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Preface

The Sixth International Symposium on Imprecise Probability: Theories and Applications is held
in Durham, United Kingdom, 14–18 July 2009. In addition to an extensive scientific program,
the meeting includes visits to Durham Cathedral and Castle, which together are a UNESCO
world heritage site.

The ISIPTA meetings are a primary forum for presenting and discussing new advances in
imprecise probability, and are held once every two years. The first meeting was held in Gent
in 1999, followed by meetings in Ithaca (Cornell University), Lugano, Pittsburgh (Carnegie
Mellon University), and Prague. In the decade since the first meeting, imprecise probability has
come a long way, which is reflected by the wide range of topics presented at the 2009 meeting,
but particularly also in the wider acceptance of imprecise probability in journals and at other
conferences.

As with previous ISIPTA meetings, we have avoided parallel sessions. In total, 47 papers are
presented by a short talk and poster presentation, which guarantees ample time for discussion
of each contribution. The papers are included in these proceedings, and are also available on
the SIPTA webpage (http://www.sipta.org). Submitted papers have undergone a high quality
reviewing process by members of the Program Committee, to whom we are very grateful. The
selectivity resulting from the review process, provides trust in the quality of the presented research
results.

Nevertheless, it has long been acknowledged that, at the ISIPTA meetings, some good quality
papers could not be accepted due to the limited number of papers that can be presented at
the meeting. To provide a platform for novel ideas and challenging applications for which the
research is not yet completed, poster-only presentations have been introduced at ISIPTA’09.
About 25 such contributions will be presented. For each, a short abstract will be distributed at
the conference. The abstracts are also available on the SIPTA webpage.

As with previous ISIPTA meetings, a wide variety of theories and applications of imprecise
probability will be presented. New application areas and novel ways for dealing with limited
information prove the increasing success of imprecise probability. For ISIPTA’09, statistical
inference and decision making with imprecise probability has specifically been emphasized, as
successful applications in these areas are crucial for wider uptake of imprecise probability. There
will be a special discussion session on statistical inference. We are grateful to Kurt Weichselberger
who agreed to open this session by reporting on some recent developments and applications of
his “Symmetric Theory of Probability”. Also the topics of the four tutorials at ISIPTA’09 reflect
this emphasis: inference, reliability, decision making, and graphical models. We thank Erik
Quaeghebeur, Lev Utkin, Robert Hable, and Cassio de Campos, respectively, for preparing and
presenting these tutorials, and for making excellent materials available to the wider community
(also on the SIPTA webpage).

Two special session are held at ISIPTA’09. One special session is organized in memory of
Henry E. Kyburg Jr. (1928–2007). Henry Kyburg was Gideon Burbank Professor of Moral Phi-
losophy and Professor of Computer Science at the University of Rochester, where he was an
active member of their faculty from 1965 until his death, and Chair of their Philosophy Depart-
ment from 1969–1982. He was among the first researchers to develop a rigorous theory in which
probability is interval-valued, and did so by keeping probability an issue of inference and logic,
separate from decision making. His original interval-valued theory, Epistemological Probability,
is found in his 1961 book Probability and the Logic of Rational Belief, itself a development of

vii
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ideas he presented in his 1956 Columbia University PhD thesis Probability and Induction in the
Cambridge School, which was written under the supervision of Ernest Nagel. A later version
of his theory, with a variety of applications, is given in his 1974 book The Logical Foundations
of Statistical Inference. Henry’s theory can be seen as a generalization of R.A. Fisher’s fiducial
probability, where the generalization allows interval-valued probability when precise frequency
information is lacking about pivotal quantities. Also, Henry’s Epistemological Probability is an in-
ductive logic: it carries forward foundational ideas found in J.M. Keynes’ Treatise on Probability,
including Keynes’ idea that not all probabilities are comparable.

Henry was a member of the Program Committees for the ISIPTA meetings and gave a mem-
orable after-dinner address to the Society at the 2nd Symposium, ISIPTA’01, held at Cornell
University. His calm, caring, and deliberate manner, tempered by a dry wit, will be sorely
missed.

The organisers are pleased that Isaac Levi has agreed to make opening remarks at the special
session in memory of Henry Kyburg. Isaac followed Henry at Columbia University as a student
of Ernest Nagel. They were dear friends, and fierce competitors for more than 45 years over how
interval-valued probability should be developed.

A second special session is organized in memory of Pauline Coolen-Schrijner (1968–2008).
Pauline was Reader in Probability and Statistics at Durham University, and involved in the
early plans of organising ISIPTA’09 in Durham. Her PhD research was on quasi-stationarity of
discrete-time Markov chains, a topic generalized to imprecise probability by her PhD student
Richard Crossman, who presents this work at ISIPTA’09. Pauline was intensively engaged,
together with her husband and colleague Frank Coolen, in the development of nonparametric
predictive inference (NPI), which is a new exciting methodology for predictive inference under
low structure assumptions leading to interval-valued probabilities.

Two PhD students who Pauline supervised present results on NPI at ISIPTA’09: Tahani
Maturi presents NPI for multiple comparisons and Rebecca Baker presents the application of
NPI to category selection. Pauline published over 40 papers in a wide range of journals in
Stochastics, Statistics, Operational Research and Reliability. She particularly developed NPI
for replacement problems, which offers great adaptivity to process data. Research results which
Pauline achieved with her PhD students, as well as further results with Frank Coolen, will lead
to a substantial number of further papers to be published in the near future.

During the last two decades, Pauline suffered from increasingly devastating diseases, which
forced her to gradually give up many of the things most precious to her. However, she was always
full of optimism, mental strength and energy, with a special sense for the small things in life,
being well aware that, quoting the last line of her web page, “breathing is not something we can
take for granted.”

We believe that, in the 10 years since ISIPTA’99, imprecise probability has found a solid place
in research on uncertainty quantification and related fields. Because applications are increasing,
both in number and success, we are optimistic about the future impact of imprecise probability.
However, with widening acceptance of the theories, new challenges for the ISIPTA meetings
arise: emphasis is likely to shift from raising awareness of developments and opportunities, to
stimulating discussion between people with a wider range of interests. We believe that the current
format of ISIPTA is successful, and we hope that all participants will find the meeting pleasant,
informative, and beneficial. We hope that ISIPTA’09 provides a good platform to present and
discuss work, and hopefully also leads to new ideas and collaborations. Whether or not this
format will remain suitable in the future, in anticipation of more and more participants at these
meetings, is an interesting problem which we happily leave for the organisers of ISIPTA’11 and
beyond to contemplate.

Finally, we wish to thank several people for their support. Marco Zaffalon, the SIPTA Pres-
ident, regularly provided us with useful information, and ensured that this conference benefits
from previous experiences. Gert de Cooman and Teddy Seidenfeld did similarly, and as mem-
bers of the Steering Committee they provided useful input throughout the preparations for this
conference. We also thank Teddy for suggesting the special sessions in honour of Henry Kyburg
and Pauline Coolen-Schrijner. We are grateful to the Durham Events staff, in particular Judith
Aird, for their professional support in the organisation of the conference. We also thank all
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who have contributed to the success of ISIPTA’09, be it by submitting their research results,
presenting them at the conference, reviewing papers, or by attending sessions and participating
in discussions. Finally, we thank you for picking up these proceedings and reading the excellent
papers. We are confident that you will enjoy them! May these papers be an everlasting proof of
the success of ISIPTA’09.

Thomas Augustin
Frank P. A. Coolen

Seraf́ın Moral
Matthias C. M. Troffaes

July 2009
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Iterated Random Selection as Intermediate Between Risk and
Uncertainty

Horacio Arló Costa
Carnegie Mellon University

hcosta@andrew.cmu.edu

Jeffrey Helzner
Columbia University
jh2239@columbia.edu

Abstract

In [7] Hertwig et al. draw a distinction between deci-
sions from experience and decisions from description.
In a decision from experience an agent does not have a
summary description of the possible outcomes or their
likelihoods. A career choice, deciding whether to back
up a computer hard drive, cross a busy street, etc.,
are typical examples of decisions from experience. In
such decisions agents can rely only of their encoun-
ters with the corresponding prospects. By contrast,
an agent furnished with information sources such as
drug-package inserts or mutual-fund brochures—all of
which describe risky prospects—will often make deci-
sions from description.

In [7] it is shown (empirically) that decisions from ex-
perience and decisions from description can lead to
dramatically different choice behavior. Most of these
results (summarized and analyzed in [6]) are con-
cerned with the role of risk in decision making. This
article presents some preliminary results concerning
the role of uncertainty in decision making. We focus
on Ellsberg’s two-color problem and consider a chance
setup based on double sampling. We report empirical
results which indicate that decisions from description
where subjects select between a clear urn, the chance
setup based on double sampling and Ellsberg’s vague
urn, are such that subjects perceive the chance setup
at least as an intermediate option between clear and
vague choices (and there is evidence indicating that
the double sampling chance setup is seen as opera-
tionally indistinguishable from the vague urn). We
then suggest how the iterated chance setup can be
used in order to study decisions from experience in
the case of uncertainty.

Keywords. decisions from description, decisions
from experience, random selection, uncertainty

1 Introduction

Consider a scenario in which a well-educated couple
must decide whether or not their child should receive
a particular vaccination. To assist in their decision
making, the couple is provided with statistics con-
cerning the frequency of serious, adverse reactions as-
sociated with the vaccination in question. Though
the frequency of such adverse reactions is quite low,
the couple is reluctant to have their child vaccinated.
Concerned, the child’s pediatrician provides reasons
in favor of vaccination, noting that she herself in fact
had chosen to vaccinate her own children. What
might explain the difference between the judgement
of the child’s parents and that of the child’s pedia-
trician? One plausible explanation that is of general,
theoretical interest focuses on the way in which the
relevant parties are acquainted with the chances as-
sociated with an adverse reaction. While the child’s
parents are provided with frequencies, and presum-
ably the child’s pediatrician is privy to this informa-
tion, the pediatrician can also draw upon her own
clinical experience.

