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Distributional Uncertainty

§ Uncertainty, two foci:

• Randomness: structured uncertainty.

• Info-gaps:

Surprise, ignorance, indeterminism.

§ Distributional Uncertainty:

Unknown sampling distribution due to:

• Non-independence of observations.

E.g. unknown causal pathways.

• Non-stationarity of population.

E.g. unknown evolution over time.

• Variability of observer.

E.g. professional/non-professional.

• Non-asymptotic data.

§ The challenge:

Design (statistical) test of hypothesis.
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§ Example: Chronic Wasting Disease.

• Antler extract from diseased deer

induces disease in mice.

• Time to expression: uncertain pdf.

Diseased Time to
Animal Expression

1 442 ± 16 (6/8)
2 > 594 (0/5)
3 463 ± 23 (2/3)
4 > 601 (0/6)

Table 1: Mice expression of deer prion protein from antler velvet of diseased animals.
Angers et al., 2009.

• Given n nulls at t, test no-disease hypo.

§ Example: Long-term bio-monitoring.

•Given 200 ys of data, test no-change hypo.

• Data:

◦ Naturalists’ logs.

◦ Museum collections.

• Uncertainty:

◦ Museum policy changes over time.

◦ Observers’ habits are variable.

◦ Variable observers: pros, amateurs.

◦ Protocol and purpose of observation.
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§ Example: Detect invasive species.

• Decisions:

◦ Choose traps and deployment.

◦ Allocate resources:

— Professional vs non-professional.

— Detection vs irradication.

◦ Interpret finds (e.g. nulls).

• Uncertainties:

◦ Transport mechanisms.

◦ Entry mechanisms.

◦ Habitat suitability.
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§ Shackle-Popper Indeterminism

• “Prediction is always difficult,

especially of the future.”

Scandinavian saying.

• Intelligence:

What people know,

influences how they behave.

• Discovery:

What will be discovered tomorrow

cannot be known today.

• Indeterminism:

Tomorrow’s behavior cannot be

modelled completely today.

• Information-gaps, indeterminisms,

sometimes

cannot be modelled probabilistically.

• Ignorance is not probabilistic.
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§ Some info-gap models of

distributional uncertainty.

• Really severe distributional uncertainty:

◦ Unbounded moments, fat tails,

multi-modal, atoms.

◦ Uniform-bound in the cdf:

U(h) = { F (y) : F (y) ∈ P , |F (y)− ˜F i(y)| ≤ h,

∀ y } , h ≥ 0 (1)

• Severe distributional uncertainty:

◦ Unbounded moments, fat tails,

multi-modal, no atoms.

◦ Uniform-bound in pdf:

U(h) = { f (y) : f (y) ∈ D, |f (y)− ˜f i(y)| ≤ hf ?
i ,

∀ y } , h ≥ 0 (2)

• Moderate distributional uncertainty:

◦ Bounded moments, ordinary tails,

multi-modal, atoms.

◦ Envelope-bound in cdf:

U(h) = { F (y) : F (y) ∈ P , |F (y)− ˜F i(y)| ≤ hψ(y),

∀ y } , h ≥ 0 (3)
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• Light distributional uncertainty:

◦ Bounded moments, ordinary tails,

multi-modal, no atoms.

◦ Fractional-bound in pdf:

U(h) = { f (y) : f (y) ∈ D, |f (y)− ˜f i(y)| ≤ h ˜f i(y),

∀ y } , h ≥ 0 (4)

• Axioms:

◦ Contraction:

U(0) = {˜F i}
◦ Nesting:

h < h′ implies U i(h) ⊆ U(h′)

◦ h = unknown horizon of uncertainty.
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Statistical Tests with

Distributional Uncertainty

§ Errors:

• Type I: falsely reject H0.

• Type II: falsely accept H0.

§ Threshold tests:

• Test of (nominal) size α? rejects H0 when:

y ≥ qα?( ˜F 0)

Falsely rejects H0 with prob α?.

• Test of nominal power 1− β?

correctly rejects H0 with prob 1− β?:

1− β? = 1− ˜F 1[qα?( ˜F0)]

• α? small: low prob of type I error.

• 1− β? large: low prob of type II error.
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§ Robustness of type I error:

maximum horizon of uncertainty at which
the test at nominal size α? falsely rejects H0

with probability no greater than α:

̂h0(α
?, α) = max



h :


 min
F∈U0(h)

F [qα?( ˜F0)]

 ≥ 1− α





§ Robustness of type II error:

maximum horizon of uncertainty at which
the probability of falsely accepting H0, with
a test of nominal size α?, is no greater than
β:

̂h1(α
?, β) = max



h :


 max
F∈U1(h)

F [qα?( ˜F0)]

 ≤ β
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α? = 0.01 α? = 0.05
n 1− β? n 1− β?

