where $B \subseteq \mathbb{R}^d$. Then for all $\omega \in \Omega$ it holds that

$$\inf_{a \in A(\omega_{\mathbb{A}})} \tau_{a}^{B}(\omega_{w}) = \inf_{\alpha \in \mathcal{S}(A)} \tau_{\alpha}^{B}(\omega) = \inf_{\xi \in \mathcal{S}(X)} \tau_{\xi}^{B}(\omega),$$
$$\sup_{a \in A(\omega_{\mathbb{A}})} \tau_{a}^{B}(\omega_{w}) = \sup_{\alpha \in \mathcal{S}(A)} \tau_{\alpha}^{B}(\omega) \leq \sup_{\xi \in \mathcal{S}(X)} \tau_{\xi}^{B}(\omega).$$

Example

We consider the so-called Ornstein-Uhlenbeck process which is the solution of the Langevin equation

$$dx_t = -a_1 x_t dt + a_2 dw_t$$

with initial value $x_0 = 0$ $(d = m = 1, t_0 = 0)$ and parameters $a_1 > 0$ and $a_2 \in \mathbb{R}$ whose uncertainty is modelled by a random set A with four focal elements which are listed in the table below together with their weights. Furthermore we consider a selection α of A.

i	A_i	$lpha_i$	P_i
1	$[1,3] \times [0.5,1.5]$	(1.7, 1.1)	2/15
	$[1,3] \times [1,2]$		
3	$[2,4] \times [0.5,1.5]$	(3.0, 0.9)	1/5
4	$[2,4] \times [1,2]$	(3.2, 1.4)	2/5

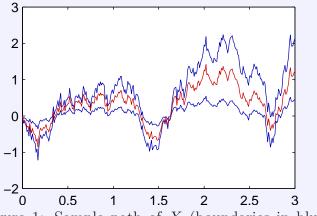
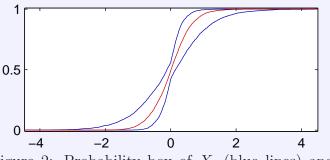


Figure 1: Sample path of X (boundaries in blue lines) and ξ^{α} (red line) on the time interval [0, 3].



 $A^{-}(B) = \{\omega_{\mathbb{A}} : A(\omega_{\mathbb{A}}) \cap B \neq \emptyset\} \in \Sigma_{\mathbb{A}}$

By $\mathcal{S}(A)$ we denote the set of measurable selections $\alpha: \Omega_{\mathbb{A}} \to \mathbb{A}$ of A which means that $\alpha(\omega_{\mathbb{A}}) \in A(\omega_{\mathbb{A}})$ for all $\omega_{\mathbb{A}} \in \Omega_{\mathbb{A}}$.

If x is the process (2) which is assumed to be measurable and continuous then for each $\alpha \in \mathcal{S}(A)$ the map

$$\begin{aligned} \xi^{\alpha} : & [t_0, \overline{t}] \times \Omega_{\mathbb{A}} \times \Omega_w & \to & \mathbb{R}^d \\ & (t, \omega_{\mathbb{A}}, \omega_w) & \mapsto & x(t, \alpha(\omega_{\mathbb{A}}), \omega_w) \end{aligned}$$

is a measurable and continuous process on $[t_0, \bar{t}]$ and the product space

 $(\Omega, \Sigma, P) = (\Omega_{\mathbb{A}} \times \Omega_w, \Sigma_{\mathbb{A}} \otimes \Sigma_w, P_{\mathbb{A}} \otimes P_w).$

An interesting question is if $\underline{\tau}^B$ and $\overline{\tau}^B$ can be attained by first entrance times of selections of X. For $\xi \in \mathcal{S}(X)$ and $B \subset \mathbb{R}^d$ consider the first entrance time of ξ into B:

$$\tau^B_{\xi}:\Omega\to [t_0,\overline{t}],\quad \omega\mapsto \inf\{t:\xi_t(\omega)\in B\}$$

Then for all $\omega \in \Omega$ it holds that

$$\inf_{\substack{\xi \in \mathcal{S}(X) \\ \sup_{\xi \in \mathcal{S}(X)}} \tau_{\xi}^{B}(\omega) = \underline{\tau}^{B}(\omega),$$

If (Ω, Σ, P) is complete and B is open then for all $\omega \in \Omega$ the second inequality becomes an equality.

Figure 2: Probability box of X_t (blue lines) and CDF of ξ_t^{α} (red line) at time t = 10.