Hertwig et al. propose to analyze cases of this type
in terms of a distinction between decisions from de-
scription and decisions from experience. As suggested
by the scenario in the previous paragraph, which is
among the scenarios that provide motivation for the
work reported in [7], decisions from description are
made with the benefit of a description of the rele-
vant chance mechanism, e.g., associated probabilities,
while decisions from experience are informed by re-
peated encounters with the chance mechanism itself,
i.e., sampling. As noted in [7], the vast majority of
experimental work on decision making has focused on
decisions from description. The following example,
taken from Kahneman and Tversky’s 1979 classic on
prospect theory [8], illustrates the methodology typi-
cal among work in this area:

Example 1. Which of the following do you prefer?

1



Alternative 1 pays $5000 with probability .001 and $0
with probability .999. Alternative 2 pays $5 with prob-
ability 1.

Is there any reason to think that this focus on de-
cisions from description has been significant with re-
spect to the results gathered through numerous stud-
ies which employ the sort of methodology illustrated
in Example 1? In [7], Hertwig et al. answer this ques-
tion in the affirmative. Specifically, they present ev-
idence indicating that people tend to “underweight
the probability of rare events” when making decisions
from experience. This is in stark contrast to the well-
known results of Kahneman and Tversky, based on
items such as Example 1, which indicate that people
tend to overweight the probability of rare events when
making decisions from description. Thus, it seems
that Hertwig et al. have isolated an important psy-
chological effect. The opening scenario clearly illus-
trates the effect Hertwig et al. have isolated. The
child’s parents are presented with frequencies which
they interpret as a description of the relevant chance
mechanism. As predicted by Hertwig et al., the child’s
parents overweight the probability of an adverse re-
action and decide not to vaccinate. By contrast, the
pediatrician’s decision making is informed by her clin-
ical experience. As predicted by Hertwig et al., the
child’s physician underweights the probability of an
adverse reaction and recommends vaccination.

Hertwig et al. restrict their attention to decision mak-
ing under risk. In particular, the descriptions that
they employ include a numerically precise probabil-
ity distribution. The main purpose of this paper
is to begin an investigation into the possibility of a
description-versus-experience effect in the context of
decision making under uncertainty, i.e., in contexts
where the description of the relevant chance setup
does not determine a numerically precise probability
distribution. On the basis of experimental evidence
reported in this paper we conjecture that the gap be-
tween vague and clear is less pronounced in the case of
decisions from experience than in the case of decisions
from description.

2 From Risk to Uncertainty

Consider the design of the first study reported by Her-
twig et al. in [7]. The subjects were divided into two
groups: Description and Experience. Those in De-
scription were presented with several choice problems,
each of which consisted of a pair of risky alternatives.
For example, one such choice problem consisted of the
alternatives (4, .8) and (3, .1), where (m, p) denotes
the risky alternative that pays amount m with prob-
ability p and pays amount 0 with probability 1− p.

Let (m, p) be a risky alternative of the indicated sort.
One can construct a chance setup that satisfies de-
scription (m, p). For example, a chance setup for the
alternative (4, .8) could use random draws (with re-
placement) from an urn consisting of 80 black balls
and 20 white balls. The implementation of the sec-
ond group, Experience, is less familiar. Consider
a decision-from-experience counterpart to the choice
problem consisting of (4, .8) and (3, .1). One could,
for example, present the subject with two buttons,
say A and B, where pressing A (B) results in a trial
on a particular chance setup corresponding to (4, .8)
((3, .1)). The subject, who sees the result of each trial
(e.g., in the case of A, whether the payoff would have
been 4 or 0), is permitted to sample the two chance
setups as many times as they wish before they are re-
quired to make a choice and play one of the two setups
for real payoffs. Essentially, this is the way in which
Hertwig et al. study decision making from experience.

What happens when we move from risk to uncertainty
(where probabilities are imprecise)? The obvious can-
didate on the description side is familiar through the
presentation of Ellsberg problems such as following:

Example 2 (Ellsberg’s two-color problem [4]). Con-
sider the following two cases:

Urn A contains exactly 100 balls. 50 of these balls are
solid black and the remaining 50 are solid white.

Urn B contains exactly 100 balls. Each of these balls is
either solid black or solid white, although the ratio
of black balls to white balls is unknown.

Consider now the following questions: How much
would you be willing to pay for a ticket that pays $55
($0) if the next random selection from Urn A results
in black (white) ball? Repeat then the same question
for Urn B.

Following the above presentation, an uncertain al-
ternative over a pair of prizes (only one of which is
nonzero) can be specified by providing the amount
of the nonzero prize and the set of probabilities that
are associated with that prize. Thus, for example,
(55, { i

100 | 0 ≤ i ≤ 100}) is the uncertain alternative
in which the probability of winning $55 is known to
be in { i

100 | 0 ≤ i ≤ 100}.
Presenting alternatives in this way has the virtue of
generalizing the risky alternatives that are employed
by Hertwig et al., since these risky alternatives are
simply those of the form (m, {p}). However, once
the probabilities are allowed to be indeterminate, it is
not clear how to complete the analogy in a way that
would support decision from experience under uncer-
tainty. Recall the desired relationship in the case of
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risk. Given a risky alternative, e.g., (m, {p}), one can
construct a corresponding chance setup, i.e., one that
satisfies description (m, {p}). Doing the analogous
thing in the case of uncertainty would seem to require
chance setups that implement indeterminate probabil-
ities. Are there such things in any interesting sense?
After all, the uncertainty described in Ellsberg-type
examples is purely epistemic, e.g., the ratio between
black ball and white balls in Urn B is determinate
even though it is not known to the decision maker.
On the other hand, consider the following description
of a chance setup:

B∗: First, select an integer between 0 and 100 at ran-
dom, and let n be the result of this selection.
Second, make a random selection from an urn
consisting of exactly 100 balls, where n of these
balls are solid black and 100− n are solid white.

As in the case of Urn B, the outcome of a trial on
chance setup B∗ depends on a random selection from
an urn such that the ratio of black balls to white balls
is not known to the subject. However, unlike the case
of Urn B, the subject knows that the urn that is sam-
pled in the second stage of B∗ is determined by a
random selection in the first stage of B∗. According
to at least one familiar line of reasoning, this second
consideration suggests that a play on B∗ is equivalent
to a play on Urn A, rather than Urn B. The indicated
line of reasoning is roughly as follows: The random se-
lection in the first stage entails that, for each integer
i, where 0 ≤ i ≤ 100, there is a probability of 1

101 that
the urn sampled in the second stage consist of i black
balls and 100− i white balls. Moreover, according to
this line of reasoning the random selection in the sec-
ond stage entails that if i is selected in the first stage,
then the probability of selecting a black ball in the
second stage is i

100 . This line of reasoning then con-
tinues by combining the first and second stage prob-
abilities to conclude that the probability of getting a
black ball on a trial of B∗ is 1

101 (
∑100

i=0
i

100 ) = 1
2 , as in

the case of Urn A. There are, of course, well-known
responses to this line, the most obvious being one that
questions the relevance of a chance setup’s long-run
behavior when it comes to assigning probabilities for a
single trial of the setup; here we are assuming that the
relevant probabilities are based on frequencies rather
than something like propensities.

A less familiar response maintains that one has com-
plete uncertainty over the collection of chance setups
that satisfy description B∗ and that, since some of
the setups will select a black ball on their next trial
while others will select a white ball, one has complete
uncertainty with respect to the outcome of the next
trial. For example, even if one maintains that there

are truly nondeterministic chance setups, determin-
istic chance setups are common and are of the sort
that Hertwig et al. employ in [7]. If random selection
is understood to mean selection by a mechanism such
that (1) future behavior of the mechanism cannot be
predicted from a mere knowledge of its past behavior
and (2) the various possible outcomes are distributed
evenly in the long run – and these are important mat-
ters that will be considered in the sections that follow
– then the description of B∗ is compatible with the
use of such deterministic mechanisms.

For all the subject knows, the first stage selection in
B∗ can be made according to a deterministic process
that will select 33 on its next run, while the second
stage mechanism will be made according to a deter-
ministic mechanism that will select a black ball on its
next draw from the 33:77 urn. Similarly, it is compat-
ible with the information that is presented to the sub-
ject that the first stage selection in B∗ will be made
according to a deterministic process that will select
61 on its next run, while the second stage mechanism
will be made according to a deterministic mechanism
that will select a white ball on its next draw from the
61:39 urn. The subject has complete uncertainty over
these selection mechanisms and, more generally, over
the collection of all chance setups that might be used
to carry out the selections in B∗. Since the final out-
come, i.e., the selection of a black or white ball, is a
function of the chance setups which are employed, at
least where deterministic mechanisms are used, com-
plete uncertainty over the collection of these mecha-
nisms suggests complete uncertainty with respect to
the final outcome. Note that this line is rather ex-
treme, since it suggests complete uncertainty even in
situations where the second stage urn is fixed, e.g., as
in a chance setup that makes selections with replace-
ment from Urn A. Rather than trying to achieve con-
sensus with respect to such a priori considerations,
we now turn our attention to psychological matters.

3 Study

What is the psychological relationship between the de-
scription of Urn B and B∗? To investigate this ques-
tion we asked subjects to state their maximum buying
prices with respect to hypothetical situations involv-
ing the descriptions at issue. Our study included 89
undergraduates from Carnegie Mellon. At the time of
the study the participating students were enrolled in
80-100, an introductory philosophy course at Carnegie
Mellon. Each subject was presented with a question-
naire, the contents of which will now be described.

