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Introduction

Motivated by the investigation of mechanical sys-
tems under stochastic excitations we consider
stochastic differential equations whose initial value
and integrands depend on some uncertain parame-
ters a = (aq,...,a,) € A CRP, that is,

der, = f(t,a,210)dt + G(t,a, 0 )dw, (1)

with initial value z,, where tg < ¢t < t < oo,
wy denotes an m-dimensional Wiener process on a
probability space (2, Xy, P,) and

Ty, 0 A X, — R,
f: [tof] xAxRY — RE
G: [to,f] x AxR? — R&™,

The uncertainty of a shall be modelled by random
compact sets which under certain conditions leads
to compact set-valued processes. Furthermore ana-
logues of first entrance times for set-valued pro-
cesses are introduced.

Stochastic differential equations
with random set parameters

We suppose that for each a € A the conditions
for existence and uniqueness (see e.g. [Arnold])
of solutions to Equation (1) are fulfilled. Hence,
we get a family of solution processes which can be
interpreted as a stochastic process on [tg, ] x A:

T [to, f] X A x Q, — R (£, a,wy) — Tra(wy) (2)

Under certain conditions it can be shown that the
process defined by (2) satisfies the inequality

(22))

for some n > p + 2 from which one can conclude
that there is a B([to,?]) ® B(A) ® ¥,-measurable
version of x which is continuous on [to,¢] X A for
all w, € Q.

n

B([|2sa — @el*™") < C

Random set parameters

The uncertainty of the parameter a in Equation (1)
shall be modelled by a random compact set

A:Qy — K'(A)

where (Q4, 34, Py) is a probability space and X'(A)
denotes the set of all non-empty compact subsets
of R? that are also subsets of A endowed with the
Hausdorff metric. By definition for each B € B(A)
it holds that

A_(B) = {(,UA : A(CUA) NnB 75 @} € D

By S(A) we denote the set of measurable selections
a: Qy — A of A which means that a(wy) € A(wa)
for all wy € Q4.

If  is the process (2) which is assumed to be mea-
surable and continuous then for each o € S(A) the
map

€ [t ] x QU x Q, — RY

(t, wa, W) — 2t a(wa), wy)

is a measurable and continuous process on [t, ]
and the product space

(Q,E,P) = (QA X Qw,EA X Zw,PA X Pw)

The set-valued solution process

Let us define a set-valued function X by
X (tw) = {zto(ww) :a € A(wa)} (3)

where (t,w) € [t, ] X Q. By using the measurable
selections £* of X and applying the Fundamental
Measurability Theorem for multifunctions one can
show that

e X is a set-valued process on [tg, t] and the com-
pleted probability space (2, EP, P) with values
in K'(R?), i.e., for all t € [ty,?] and B € B(RY)
it holds that

X (B)={w: X;(w)NB#P €%,

e all sample functions of X are continuous with
respect to the Hausdorff-metric on K'(R?),

e X is measurable with respect to the product-
o-algebra B([to,7]) @ & .

First entrance and inclusion times

First entrance times are often used to assess the
reliability of a system described by a stochastic
process.

Analogues for a continuous set-valued process
{X:} e,y with values in K'(R?) can be defined by

78:Q — [to, 1], wr inf{t: Xy (w)N B # 0},
78 :Q — [ty,f], ww inf{t: X;(w) C B}.

If the infimum does not exist, we set 75(w) =t or
7B(w) =, respectively. We call 7P the first en-
trance time of X into B, and we call 72 the first
inclusion time of X in B. Considering the natural
filtration {¥;},cp, 7 of X defined by

% = a(X;(0) : s € [t t],C € BR?Y))

one can show that 78 and 7% are stopping times
w.r.t. the standardized natural filtration (which
is right-continuous and contains all subsets of
measure-zero sets of X)) if B is an open or a closed
subset of R?.

Relations to selections

An interesting question is if 72 and 77 can be at-
tained by first entrance times of selections of X.
For £ € §(X) and B C R? consider the first en-
trance time of £ into B:

TgB 1 Q= [to, t], wr inf{t:&(w) € B}

Then for all w € 2 it holds that

a f B — B
Juf W) = (),
sup P(w) < TP(w).
£ES(X)

If (2, %, P) is complete and B is open then for all
w € ) the second inequality becomes an equality.

For a set-valued process defined by (3) we can con-
sider for each o € S(A) and a € A the special
entrance times

8w — inf{t € [ty,1] : Tt0(w,) (W) € B},

«

75 1w, — inf{t € [to, 7] : Tsa(ww) € B}

where B C R%. Then for all w € € it holds that

aelAn(wA) Ta (W ) aelg(A)T (w) felg(x) e (W)
sup 72(wy,) = sup 7B(w) < sup TgB(W‘
acA(wy) aeS(A) £eS(X)
Example

We consider the so-called Ornstein-Uhlenbeck pro-
cess which is the solution of the Langevin equation

dxy = —ay 2 dt + agdwy

with initial value zg = 0 (d = m = 1,t; = 0) and
parameters a; > 0 and ay € R whose uncertainty
is modelled by a random set A with four focal ele-
ments which are listed in the table below together
with their weights. Furthermore we consider a se-
lection « of A.

i | A Q; /&

1 [1, 3] X [0.5, 1.5] (1.7, 1.1) 2/15

2 [1,3] X [1,2] (2.3, 1.5) 4/15

3 [2,4] X [0.5, 1.5] (3.0,0.9) 1/5

4 [2,4] X [1,2] (3.2,1.4) | 2/5
3
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Figure 1: Sample path of X (boundaries in blue
lines) and £* (red line) on the time interval [0, 3].
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Figure 2: Probability box of X; (blue lines) and
CDF of & (red line) at time ¢t = 10.
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Figure 3: CDFs of 78 (upper blue line), 72 (lower
blue line) and 72 (red line), B = (0.5, c0).



