Statistical Tests with Distributional Uncertainty: An Info-Gap Approach

Yakov Ben-Haim Technion Israel Institute of Technology yakov@technion.ac.il http://info-gap.com

 $^{^0} lectures \talks \lib \sipta 2009 poster 01.tex 25.6.2009$

Distributional Uncertainty

- § Uncertainty, two foci:
 - Randomness: structured uncertainty.
 - Info-gaps:

Surprise, ignorance, indeterminism.

§ Distributional Uncertainty:

Unknown sampling distribution due to:

• Non-independence of observations.

E.g. unknown causal pathways.

- Non-stationarity of population. E.g. unknown evolution over time.
- Variability of observer.
 - E.g. professional/non-professional.
- Non-asymptotic data.
- § The challenge:

Design (statistical) test of hypothesis.

§ Example: Chronic Wasting Disease.

• Antler extract from diseased deer

induces disease in mice.

• Time to expression: uncertain pdf.

Diseased	Time to	
Animal	Expression	
1	$442 \pm 16 \ (6/8)$	
2	$> 594 \ (0/5)$	
3	$463 \pm 23 \ (2/3)$	
4	$> 601 \ (0/6)$	

Table 1: Mice expression of deer prion protein from antler velvet of diseased animals. Angers $et \ al.$, 2009.

- Given n nulls at t, test no-disease hypo.
- § Example: Long-term bio-monitoring.
 - Given 200 ys of data, test no-change hypo.
 - Data:
 - Naturalists' logs.
 - Museum collections.
 - Uncertainty:
 - Museum policy changes over time.
 - Observers' habits are variable.
 - Variable observers: pros, amateurs.
 - Protocol and purpose of observation.

§ Example: Detect invasive species.

- Decisions:
 - Choose traps and deployment.
 - Allocate resources:
 - Professional vs non-professional.
 - Detection vs irradication.
 - Interpret finds (e.g. nulls).
- Uncertainties:
 - Transport mechanisms.
 - Entry mechanisms.
 - Habitat suitability.

§ Shackle-Popper Indeterminism

- "Prediction is always difficult, especially of the future." Scandinavian saying.
- Intelligence:
 - What people know,
 - influences how they behave.
- Discovery:
 - What will be discovered tomorrow cannot be known today.
- Indeterminism:
 - Tomorrow's behavior cannot be modelled completely today.
- Information-gaps, indeterminisms, sometimes cannot be modelled probabilistically.
- Ignorance is not probabilistic.

- Really severe distributional uncertainty:
 - Unbounded moments, fat tails, multi-modal, atoms.
 - Uniform-bound in the cdf:

$$\mathcal{U}(h) = \{ F(y) : F(y) \in \mathcal{P}, |F(y) - \widetilde{F}_i(y)| \le h, \\ \forall y \}, \quad h \ge 0$$
(1)

- Severe distributional uncertainty:
 - Unbounded moments, fat tails, multi-modal, no atoms.
 - Uniform-bound in pdf:

$$\mathcal{U}(h) = \{ f(y) : f(y) \in \mathcal{D}, |f(y) - \tilde{f}_i(y)| \le h f_i^{\star}, \\ \forall y \}, \quad h \ge 0$$
(2)

- Moderate distributional uncertainty:
 - Bounded moments, ordinary tails, multi-modal, atoms.
 - Envelope-bound in cdf:

$$\mathcal{U}(h) = \{ F(y) : F(y) \in \mathcal{P}, |F(y) - \widetilde{F}_i(y)| \le h\psi(y), \\ \forall y \}, \quad h \ge 0$$
(3)

• Light distributional uncertainty:

- Bounded moments, ordinary tails, multi-modal, no atoms.
- Fractional-bound in pdf:

$$\mathcal{U}(h) = \{ f(y) : f(y) \in \mathcal{D}, |f(y) - \tilde{f}_i(y)| \le h \tilde{f}_i(y), \\ \forall y \}, \quad h \ge 0$$
(4)

• Axioms:

• Contraction:

$$\mathcal{U}(0) = \{\widetilde{F}_i\}$$

• Nesting:

$$h < h'$$
 implies $\mathcal{U}_i(h) \subseteq \mathcal{U}(h')$

 \circ *h* = unknown horizon of uncertainty.

Statistical Tests with Distributional Uncertainty

§ Errors:

- Type I: falsely reject H_0 .
- Type II: falsely accept H_0 .
- § Threshold tests:
 - Test of (nominal) size α^* rejects H_0 when:

 $y \geq q_{\alpha^\star}(\widetilde{F}_0)$

Falsely rejects H_0 with prob α^* .

• Test of nominal power $1 - \beta^*$ correctly rejects H_0 with prob $1 - \beta^*$:

$$1 - \beta^{\star} = 1 - \widetilde{F}_1[q_{\alpha^{\star}}(\widetilde{F}_0)]$$

- α^* small: low prob of type I error.
- $1 \beta^*$ large: low prob of type II error.