After instructing the subjects that they would be pre-
sented with questions involving hypothetical scenar-
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ios, the questionnaire continued with the following tu-
torial on chance setups:

Think of a roulette wheel of the sort that
one would find in any American casino. The
casino employee spins the wheel in one di-
rection and then sends a ball in the other
direction along a track that goes around the
circumference of the wheel. Eventually the
ball comes to rest in one of the wheel’s 38
pockets. Players expect that this setup is
fair in the sense that the following conditions
are satisfied: (1) In the long run the number
of times that the ball lands in a particular
pocket is equal to the number of times that
the ball lands in any other particular pocket
and (2) One cannot predict where the ball
will land on the next spin simply by know-
ing where the ball landed on previous spins.

Roulette wheels are a special case of a more
general class of systems. More generally, a
chance setup is a system that includes a fi-
nite set {o1, ..., on} of possible outcomes and
that outputs one of these outcomes each time
that it is run. Such a chance setup is fair
just in case the following conditions are sat-
isfied: (1) If the system were run repeatedly,
then in the long run the number of trials that
would result in outcome oi would be equal to
the number of trials that would result in out-
come oj and (2) One cannot predict which
outcome will result from the next run of the
system simply by knowing the outcome of
each of the previous runs of the system.

The questionnaire then continued by instructing the
subjects that “random selection” in the context of the
questionnaire is to be understood as selection via a
fair chance setup. This instruction was followed by
three questions:

1. An urn has been filled with exactly 100 balls. 50
of the balls are black and the remaining 50 are
white. A random selection from the urn will be
made. What is the most that you would be
willing to spend on a ticket that pays $55
if the random selection results in a black
ball and pays $0 if the random selection
results in a white ball?

2. Consider the following two-stage process: (1)
A random selection is made from the collection
{0, 1, ..., 100} and (2) A second random selec-
tion is made from an urn that contains exactly
n black balls and 100− n white balls, where n is

the result of the random selection from the first
stage. Thus, for example, if 23 was the result
of the random selection in the first stage, then
the random selection in the second stage would
be from an urn containing exactly 23 black balls
and 77 white balls. What is the most that
you would be willing to spend on a ticket
that pays $55 if the random selection in
the second stage results in a black ball and
pays $0 if the random selection in the sec-
ond stage results in a white ball?

3. An urn has been filled with exactly 100 balls.
Each ball in the urn is either black or white. How-
ever, the ratio of black balls to white balls in the
urn is unknown. A random selection from the
urn will be made. What is the most that you
would be willing to spend on a ticket that
pays $55 if the random selection results in
a black ball and pays $0 if the random se-
lection results in a white ball?

Note that the ticket is played against the “clear”
chance setup in the first question, against the “double
sampling” chance setup in the second question, and
against the “vague” chance setup in the third ques-
tion. Thus, referring back to Example 2, the first of
these questions asks the subject to price the ticket
on Urn A, while the second asks the subject to price
the ticket with respect to B∗, and the third asks the
subject to price the ticket on Urn B.

Recognizing that the order in which the questions ap-
peared might affect the responses, we created three
different versions of the questionnaire: CDV, VDC,
and DVC. Version CDV was administered to 41 sub-
jects and presented the questions in the order given
above, i.e., the question concerning the clear setup fol-
lowed by the question concerning the double-sampling
setup followed by the question concerning the vague
setup. Version VDC, which was administered to 32
subjects, reversed this order. Version DVC was given
to 16 subjects and had the question about double-
sampling occurring first, the question about the vague
setup occurring second and the question about the
clear chance setup occurring third. In each version,
subjects were instructed to answer the questions in
the order that they were presented.

For each of the three groups, Table 1 shows the mean
maximum buying price for the three questions. Thus,
for example, the first row of the second column indi-
cates that, in the case of the ticket on the clear chance
setup, $22.68 was the mean maximum buying price for
the group of subjects that received the VDC version
of the questionnaire.
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Question CDV mean VDC mean DVC mean
Clear 22.89 22.68 19.02

Double 14.68 9.77 7.70
Vague 5.82 7.10 3.25

Table 1

While the order of the questions appears to have had
some bearing, the basic pattern of Vague < Double
< Clear for the mean maximum buying prices seems
robust across the three versions of the questionnaire.
The mean maximum buying prices over all subjects
are shown in Table 2.

Question Mean
Clear 22.12

Double 11.66
Vague 5.82

Table 2

If we turn our attention to the level of individual sub-
jects, then the above pattern of strict inequalities is
less pronounced since approximately 1

3 of the subjects
gave the same maximum buying price for Double and
Vague; moreover, these subjects were not distributed
evenly across the three groups. However, as shown in
Table 3, a clear pattern emerges if we weaken the first
inequality.

Group # V ≤ D < C % V ≤ D < C
CDV 29 71%
VDC 24 75%
DVC 12 75%
All 65 73%

Table 3

The first column of Table 3 shows the number of sub-
jects in each group (and overall) that satisfied the
Vague ≤ Double < Clear pattern, while the second
column shows the associate percentages. As Table 3
shows, these percentages are quite stable across the
three groups individually and their union. It is also
worth noting that, as shown in Table 4, relatively few
of the subjects gave the same maximum buying price
for Clear and Double.

Group # C = D % C = D
CDV 12 29%
VDC 6 19%
DVC 4 25%
All 22 25%

Table 4

The first column of Table 4 shows the number of sub-
jects in each group (and overall) that gave the same
maximum buying price for Clear and Double, while
the second column shows the associate percentages.

The data also reveal as well an interesting result if
we consider the values for Vague, Double, and Clear
given by the mean maximum buying prices for VDC,
DVC and CDV, respectively. These values are impor-
tant because these are the results for the three cases
without considering comparisons – subjects were in-
structed to answer the questions sequentially and not
to return to previous questions. For example, since
Vague occurs first in VDC, it seems reasonable to as-
sume that it is evaluated in a non-comparative con-
text. Table 5 shows the mean maximum buying prices
for these three non-comparative cases:

Question Mean
Clear 22.89

Double 7.70
Vague 7.10

Table 5

These results suggest an operational identification of
Vague and Double, which have almost identical val-
ues; this is of interest to us since Double, unlike
Vague, seems to be implementable in a way that could
support decisions from experience, and this is some-
thing that we will revisit in the following section.
Furthermore, these values for Vague and Double are
clearly separated from the mean maximum buying
price for Clear as reported in Table 5. Perhaps the
only concern here is that the number of subjects who
received VDC is low in comparison to the number
of subjects in the other two groups. We expect to
run a larger experiment including decisions from ex-
perience. In this case it would be interesting to see
whether the pattern verified in the pilot is robustly
maintained.

Another issue that we intend to address in future
experiments concerns the worry, expressed by one
anonymous referee, that the complexity of B∗ rather
than its status with respect to uncertainty is respon-
sible for its lower price. This raises two interesting
issues. First, how might we control for this in future
experiments? Perhaps one way to do this would be to
have the subjects explain the reasoning behind their
responses. We can certainly ask the subjects why they
priced one alternative lower than another. The sec-
ond issue concerns the relationship between complex-
ity and uncertainty. In the present context this seems
to line up with the familiar distinction between impre-
cision and indeterminacy. One might claim that the
credal probabilities in the case of B∗ are imprecise
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but not indeterminate, e.g. that the rational agent is
committed to a particular credal probability but is
unable identify that particular distribution. This sort
of situation is not unlike the imprecision that arises
in connection with the measurement of physical con-
cepts, e.g. length or weight. In contrast, one might
claim that in the case of Urn B the rational agent’s
credal probability itself – rather than just its estima-
tion of that credal probability – ought to be indeter-
minate. Surely the distinction is not mere stipulation,
but what is wrong with maintaining that the rational
agent’s credal probabilities with respect to B∗ should
also be indeterminate (i.e. that the rational agent is
not committed to a determinate credal probability in
such a case)? It seems that considerations of this sort
lead in the direction of bounded rationality, in partic-
ular the tenability of capacity independent notions of
rationality.

4 Discussion

The results of our study suggest that double sampling
is perceived as something in between risk and uncer-
tainty when comparative contexts are allowed, but is
there a way to make this intermediate position more
transparent? Perhaps one way to do this would be to
describe a mixed chance setup in which the subject
is told that the selection will be made from Urn A
with probability p and from Urn B with probability
1 − p. One could then attempt to identify the value
of p at which the subject’s maximum buying price is
equal to the maximum buying price that the subject
stated with respect to B∗. The value of p so identified
could be taken as a representation of the intermediate
position that B∗ occupies between risk (Urn A) and
uncertainty (Urn B).

One drawback to using descriptions of mixed chanced
setups in the manner suggested above is that such
descriptions do not appear to fit, at least psychologi-
cally, into the sets-of-probabilities approach to repre-
senting credal states. While the set of all distributions
p such that p(Black) = λp1(Black)+(1−λ)p2(Black),
where p1 ∈ X and p2 ∈ Y might seem like a natural
representation of a mixture with probability λ on X
and probability 1− λ on Y , some preliminary results
reported in [2] suggest that this is not the case.