5 0.1027 3 0.1784
7 0.3185 4 0.3736
9 0.5400 5 0.5390
12 0.7644 7 0.7457
31 0.9980 31 0.9997

Table 2: Size and power in the absence of distributional uncertainty.
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Figure 1: Robustness curves for the t test, ĥ0(α
?, α) for falsely rejecting H0, and

ĥ1(α
?, α) for falsely rejecting H1. Nominal size is α? = 0.01. ĥ1(α

?, α) calculated at
5 different sample sizes: n = 5, 7, 9, 12 and 31. δ = 1.

§ Robustness curves:

• Trade-off:

◦ Positive slope of ̂h0:

Robustness trades-off with significance.

◦ Negative slope of ̂h1:

Robustness trades-off with power.

• Zeroing:

Estimated significance or power has

no robustness to

distributional uncertainty.
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§ Decisions and judgments.

• Two decisions to

Determine the decision threshold qα?( ˜F 0):

◦ Nominal test size α?.

◦ Sample size n.

• Two judgments:

◦ Effective size α.

◦ Effective power 1− β

α = prob of falsely rejecting H0.

1− β = prob of correctly rejecting H0.

§ Trade-offs. positive robustness iff:

• α > α?.

• 1− β < 1− β?.

Due to distributional uncertainty.
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§ Use robustness functions ̂h0(α
?, α) and ̂h1(α

?, β).
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Figure 2: Expanded from fig. 1.

In fig. 2 consider nominal size α? = 0.01.
Consider the judgment that effective size
α = 0.05 is adequate and reliable because
the robustness is ̂h0(0.01, 0.05) = 0.04. This
judgment considers the robustness and the
effective size together since they are linked
through the trade-off between them. The
judgment is that tails unlikely to err more
than 4%, and the 5% risk of type I error
is acceptable. Now apply this robustness
to type II error by requiring ̂h1(α

?, β) = 0.04.
From fig. 2: effective powers of 0.50, 0.72
and 0.96 for n = 9, 12 and 31. Judging
that power of 0.50 is too small, we require
n > 9. If power of 0.72 is adequate then
adopt n = 12. Choosing n = 31 would result
in power of 0.96.
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§ Example: Chronic Wasting Disease.

• Antler extract from diseased deer

induces disease in mice.

• Time to expression: uncertain pdf.

§ Question:

• n innoculated mice.

•No PrP expression after incubation times
t1, . . . , tn.

• How confident that CWD is not present?

§ System model: probability of false null:

Pfn(t1, . . . , tn) =
n∏

i=1
[1− P (ti)]

§ Uncertainty model: fat tails:

U(h) = {p : p ∈ P , p(t) ≤ p̃(t) +
tsh

t2
∀t ≥ ts } (5)

§ Robustness function:

̂h(n, Pfnc) = max



h :


 max
p∈U(h)

Pfn


 ≤ Pfnc







lectures\talks\lib\isipta2009poster01.tex Info-Gap Theory 15/14

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crit. False Neg. Prob.

R
ob

us
tn

es
s

0 0.05
0

0.1

0.2

0.3

Figure 3: ĥ(n, Pfnc) vs Pfnc, n = 1 to 5 (bottom
to top).

Fig. 3 shows robustness curves for 5 sam-
ple sizes. Data: ti = 500, 530, 510, 520, 505
days. Bottom curve uses 1st datum; next
curve uses 2 data; etc. Estimated distribu-
tion is normal; µ = 450, σ = 20 days. ts = 490.
Positive slopes express trade-off between

robustness, ̂h, and critical prob of false null,
Pfnc. Large robustness entails large Pfnc. Zero
robustness at estimated value of Pfnc.
Robustness increases substantially as n in-

creases from 1 to 2. Marginal increase in
robustness falls with increasing n. Slope in-
creases dramatically with sample size. High
slope means low cost of robustness: the ro-
bustness can be increased without signifi-
cantly increasing the critical probability of
false null, Pfnc.
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§ Applications of info-gap theory:

• Engineering design:

◦ Off-road vehicles.

◦ Automotive control systems.

◦ UAV target-search strategies.

◦ Flood control.

• Fault detection and diagnosis.

• Project management.

• Homeland security.

• Sampling, assay design.

• Statistical hypothesis testing.

• Monetary economics.

• Financial stability.

• Biological conservation.

• Medical decision making.

§ Sources: http://info-gap.com