§ Robustness of type I error:

maximum horizon of uncertainty at which the test at nominal size α^* falsely rejects H_0 with probability no greater than α :

$$\widehat{h}_0(\alpha^\star, \alpha) = \max\left\{h : \left(\min_{F \in \mathcal{U}_0(h)} F[q_{\alpha^\star}(\widetilde{F}_0)]\right) \ge 1 - \alpha\right\}$$

§ Robustness of type II error:

maximum horizon of uncertainty at which the probability of falsely accepting H_0 , with a test of nominal size α^* , is no greater than β :

$$\widehat{h}_1(\alpha^\star,\beta) = \max\left\{h: \left(\max_{F \in \mathcal{U}_1(h)} F[q_{\alpha^\star}(\widetilde{F}_0)]\right) \le \beta\right\}$$

Info-Gap Theory

$\alpha^{\star} = 0.01$		$\alpha^{\star} = 0.05$	
n	$1-\beta^{\star}$	n	$1-\beta^\star$
5	0.1027	3	0.1784
7	0.3185	4	0.3736
9	0.5400	5	0.5390
12	0.7644	7	0.7457
31	0.9980	31	0.9997

Table 2: Size and power in the absence of distributional uncertainty.

Figure 1: Robustness curves for the t test, $\hat{h}_0(\alpha^*, \alpha)$ for falsely rejecting H_0 , and $\hat{h}_1(\alpha^*, \alpha)$ for falsely rejecting H_1 . Nominal size is $\alpha^* = 0.01$. $\hat{h}_1(\alpha^*, \alpha)$ calculated at 5 different sample sizes: n = 5, 7, 9, 12 and 31. $\delta = 1$.

§ Robustness curves:

- Trade-off:
 - **Positive slope of** \hat{h}_0 :

Robustness trades-off with significance.

• Negative slope of \hat{h}_1 :

Robustness trades-off with power.

• Zeroing:

Estimated significance or power has

- no robustness to
- distributional uncertainty.

§ Decisions and judgments.

- Two decisions to
 - Determine the decision threshold $q_{\alpha^{\star}}(\widetilde{F}_0)$:
 - \circ Nominal test size α^{\star} .
 - \circ Sample size n.
- Two judgments:
 - \circ Effective size α .
 - \circ Effective power $1-\beta$
 - $\alpha =$ **prob of falsely rejecting** H_0 **.**
 - $1 \beta =$ prob of correctly rejecting H_0 .

§ Trade-offs. positive robustness iff:

- $\alpha > \alpha^{\star}$.
- $1-\beta < 1-\beta^{\star}$.

Due to distributional uncertainty.

§ Use robustness functions $\hat{h}_0(\alpha^{\star}, \alpha)$ and $\hat{h}_1(\alpha^{\star}, \beta)$.

Figure 2: Expanded from fig. 1.

In fig. 2 consider nominal size $\alpha^{\star} = 0.01$. Consider the judgment that effective size $\alpha = 0.05$ is adequate and reliable because the robustness is $\hat{h}_0(0.01, 0.05) = 0.04$. This judgment considers the robustness and the effective size together since they are linked through the trade-off between them. The judgment is that tails unlikely to err more than 4%, and the 5% risk of type I error is acceptable. Now apply this robustness to type II error by requiring $\hat{h}_1(\alpha^{\star},\beta) = 0.04$. From fig. 2: effective powers of 0.50, 0.72 and 0.96 for n = 9, 12 and 31. Judging that power of 0.50 is too small, we require n > 9. If power of 0.72 is adequate then adopt n = 12. Choosing n = 31 would result in power of 0.96.

§ Example: Chronic Wasting Disease.

- Antler extract from diseased deer induces disease in mice.
- Time to expression: uncertain pdf.

§ Question:

• *n* innoculated mice.

• No PrP expression after incubation times t_1, \ldots, t_n .

• How confident that CWD is not present?

§ System model: probability of false null:

$$P_{\text{fn}}(t_1, \ldots, t_n) = \prod_{i=1}^n [1 - P(t_i)]$$

§ Uncertainty model: fat tails:

$$\mathcal{U}(h) = \{ p : p \in \mathcal{P}, p(t) \le \widetilde{p}(t) + \frac{t_{s}h}{t^{2}} \forall t \ge t_{s} \}$$
(5)

§ Robustness function:

$$\widehat{h}(n, P_{\text{fnc}}) = \max\left\{h: \left(\max_{p \in \mathcal{U}(h)} P_{\text{fn}}\right) \le P_{\text{fnc}}\right\}$$

Figure 3: $\hat{h}(n, P_{\text{fnc}})$ vs P_{fnc} , n = 1 to 5 (bottom to top).

Fig. 3 shows robustness curves for 5 sample sizes. Data: $t_i = 500, 530, 510, 520, 505$ days. Bottom curve uses 1st datum; next curve uses 2 data; etc. Estimated distribution is normal; $\mu = 450, \sigma = 20$ days. $t_s = 490$.

Positive slopes express trade-off between robustness, \hat{h} , and critical prob of false null, P_{fnc} . Large robustness entails large P_{fnc} . Zero robustness at estimated value of P_{fnc} .

Robustness increases substantially as n increases from 1 to 2. Marginal increase in robustness falls with increasing n. Slope increases dramatically with sample size. High slope means low cost of robustness: the robustness can be increased without significantly increasing the critical probability of false null, $P_{\rm fnc}$.

§ Applications of info-gap theory:

- Engineering design:
 - Off-road vehicles.
 - Automotive control systems.
 - \circ UAV target-search strategies.
 - Flood control.
- Fault detection and diagnosis.
- Project management.
- Homeland security.
- Sampling, assay design.
- Statistical hypothesis testing.
- Monetary economics.
- Financial stability.
- Biological conservation.
- Medical decision making.
- § Sources: http://info-gap.com