If descriptions of double sampling are perceived as
something distinct from risk, what might an imple-
mentation of such a description look like in a study
of decision making from experience? Recall the study
by Hertwig et al. in [7]. They implemented the de-
scription of a risky alternative, such as (m, p), as an
appropriate chance setup. A trial on this chance setup
is activated by a button on a computer screen. After

pushing this button, the subject sees the outcome of
the trial on the computer screen. If we attempt to im-
plement B∗ in such a way that the subject sees only
the final result of the two-stage process after pushing
the appropriate button, then we run into problems.
The issue is that there is nothing to guarantee that
such an implementation of B∗ could not just as well
serve as an implementation of Urn A. By assumption,
a chance setup that satisfies B∗ will, in the long run,
draw j in the first stage approximately 1

101 th of the
time. Moreover, in the long run, trials in which j is
drawn in the first stage result in the selection of a
black ball approximately j

100 th of the time. Hence,
in the long run, ( 1

101 )( j
100 )th of the trials result in a

black ball drawn from the urn having j black balls
and 100 − j white balls. Thus, in the long run, ap-
proximately

(
1

101
)(

1
100

)
100∑

j=0

j =
5050
10100

=
1
2

of the trials result in the draw of a black ball, which
agrees with the limiting frequencies for an implemen-
tation of Urn A. If we assume that such an implemen-
tation of B∗ would also satisfy the condition that fu-
ture behavior cannot be predicted solely from a knowl-
edge of past behavior, and this seems to be a psycho-
logical matter, then it appears that there is nothing
to prevent such an implementation of B∗ from serv-
ing as an implementation of Urn A. Clearly the im-
plementations of B∗ and Urn A must be distinct in a
meaningful way if one is to conduct the desired study
of decision making from experience. We now consider
other proposals for implementing B∗.

One way to avoid the sort of problematic collapse dis-
cussed at the end of the previous paragraph would be
to make both stages of the double sampling visible to
the subject. Thus, for example, pressing the appro-
priate button on a computer screen for the first time
would run the the first-stage selection, and the result
of that selection would be shown to the subject, e.g.,
that the urn with 35 black balls and 65 white balls
had been selected. Pressing the button for the second
time would initiate a draw from the urn that had been
selected, and the result of that second-stage selection
would then be shown to the subject, e.g., that a white
ball had been drawn. Making both stages of double
sampling visible to the subject avoids the problematic
collapse since such an implementation of B∗ no longer
qualifies an an implementation of Urn A.

However, there is a possible objection to this design,
based on the fact that it implements a sort of hy-
brid experimental condition that does not correspond
purely to decisions from experience or decisions from
description. Typically in decisions from experience
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the subjects do not have access to the probabilities
of the option considered. In the previous design one
makes at least intermediate (i.e., first stage) proba-
bilities explicit by revealing the composition of the
selected urn.

There is a remedy to the previous objection via the
implementation of the following experimental design.
This design assumes that the following four buttons
are available to the subject: PLAY, SELECT GAME,
V, and C. The subject’s initial choice concerns V and
C. Button C implements the “clear” scenario that was
presented in the questionnaire . If C is selected, then
the agent can press PLAY repeatedly. Pressing PLAY
samples from the implementation of the clear urn.
While the urn structure is hidden from the subject,
the subject sees the associated payoffs, $55 if black
and $0 if white, after each pressing of PLAY. If V is
selected, then the subject is instructed to press SE-
LECT GAME. Unbeknownst to the subject, pressing
SELECT GAME selects an implementation based on
one of the 101 possible urns considered above (i.e., an
urn consisting of n black balls and 100−n white balls
for some n ≤ 100).

The following algorithm is used to select a game: con-
sider the space of all possible ordered sequences of 101
urns. Then a sequence in this space is selected at ran-
dom and fixed. When the game starts and the agent
presses SELECT GAME for the first time the first
urn in the sequence is selected. Say that the subject
has pressed SELECT GAME n times. Then when
he presses SELECT GAME once more the selection
mechanism picks the urn in the n+ 1 position in the
sequence and samples it every time that PLAY is se-
lected. Now at each point the probability of white
or black will depend on the previous actions of the
subject playing the game. Since probabilities should
not be attributed to acts these probabilities remain
indeterminate.When the sequence terminates the al-
gorithm starts again at the initial point of the selected
sequence.

It is important to remark that what does not have a
determinate probability is the color of the first ball
prior to selecting or not a game (i.e. prior to choosing
to play). Likewise for the probability of the nth ball
prior at the moment of the choice whether or not to
select a game for the nth time. After the agent selects
a game (i.e. after the agent decides to play the game)
we have a uniform precise probability over the 101
configurations of the urn.

In addition after selecting games a few times and sam-
pling them the calculation of the probabilities of the
color of the ball in the next trial grows ever more com-
plicated after conditioning on what has been done and

on what has been seen from past plays of the game.
Even for an ideal agent these probabilities will be im-
precise. The agent will have bounds of the values
of the probabilities or he can form qualitative judg-
ments comparing probabilities but the agent will not
have precise probabilities at his disposal. So, under a
normative point of view there is indeterminacy at the
moment contemporary to the selection of the game,
and after a few trials there will be imprecision in the
corresponding probabilities.

When we consider bounded agents the situation is
even worse. The agent might not remember well what
he did in the past and what he saw in the past and
we can have recency effects as well. So, in the real
situation we have to deal with imprecise probabilities
and choices under uncertainty.

After SELECT GAME is pressed the subject has a
choice: explore the game that was selected by press-
ing PLAY or select a (possibly) new game by pressing
SELECT GAME. Pressing PLAY samples from the
current game. While the urn structure of the game is
hidden from the subject, the subject sees the associ-
ated payoffs, $55 if black and $0 if white, after each
pressing of PLAY. The agent can interact with the
two buttons as long as he wants. Notice that it is per-
fectly possible that an agent selects a game and then
presses PLAY repeatedly without selecting any other
game. Notice that in this case the argument in terms
of frequencies fails (the agent does not see data from
all urns, he just considers a single (or a few) urns).
So, the shift to the design where the two stages are
visible is essential in order to avoid the argument for
the collapse into urn A.

Example 3. A possible session involving V:

The subject first presses V.

On screen: Select a game by pressing SELECT GAME.
OR EXIT

The subject presses SELECT GAME.

On screen: You have been awarded a game. You can
play this game by pressing PLAY.

The subject presses PLAY and a payoff appears, for
example:

On screen: You won $55.

The subject then agent faces the choice of pressing
PLAY again or pressing SELECT GAME or EXIT
(in which case he faces the election of V and C again).

If the agent chooses instead button C, he will have the
option of pressing PLAY as many times as he wants.
A payoff will appear each time that PLAY is pressed.
At any time he can STOP and choose between V and
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C.
Example 4. A possible session involving C:

The subject first presses C.

On screen: Press PLAY.

The subject presses PLAY and a payoff appears, for
example:

On screen: You won $0.

The subject will can press PLAY as many times as
he wants. A payoff will appear after each time that
PLAY is pressed.

After receiving feedback from these two buttons the
agent has to select V or C and in this case he will play
for real money. Of course, if he selects V a new game
will be selected by pressing SELECT GAME and he
will receive the payoff determined by the next pressing
of PLAY, i.e., by sampling the urn corresponding to
the current game.

This design makes visible the two-stage nature of the
V button but, as in the case of decisions from expe-
rience for risk, the agent does not receive any infor-
mation about intermediate probabilities. Notice that
the algorithm used in the proposed implementation
of decisions from experience is a particular instance
of a selection via a fair chance set up (as described to
subjects in the tutorial). Since it is clear that in this
case there is no collapse of the implemented mech-
anism with the clear urn, it follows that in general
there is no reason to expect a collapse of B∗ and C.
This shows that the operational identification of the
V and B∗ conditions might not just be attributable
to a statistical error on the part of the subjects.

We conjecture that this design of decisions from ex-
perience will also avoid an identification of the V and
C conditions. We also conjecture nevertheless that
the gap between the V and C conditions (buttons
in decisions from experience) will not be as severe
between the gap between the corresponding “vague”
condition and the “clear” conditions in the case of de-
cisions from description. This is because it is unlikely
that the subject encounters rare events while obtain-
ing feedback by interacting with button V, and this
suggests that the subject will remain ignorant of their
existence (examples of extreme values or rare events
will be the case where either Black or White are zero
or very low in the sampled urns).

We conjecture therefore that this proposal will show a
significant difference between decisions from descrip-
tion and decisions from experience, demonstrating
that the distinction between these two types of de-
cisions is robust and applicable not only to risk but
also to the case of uncertainty.

5 Further Considerations

We conclude by mentioning another issue that is
raised by our study, an issue that seems to have gen-
eral significance for experimental work on decision
making. An unusual aspect of the questionnaire that
we used in the study that is reported in Section 3 is
the fact that it is explicit about what is meant by
a random selection. While references to random se-
lection are common in experimental work on decision
making, these references are seldom accompanied by
something like the tutorial on fair chance setups that
was part of our study. It is natural to wonder if this
makes a difference. While we have yet to conduct
a study of this particular question, we do have data
from an earlier study that seems to suggest that it
does make a difference if one is explicit about what is
meant by a random selection.

As part of the study that we reported in [1], we used a
questionnaire that asked subjects to state their maxi-
mum buying price for what were essentially questions
Clear and Vague as presented in Section 3. It is impor-
tant to note that the questionnaire that was used in
[1] did not include any tutorial on fair chance setups,
nor for that matter did it include any elaboration re-
garding the nature of random selection. Finally, it
should be noted that the subjects in this earlier study
were, like those of the study reported in Section 3, un-
dergraduates at Carnegie Mellon who, at the time of
the study, were enrolled in 80-100, which as noted in
Section 3 is an introductory philosophy course. Table
6 shows the mean maximum buying prices for the two
groups in the earlier study that received Clear as the
first question on their questionnaire. 1

Group Mean for Clear (2005)
I 15.33
II 13.65

Table 6

These values seem significantly less than the mean
maximum buying prices for Clear that are reported
in Section 3. These differences seem striking when
one considers the mean maximum buying prices that
were obtained for Vague in the earlier study. Table 7
shows the mean maximum buying prices for the two
groups in the earlier study that received Vague as the

1The two groups were distinguished by the fact that they
were given slightly different questionnaires. Both groups re-
ceived a questionnaire that had Clear as the first question, but
there were some differences between the two questionnaires in
their later sections. We do not think that these differences are
significant in the present context, but the interested reader can
consult [1] for a detailed description of the questionnaires that
were involved.
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first question on their questionnaire. 2

Group Mean for Vague (2005)
I 5.42
II 6.4

Table 7

These values seem more in line with the mean maxi-
mum buying prices for Vague that are reported in Sec-
tion 3. As a measure of this effect, Table 8 shows the
ratio of the mean maximum buying price for Vague
to that of Clear.

Group Vague/Clear
2005 .41
2008 .31

Table 8

Column 2 of the first row in Table 8 shows the average
of the two values reported in Table 7 divided by the
average of the two values reported in Table 6. The sec-
ond row of Table 8 shows the mean maximum buying
price for Vague as reported in Table 5 divided by the
mean maximum buying price for Clear as reported in
Table 5. Taken together, these further considerations
would seem to raise an important question as to how
subjects are interpreting references to random selec-
tion in those studies that do not elaborate on what is
meant by such a thing.
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Abstract

In this paper we describe an algorithm for computing
the closure with respect to graphoid properties of a
set of independencies. Since the computation of the
complete closure is infeasible, we provide a procedure,
called FC1, which is based on a unique inference rule
and on the elimination of redundant independencies.
FC1 is able to compute a reduced form of the closure,
called fast closure, which is equivalent to the com-
plete closure, but whose size is much smaller. Some
experimental tests have been performed with an im-
plementation of the procedure in order to show the
computational behavior of the algorithm. We have
also compared the computational cost and the size of
the fast closure with the corresponding data for the
complete closure.

Keywords. Conditional independence models,
Graphoid properties, Inferential rules.

1 Introduction

Conditional independence structures arise in different
frameworks, in particular, in probability and in mul-
tivariate statistics [11, 14, 15, 18, 20, 23, 31]. It is well
known [14] that for any probability measure P the as-
sociated independence model M, under the classical
definition of independence, is a semi–graphoid (i.e. it
satisfies symmetry, decomposition, weak union, con-
traction) and if P is strictly positive, then M is a
graphoid (also intersection property holds). On the
other hand, other independence notions have been in-
troduced in a probabilistic setting [7, 8, 12, 21, 26]
and under them graphoid properties have been tested.
Moreover, it is well known that graphoid properties
are met also by other relations (see [15]) like separa-
tion property in graph.

The significance of independence models and graphoid
structures is not limited to probabilistic models: in
fact many independence models arising from differ-

ent uncertainty measures are tested on the basis of
graphoid properties (see e.g. [1, 9, 10, 13, 15, 16, 17,
19, 23, 27, 30]) and obviously not all the properties
among those of graphoid hold.

A significant problem is when a field expert provides
an uncertainty measure ϕ (or better a partial uncer-
tainty assessment, e.g. a coherent conditional prob-
ability assessment) and a set J of conditional inde-
pendence statements, in such case it is necessary to
check whether the set J is induced or compatible with
ϕ [29] and then to find all the set of independencies
deducible from J .

Then, the aim of this paper is to consider a set J
of conditional independence statements, compatible
with an uncertainty assessment, and to build in an
efficient way the closure through graphoid properties
of J .

The computation of the closure is infeasible since its
size is exponentially larger than the size of the initial
set J of independence statements (see [23, 24]). Then,
our aim in [3, 4] (as that in [23, 24] essentially for the
case of semi–graphoids) is to build a suitable reduced
set of independence statements (obviously included in
the closure of J with respect to graphoids), which is
as small as possible and it represents the same in-
dependence structure. From this reduced set all the
relations in the closure should be easily deducible.

In other words, this small set of independence state-
ments, which is called “fast closure”, can be consid-
ered a basis for the closure.

The computation of the fast closure is relevant also for
the selection problem (based essentially on statistical
tests) of a model on the basis of data for building, for
example, the relevant Bayesian network.

In this paper we describe an algorithm to compute
the reduced set. This algorithm is based on a unique
inference rule introduced in [4]. In the quoted paper
we have also compared this algorithm with another
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based on two inferential rules, which are deduced from
[24] and studied in our previous paper.

An empirical evaluation of the performance of the in-
troduced algorithm is provided by showing compu-
tation times and number of iterations, as well as a
comparison between the needed time to compute the
fast closure and the time for computing the complete
closure (the size of both closures is compared).

The paper is organized as follows: in Section 2 some
preliminaries concepts about graphoids, closure and
implications for independence relations are recalled.
In Section 3 we describe the generalized inference rules
and the concept of fast closure; while in Section 4 a
system based on a unique inference rule and its corre-
sponding algorithm FC1 are introduced. In Section 5
we describe and comment some experimental results.

2 Graphoid structures

Throughout the paper the symbol S̃ = {Y1, . . . , Yn}
denotes a finite not empty set of variables. Given an
uncertainty measure ϕ, a conditional independence
statement YA⊥⊥YB |YC (compatible with ϕ), where A,
B, C are disjoint subsets of the set of indices S =
{1, . . . , n}, is denoted simply also as an ordered triple
(A,B,C).

Let S(3) be the set of triples (A,B, C) of disjoint sets
of S such that A and B are not empty, then a condi-
tional independence model, related to an uncertainty
measure ϕ, is a subset of S(3).

In particular, we deal with independence models
closed under graphoid properties. We recall that a
graphoid is a couple (S, I), where I is a ternary rela-
tion on the set S, which satisfies the following prop-
erties:

G1 if (A,B, C) ∈ I, then (B, A,C) ∈ I (Symmetry);

G2 if (A,B, C) ∈ I, then (A,B′, C) ∈ I for any
nonempty subset B′ of B (Decomposition);

G3 if (A,B1 ∪ B2, C) ∈ I with B1 and B2 disjoint,
then (A,B1, C ∪B2) ∈ I (Weak Union);

G4 if (A,B, C ∪ D) ∈ I and (A,C, D) ∈ I, then
(A,B ∪ C,D) ∈ I (Contraction);

G5 if (A,B,C ∪D) ∈ I and (A,C, B ∪D) ∈ I, then
(A,B ∪ C,D) ∈ I (Intersection).

(S, I) is a semi–graphoid if it satisfies only the prop-
erties G1–G4.
The symmetric versions of rules G2 and G3 are de-
noted by

G2s if (A, B,C) ∈ I, then (A′, B,C) ∈ I for any
nonempty subset A′ of A;

G3s if (A1 ∪A2, B, C) ∈ I, then (A1, B, C ∪A2) ∈ I.

Let θ, θ′ ∈ S(3), we denote by

θ `R θ′

the fact that θ′ is obtained by applying once the prop-
erty R to θ, where in this context R can be G1, G2
or G3.
Moreover, let θ1, θ2, θ ∈ S(3);

θ1, θ2 `R θ

denotes that θ is obtained by applying once R to the
pair θ1, θ2 of triples. In this case R can be either G4
or G5.

Now, we start from a set J ⊂ S(3) of triples, com-
patible with an uncertainty measure, and we are in-
terested to establish whether a triple θ ∈ S(3) can be
derived from J , in symbols

J `∗ θ .

This means that θ can be obtained by applying a finite
number of times the rules G1–G5 starting from the
set of triples J . This problem is called “implication
problem” and has been already studied, for instance,
in [32].
A strictly related problem is to compute the closure
of a set J , defined as

J̄ = {θ ∈ S(3) : J `∗ θ} .

It is clear that the implication problem can be easily
solved once the closure of J has been computed. But
the computation of the closure is infeasible because
its size is exponentially larger than the size of J .

Then, in the following sections we describe how it is
possible to compute a smaller set of triples having the
same information as the closure.

This problem has been already faced in [24], with par-
ticular attention to semi–graphoid structures.

3 Generalized inference rules

In the following subsections we recall some notions
introduced in [2, 4] useful to compute the closure in a
more efficient way.

In particular, in Subsection 3.1 a notion of generalized
inclusion, that is related to the notion of dominance
given in [23] is studied.

In Subsection 3.2 we study some properties of inter-
section and contraction, which lead to suitable infer-
ential rules. Moreover, we provide a procedure to
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compute a “small” set that can be considered a sort
of basis for the closure, with respect to graphoid, of a
given set of conditional independence statements.

3.1 Generalized inclusion

Let us focus our attention, first of all, to the first three
graphoid rules. Given a triple θ2 ∈ S(3), it is possible
to compute all the triples θ1 which can be obtained
from θ2 with a finite number of applications of G1,
G2 and G3. We say (see [2, 3, 4]) that, for any such
pair of triples, θ1 is generalized–included in θ2 (briefly
g–included), in symbol θ1 v θ2.

In order to simplify the notation in the following,
given a triple θi = (Ai, Bi, Ci), Xi stands for (Ai ∪
Bi ∪ Ci).

Now, some properties of g–inclusion are recalled.

Proposition 1 Given θ1 = (A1, B1, C1) and θ2 =
(A2, B2, C2), then θ1 v θ2 if and only if the following
conditions hold

(i) C2 ⊆ C1 ⊆ X2;

(ii) either A1 ⊆ A2 and B1 ⊆ B2 or A1 ⊆ B2 and
B1 ⊆ A2.

Generalized inclusion is strictly related to the partial
order relation va on S(3), defined in [23] and called
dominance: the triple θ = (A,B, C) is said to dom-
inate θ′ = (A′, B′, C ′) (in symbol θ′ va θ) if θ′ can
be derived from θ by means of decomposition, weak
union and their symmetric properties (i.e. G2, G3,
G2s and G3s).

The relation between v and va is simple: θ′ v θ if
and only if

either θ′ va θ or θ′ va θT ,

where θT is the transpose of θ (i.e. if θ = (A,B, C),
then θT = (B, A, C)).

The g–inclusion verifies almost all the properties of a
partial order relation on S(3) [4], in fact it is reflexive
and transitive, but it is not anti–symmetric. However,
it satisfies a weak form of anti–symmetry, and denoted
by (AS)∗:

θ1 v θ2 and θ2 v θ1 implies either θ1 = θ2 or θ1 = θT
2 .

The definition of g–inclusion between triples can be
extended as follows to the case of sets of triples.

Definition 1 Let H, J be subsets of S(3). J is a
covering of H (in symbol H v J) if and only if for
any triple θ ∈ H there exists a triple θ′ ∈ J such that
θ v θ′.

The g–inclusion between sets of triples verifies reflex-
ivity and transitivity, while as the following example
shows it does not satisfy the anti–symmetry neither
in its weak form.

Example 1 Given S = {1, 2, 3, 4}, consider the
triples θ = ({1}, {2}, {3}), θ′ = ({1, 4}, {2}, {3}) ∈
S(3) and the subsets H = {θ, θ′} and J = {θ′} of
S(3). It is easy to check that H v J and J v H, but
θ ∈ H is such that θ 6∈ J and θT 6∈ J .

However, in [3] we show that weak anti–symmetry
holds for particular sets.

3.2 Closure through the generalization of
G4 and G5

Now, we recall the two inference rules introduced in
[2, 3].

Given θ1, θ2 ∈ S(3), WC(θ1, θ2) is the set

{τ : θ′1, θ
′
2 `G4 τ, with θ′1 va θ1, θ

′
2 va θ2}.

Concerning WC(θ1, θ2) the following result holds (see
[3, 4]).

Proposition 2 Let θ1 = (A1, B1, C1), θ2 =
(A2, B2, C2) be a pair of triples belonging to S(3), then

1. WC(θ1, θ2) is not empty if and only if all the fol-
lowing five conditions hold:

(a) A1 ∩A2 6= ∅;
(b) C1 ⊆ X2 and C2 ⊆ X1;

(c) B1 \ C2 6= ∅;
(d) B2 ∩X1 6= ∅;
(e) |(B1 \ C2) ∪ (B2 ∩X1)| ≥ 2.

2. If WC(θ1, θ2) is not empty the triple gc(θ1, θ2) =

(A1 ∩A2, (B1 \C2)∪ (B2 ∩X1), C2 ∪ (A2 ∩C1)),

is in WC(θ1, θ2) and dominates any triple belong-
ing to WC(θ1, θ2).

When WC(θ1, θ2) is empty, we set gc(θ1, θ2) = ⊥.

The function gc(·, ·) has already been introduced in
[24] in an essentially equivalent form.

The conditions (a)–(e), which assure that WC(θ1, θ2)
is not empty, are however stronger than those given in
[24]: in fact, we are looking for the triple dominating
all the triples obtained, through G4, from θ1 and θ2 or
from some of their dominated triples. This is clarified
in the next example.
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Example 2 Consider the triples

θ1 = ({1, 4}, {2}, {3})

and
θ2 = ({1, 3}, {2}, {4}).

The condition (e) fails, since (B1 \ C2) = (B2 ∩X1)
and it contains just the element 2.

Then, in this case WC(θ1, θ2) = ∅, however it could
be noted that by applying G3 to one of the two triples
we get θ = ({1}, {2}, {3, 4}) va θi (for i = 1, 2) and
so θ adds no further information.

We denote with GC(θ1, θ2) the set formed by the pos-
sible (i.e. belonging to S(3)) triples among gc(θ1, θ2),
gc(θ1, θ

T
2 ), gc(θT

1 , θ2) and gc(θT
1 , θT

2 ).

Obviously, GC(θ1, θ2) is in general different from
GC(θ2, θ1).

Note if θ1, θ2 `G4 τ , then τ = gc(θ1, θ2).

A result similar to Proposition 2, related to intersec-
tion property, holds (see [3]) by considering the set

WI(θ1, θ2) = {τ : θ′1, θ
′
2 `G5 τ, with θ′1 va θ1, θ

′
2 va θ2}.

Proposition 3 Let θ1 = (A1, B1, C1), θ2 =
(A2, B2, C2) be a pair of triples belonging to S(3), then

1. WI(θ1, θ2) is not empty if and only if all the fol-
lowing five conditions hold:

(a) A1 ∩A2 6= ∅;
(b) C1 ⊆ X2 and C2 ⊆ X1;

(c) B1 ∩X2 6= ∅;
(d) B2 ∩X1 6= ∅;
(e) |(B1 ∩X2) ∪ (B2 ∩X1)| ≥ 2.

2. If WI(θ1, θ2) is not empty, then the triple
gi(θ1, θ2) = (Agi, Bgi, Cgi) with

• Agi = A1 ∩A2;

• Bgi = (B1 ∩X2) ∪ (B2 ∩X1);

• Cgi = (C1 ∩A2) ∪ (C2 ∩A1) ∪ (C2 ∩ C1);

is in WI(θ1, θ2) and dominates any triple belong-
ing to WI(θ1, θ2).

Given two triples θ1, θ2, Proposition 3 gives rise to
the dominant triple generated, through G5, by θ1, θ2

or by some dominated triples, respectively, by θ1 and
θ2.

The set GI(θ1, θ2) is formed by the possible (i.e. be-
longing to S(3)) triples among gi(θ1, θ2), gi(θ1, θ

T
2 ),

gi(θT
1 , θ2) and gi(θT

1 , θT
2 ).

Then, GI(θ1, θ2) = GI(θ2, θ1).

Also in this case, if θ1, θ2 `G5 τ , then τ = gi(θ1, θ2).

The previous sets GC and GI are used to introduce
two new inference rules

G4∗ “generalized contraction”: from θ1, θ2 deduce any
triple τ ∈ GC(θ1, θ2);

G5∗ “generalized intersection”: from θ1, θ2 deduce
any triple τ ∈ GI(θ1, θ2);

which, as explained above, generalize the two classical
inference rules. These rules are useful to compute the
closure of a set J of triples in S(3), that is

J∗ = {τ : J `∗G τ} (1)

where J `∗G τ means that τ is obtained by applying a
finite number of times the rules G4∗ and G5∗.

In [3, 4] the relationship between the two closures
J∗ and J̄ is studied, in particular, we prove that
any triple obtained through G1–G5 is g–included in a
triple deduced from G4∗ and G5∗. This implies that
J∗ ⊆ J̄ and moreover

J̄ v J∗.

Note that J∗ is a subset of J̄ , so even if J∗ has the
same information of J̄ , is smaller than J̄ . Actually, J∗

contains some “redundant” triples, that means that
are g–included in some of the other ones. In fact,
(see (1)) each application G4∗ and G5∗ can generate
a triple which is g–included in a triple of J or in an
already generated triple.

3.3 Fast closure

In [2, 3, 4] we introduced the concept of “maxi-
mal”(with respect to g–inclusion) triple: given a set
J of triples, a triple τ is maximal in J if there exists
no τ̄ ∈ J with τ̄ 6= τ, τT such that τ v τ̄ .

We denote with J/v the subset of J composed only

by its maximal triples and we call FindMaximal the
function which computes J/v from J .

There is no loss of information by using J/v instead

of J [3], in fact
J v J/v.

Then, given a set J of triples in S(3), we compute J∗

(see equation (1)) and then we take only its maximal
triples, i.e. J∗/

v
.

14 Marco Baioletti, Giuseppe Busanello, Barbara Vantaggi



We call the set J∗/
v

“fast closure” and we denote it,

for simplicity, with J∗.

Note that we have also the following relationship:
J∗ ⊆ J̄ and

J̄ v J∗.

It is interesting to observe J̄/v and J∗ essentially co-

incide [3], in fact

J̄/v v J∗ and J∗ v J̄/v.

4 Unique inference rule

In [3, 4] we describe a procedure to compute efficiently
the closure of a set of conditional independence state-
ments, which is based on the two above inferential
rules (generalized contraction and intersection). In
order to improve such procedure, in we look for a
unique inferential rule with the aim of simplifying the
procedure.

In particular, by taking into account Proposition 2
and Proposition 3, which provide necessary and suffi-
cient conditions for the application of generalized con-
traction and intersection, respectively, the notion of
almost complete pair of triples is introduced in [4] in
order to characterize the couples of triples which lead
to the largest fast closure.

We recall first of all that the fast closure {θ1, θ2}∗
of a couple θ1, θ2 ∈ S(3) is composed by a maximum
of nine extra triples, no matter how many variables
occur in θ1 and θ2.

In particular, any pair of triples (θ1, θ2) can be re–
written, in a general form, as

θ1 = ([AA, AB , AC , AN ], [BA, BB , BC , BN ],
[CA, CB , CC , CN ])

θ2 = ([AA, BA, CA, A′N ], [AB , BB , CB , B′
N ],

[AC , BC , CC , C ′N ])

where some sets can be empty and with the notation
that [A,B, C] stands for A ∪B ∪ C.

Each triple of the fast closure of (θ1, θ2) is g–included
in the set of possible (i.e. belonging to S(3)) triples

K(θ1, θ2) = {θ1, θ2, θa, θb, θc, θd, θe, θf , θg, θh, θad}

where

θa = (AA, [AB , BA, BB , BC , CB , BN ], [AC , CA, CC ]);

θb = (AB , [AA, BA, BB , BC , CA, BN ], [AC , CB , CC ]);

θc = (BA, [AA, AB , AC , BB , CB , AN ], [BC , CA, CC ]);

θd = (BB , [AA, AB , AC , BA, CA, AN ], [BC , CB , CC ]);

θe = (AA, [AB , BA, BB , BC , CB , B′
N ], [AC , CA, CC ]);

θf = (AB , [AA, BA, BB , BC , CA, A′N ], [AC , CB , CC ]);

θg = (BA, [AA, AB , AC , BB , CB , B′
N ], [BC , CA, CC ]);

θh = (BB , [AA, AB , AC , BA, CA, A′N ], [BC , CB , CC ]);

θad = ([AB , BA], [AA, BB ], [AC , BC , CA, CB , CC ]).

Therefore,
{θ1, θ2}∗ v K(θ1, θ2).

Moreover, in [3, 4] it is also proved that

K(θ1, θ2) v {θ1, θ2}∗.

Note that in general K(θ1, θ2) may not coincide with
{θ1, θ2}∗ because it could contain some redundant
triple or the transpose triple of one belonging to
{θ1, θ2}∗.
However, it is easy to see that

K(θ1, θ2)/v v {θ1, θ2}∗

and
{θ1, θ2}∗ v K(θ1, θ2)/v,

since both sets are maximal.

Therefore the set K(θ1, θ2) allows to compute
{θ1, θ2}∗: in fact, it is possible to build up such a
set and apply the function FindMaximal to it.

All this computation requires a constant number of
steps with respect to the size of θ1, θ2.

By using {θ1, θ2}∗, it is possible to provide a new in-
ference rule

U : from θ1, θ2 deduce any triple τ ∈ {θ1, θ2}∗.

4.1 Algorithm FC1

By using the unique inference rule U , we provided the
Algorithm 1.

Concerning the above algorithm we have the following
result:

Theorem 1 Let J be a nonempty subset of S(3), then

1. FC1(J) v J∗;

2. J∗ v FC1(J).

Both theoretical and empirical comparisons between
FC1 and an algorithm based on two inferential rules
in [4] are carried out, hereby showing the better per-
formances of FC1.
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Algorithm 1 Fast closure by U
1: function FC1(J)
2: J0 ← J
3: N0 ← J
4: k ← 0
5: repeat
6: k ← k + 1
7: Nk :=

⋃

θ1∈Jk−1,θ2∈Nk−1

{θ1, θ2}∗

8: Jk ← FindMaximal(Jk−1 ∪Nk)
9: until Jk = Jk−1

10: return Jk

11: end function

Note that FC1 can be optimized by observing that
if θ′1 and θ′2 belong to {θ1, θ2}∗, then {θ′1, θ′2}∗ is g–
included to {θ1, θ2}∗. The validity of this observation
follows easily since

{θ′1, θ′2}∗ v {θ′1, θ′2}∗ v {θ1, θ2}∗ v {θ1, θ2}∗.

Therefore, it is not necessary to apply the inference
rule U to a pair of triples θ′1 and θ′2, generated by U
from the same two triples θ1 and θ2, since from θ′1
and θ′2 we would obtain only redundant triples, which
would be discarded by the function FindMaximal.

Note that for the same reasons, we do not need to
apply the rule U between a triple θ and another one θ′

generated from θ (by combining θ with another triple
θ′′): in fact if θ′ ∈ {θ, θ′′}∗, then {θ, θ′} ⊆ {θ, θ′′}∗
and so

{θ, θ′}∗ v {θ, θ′′}∗ ,

which implies that no maximal triple can be obtained.

Then, the use of the inference rule U in FC1 can be
enhanced by keeping track of the “parents” of each
triple and by neglecting the pairs which satisfies the
two previously described situations (“sibling” triples
and “father–child”).

In our implementation, we use this optimization, but
we consider K(θ1, θ2) instead of {θ1, θ2}∗, because in
any case in each cycle of FC1 a call to function Find-
Maximal is however performed.

5 Experimental results

In this section we describe some experimental results
obtained with an implementation in C++ of the algo-
rithm FC1, as well as an implementation of an algo-
rithm to compute the complete closure (with respect
to G1–G5). The main purpose of these experiments is
to prove the viability of the fast closure computation.

The first aspect, that these experiments can clarify,
is to show how difficult it is, from the computational

point of view, to compute the fast closure. It is clear
that this problem is a computationally hard problem,
for which no efficient (i.e. polynomial time) solution
can exist as already noted in [23, 24].

Therefore an empirical evaluation is necessary in order
to establish whether the computation of the fast clo-
sure is reasonably fast and uses an acceptable amount
of memory.

The other question is which is the quantitative dif-
ference in size and in computation time of the fast
closure with respect to the complete closure. The fast
closure is clearly smaller than the complete closure
(each triple θ ∈ J∗ corresponds to several triple in
J̄), but we have not been able to find any theoretical
bounds for the size of J∗ with respect to the size of J̄ .

The experiments were performed on an AMD Dual
Core Opteron running at 1.8 GHz with 2 GByte main
memory. We applied a cut–off of 5,000,000 triples that
can be stored (to avoid problems with memory) and a
time–out of 3600 seconds. Some preliminary results,
with different experimental parameters, have already
been given in [6, 2].

In the first set of experiments, we have generated
200 random sets of triples having nv variables and
nr triples, for nr = 10, 15, 20, 25, 30 and nv = b0.5 ·
nrc, nr, b1.5 ·nrc, 2nr. and we have computed the fast
closure by means of (see Table 1).

In the Table 1, the value perc is the percentage of the
sets for which FC1 has been able to compute the fast
closure, within the limits of time and memory, time
is the average computation times in seconds, size is
the average size of the fast closure, iter is the average
number of iterations needed to find the closure, and
gen is the average number (rounded to the nearest
integer) of the overall generated triples.

The behavior of FC1, as explained in the following, is
influenced by many factors, which can have contradic-
tory and not well understandable effects. However it
is possible to observe that as nr grows, instances with
a small value for nv

nr become more and more difficult:
with nr = 30 and nv = 15 FC1 has not been able to
solve any instance. The same happens with nr = 35
and 40 (nv being 0.5 · nr), in experimental tests not
described here.

On the other hand, when the ratio nv
nr is large, in-

stances get easier and easier to solve.

The first behavior can be explained with the fact that
generating at random an instance with fewer vari-
ables, with respect to the number of relations, can
produce many triples to which it is possible to repeat-
edly apply the generalized inference rules. In these
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Table 1: Fast Closure FC1

nr nv perc time size iter. gen.

10 5 100 0 10.83 3.99 202

10 10 100 1.06 95.93 6.42 27524

10 15 99 44.43 226.08 6.263 241219

10 20 98.5 22.16 153.54 4.81 115006

15 7 100 9.11E-02 46.84 5.50 5841

15 15 63 500.42 982.68 10.03 1926990

15 22 80.5 111.49 365.29 6.63 359213

15 30 98 9.77 72.14 3.25 32615

20 10 100 79.19 433.835 7.41 652608

20 20 27.5 376.43 921.47 10.2 1105693

20 30 93.5 84.64 305.21 5.58 240052

20 40 98.5 3.64 54.95 2.20 16514

25 12 49.5 1383.23 1354.33 8.3 5231558

25 25 35 254.46 719.69 9.04 720993

25 37 97.5 14.25 124.42 3.8 62761

25 50 100 1.1E-03 29.685 1.445 84

30 15 0 – – – –

30 30 51.28 118.59 514.58 7.65 3631898

30 45 100 0.03 48.38 2.41 1063

30 60 100 8.55E-05 31.06 1.12 7

cases, the computation of the fast closure requires sev-
eral iterations during which a large number of triples
are generated (most of them are discarded). These
kinds of instances seem to be the hardest to solve, if
compared to the other kinds.

At the same time, if the number of variables is too
large, the chance of application of the inference rules
becomes very low, as proved by the average size of the
fast closure (which is roughly similar to nr) and the
number of generated triples (which is rather small). In
these cases, the closure often coincides or is similar to
the initial set of triples and therefore can be computed
with a little computational effort.

In the second set of experiments we compare the com-
putation time needed for finding the complete closure
and its size with respect to the time and size of the
fast closure. The complete closure is obtained by us-
ing an algorithm similar to FC1, which uses all the in-
ference rules G1–G5, without calling FindMaximal.
Furthermore, we did not apply for it any cut–off with
respect to number of triples.

Since we expect that the complete closure is much
larger than its fast version, we have performed these
new experiments with smaller instances, instead of
using the previous one. In particular, we generate 20
sets of nr triples and nv variables, for nr = 4, 7, 10
and nv = nr, b1.5 · nrc.
In Table 2 the results for the fast closure are reported,
with the average values calculated with respect to
the solved instances by FC1, the average computa-
tion time is negligible, except that in the last row,
where we obtain results similar in magnitude order,
as those displayed in Table 1. The algorithm FC1 has
been able to build the closure for each instance.

Table 2: Fast Closure with FC1
nr nv time size iter. gen.

4 4 0 3.95 2.75 12.1

4 6 0 5.85 2.95 29.2

7 7 2E-03 18.65 4.95 559.25

7 10 1.8E-02 32.05 4.7 1756.15

10 10 0.6755 86.9 5.95 18415

10 15 42.7225 320.45 6.7 335910.5

In Table 3 we report the results obtained in the com-
putation of the complete closure. The last column
contains the number of instances for which the al-
gorithm has been able to compute the complete clo-
sure within an hour of computation. Note that with
nr = 10 and nv = 15 we could solve only one in-
stance, which almost reached the time limit, while
the fast closure of this instance has only 27 triples
and has been found in a negligible amount of time.
The values in the last column are used to compute
the average values showed in Table 2.

The comparison of the size between fast and complete
closure is impressive, as it is possible to see in the
graph of Figure 1 (the last rows of both tables have
been ignored).

Table 3: Complete Closure
nr nv time size iter. gen. res.

4 4 0 64 7 57 20

4 6 0.05 527 8.9 899 20

7 7 1.75 3282 13.15 9526 20

7 10 248 28808 13.89 147249 19

10 10 603 50760 16.67 268381 15

10 15 3513 159164 14 683991 1
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Figure 1: Sizes of the closure

Clearly also the computation times for computing
the complete closure are much higher than the time
needed to compute the fast closure, as displayed in
the Figure 2.

Figure 2: Computation times

6 Conclusions

We study some properties of graphoid structures with
the aim to compute efficiently the closure of a set of
conditional independence statements. It is well known
that the size of the closure of a set is exponentially
greater than the size of the given set.

In particular, we give an algorithm FC1, which is able
to compute the closure of a set of triples by look-

ing for a suitable subset of the closure, that has the
same information, but it is smaller than the closure as
shown by experimental results. Actually, FC1 com-
putes just the maximal (with respect to g–inclusion)
triples, then it also allows to improve the computa-
tional time.

By means of this set also the well known implication
problem can be solved in an efficient way: in fact,
to verify whether a triple belongs to the closure it is
enough to look for a triple in the set, obtained through
FC1, which g–includes the given triple. Moreover, to
check the g–inclusion relation requires constant time,
therefore the computational time is linear with respect
to the size of the set.

A straightforward extension of this work is to adapt
this framework for computing the closure by using
semi-graphoid axioms and compare it with that pro-
posed in [24].

A further open problem, partially studied in [5], con-
sists into using this set for building in an efficient way
an acyclic directed graph representing the indepen-
dence statements in the closure.
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Abstract

A new method is presented for selecting a single cate-
gory or the smallest subset of categories, based on ob-
servations from a multinomial data set, where the se-
lection criterion is a minimally required lower proba-
bility that (at least) a specific number of future obser-
vations will belong to that category or subset of cat-
egories. The inferences about the future observations
are made using an extension of Coolen and Augustin’s
nonparametric predictive inference (NPI) model to a
situation with multiple future observations.

Keywords. imprecise probability, predictive infer-
ence, categorical data, selection

1 Introduction

Selection is a wide-ranging topic in statistics for
choosing the optimal member(s) of some group. This
group may be, for example, a set of data categories or
a range of data sources. With regard to multinomial
data, interest may be in choosing the category that
has the largest probability of occurrence. Existing
methods for this type of selection [2] are all non-
predictive, i.e. the selection of the optimal category
is based solely on hypothesis testing and does not use
any type of predictive inference.

NPI for learning from multinomial data in the
absence of prior knowledge has been developed by
Coolen and Augustin [1, 6, 7]. The model gives
predictive inferences about a single future observa-
tion in the form of probability intervals P = [P , P ].
Throughout this paper, P denotes interval probabil-
ity, which we often just call ‘probability’. When an
explicitly precise probability is used, it is denoted by
p. NPI is based on a probability wheel representation
of the data, where each category is represented by a
segment of the wheel.

Selection methods based on NPI have been developed

by Coolen and van der Laan [3] and Coolen and
Coolen-Schrijner [4, 5]. These methods use predictive
inferences which are based on past observations, and
make use of Hill’s assumption An [9].

Coolen and van der Laan [3] developed an NPI
selection method for real-valued data from k different
sources. Their objective was to select the source
which would provide the largest next observation.
Probabilities were determined for the event that the
next observation from one source would exceed the
next observation from all other sources. They also
considered two ways of selecting a subset of sources:
first, they determined the interval probability that
some subset would contain the source providing the
largest next observation, and second, they found the
interval probability that the next observations from
every source in some subset would all exceed the next
observations from the remaining sources.

Coolen and Coolen-Schrijner [4, 5] developed an
NPI selection method for Bernoulli data from k
different groups. Their objective was to select the
group which would have the highest number of future
successes. Here, inferences were made about m future
observations rather than just the next observation.
Subsets of the groups were also considered [4], and
probabilities were presented for the event that some
subset contains the group which has the most future
successes and for the event that all groups in some
subset will have more future successes than every
other group.

In this paper, we discuss the use of NPI for se-
lection from a multinomial data set. We consider
selection of a single optimal category, and selection of
an optimal subset of categories, where we define the
optimal subset to be the subset which satisfies the
required probability criterion, is of minimal size and
has the largest lower probability amongst all subsets
of the same size.
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2 Predictive category selection

We develop NPI for category selection from a multino-
mial data set. We have K possible categories, labelled
c1, ..., cK , and our aim is to select the category with
the largest probability of occurrence. Suppose that
we have a data set consisting of n observations, and
let n1, ..., nK denote the number of observations in
categories c1, ..., cK respectively. We consider m fu-
ture observations, and select a category based on pre-
dictive inferences about these m observations. These
inferences will be made by using and adapting the gen-
eral theory of nonparametric predictive inference for
multinomial data [1, 6, 7], discussed previously. Let
the vector of random quantities (M1, ...,MK) denote
the number of the m future observations that belong
to categories c1, ..., cK , such that

∑K
j=1 Mj = m.

2.1 One future observation

The simplest case is where m = 1, so inference is
about one future observation. We may want to select
a single category with the largest probability of oc-
currence. According to the NPI model [7], the lower
and upper probabilities that the future observation
will belong to category cj are

P (Mj = 1) = (
nj − 1

n
)+,

where (x)+ denotes max{x, 0}, and

P (Mj = 1) = min{nj + 1
n

, 1}.

The above formulae are derived through the use of
the probability wheel model [6], as illustrated in the
example below. We can evaluate these probabilities
for each of the possible categories and then select the
category with the highest probability.

Example 2.1. Suppose that our possible categories
are blue (B), red (R), yellow (Y) and green (G). Our
data set consists of 8 observations: 3 B, 2 G, 2 Y
and 1 R. We want to select a single category with
the highest probability that the next observation will
be in that category. First, we find the probability
that the next observation will be blue. Let nB denote
the number of B observations in the data set, and
let MB denote the number of future B observations.
The minimum number of slices of the wheel that we
can assign to B is equal to nB − 1 = 3− 1 = 2. This
leads to the lower probability P (MB = 1) = nj−1

n = 2
8 .

The maximum number of slices of the wheel that we
can assign to B is equal to nB + 1 = 3 + 1 = 4. This
leads to the upper probability P (MB = 1) = nj+1

n = 4
8 .

We then carry out the same process for the other
categories, and we find that P (MY = 1) = P (MG =
1) = [18 , 3

8 ], and P (MR = 1) = [0, 2
8 ]. So we select the

blue category.
Theorem 2.1. When m = 1, and we want to se-
lect a single category with the largest probability of
occurrence, it is always optimal to choose the cate-
gory which has the greatest number of observations in
the data set.

Proof. We select the category with the highest prob-
ability P (Mj = 1), where P (Mj = 1) = [nj−1

n ,
nj+1

n ],
so it is optimal to select the category with the largest
value of nj .

2.2 Multiple future observations

Whereas Coolen and Augustin [6, 7] only considered
one future observation, we now consider inferences
about multiple future observations, so m > 1. Sup-
pose that our data set is represented on a probability
wheel, and the n slices on the wheel are numbered 1
to n. Each of our m future observations must fall into
one of these n slices. Let the vector (S1, ..., Sn) de-
note the number of future observations which fall into
slices 1 to n, respectively. The total number of differ-
ent arrangements of these m observations is

(
n+m−1

m

)

[8], which leads to the precise probability for a par-
ticular arrangement

p(
n⋂

j=1

{Sj = sj}) =
(

n + m− 1
m

)−1

where sj ≥ 0 and
∑n

j=1 sj = m.

More generally, the total number of different
arrangements of f future observations within a
segment made up of S + 1 observations is equal to

(
(S − 1) + f

f

)
. (1)

This is because there are S − 1 existing observations
within the interior of such a segment, and so we
are considering the number of arrangements of f
future observations amongst a total of (S − 1) + f
observations.

Consider the general case where m may take
any value. We want to find the probability that a
certain proportion of these m future observations
is in some category cj . We may wish to specify a
particular number of observations, in which case
the event of interest will be Mj = mj for some
mj ≤ m. We may also wish to specify a threshold for
Mj , corresponding to the event Mj ≥ mj for some
mj ≤ m.
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2.2.1 Deriving P(Mj = mj)

We can use NPI to find the probabilities that pre-
cisely mj of the m future observations will belong to
category cj . The bounds derived here are the most
conservative bounds achievable within the NPI frame-
work, due to the way in which the slices of the wheel
are assigned to categories. This is explained below.
The diagram illustrates the relevant segments of the
wheel.

cj

...
cj

A

B

21

It is assumed throughout this section that
1 < nj < n − 1. In the case nj ≤ 1, we are
not forced to assign any slices of the wheel to cj ,
leading to P (Mj = mj) = 0.

The shaded segment A represents all slices which
must be assigned to cj . There are nj − 1 such slices.
By (1), the number of different arrangements of mj

future observations within this segment is
(
nj−2+mj

mj

)
.

The shaded segment B represents all slices which
must be assigned to a category other than cj .
There are n − nj − 1 such slices. By (1), the
number of different arrangements of m − mj future
observations within this segment is

(
n−nj−2+(m−mj)

m−mj

)
.

Multiplying these two binomial coefficients gives
us the minimum number of arrangements in which
mj future observations are in cj , showing that the
lower probability is equal to

P (Mj = mj) =
(

n + m− 1
m

)−1(
nj − 2 + mj

mj

)

×
(

n− nj − 2 + (m−mj)
m−mj

)
.

(2)

This general formula is applicable to any positive
integers m and mj such that mj ≤ m.

We can also find the equivalent upper probabil-
ity. We now want to maximise the number of
arrangements of the m future observations in which
mj future observations are in cj . There are nj + 1
slices of the wheel which we can allocate to category
cj , including two slices which we may or may not
assign to cj , which we will term ‘optional slices’

(labelled 1 and 2 in the diagram above).

As in the case of lower probability, we count
all arrangements where mj observations fall in
segment A and m − mj observations fall in seg-
ment B. We showed previously that there are(
nj−2+mj

mj

)(
n−nj−2+(m−mj)

m−mj

)
such arrangements.

However, we now also consider the two optional
slices on the wheel. Any observations which fall in
one of the optional slices may be counted either as
belonging to cj or as not belonging to cj . This means
that to find the upper probability we need to count
any arrangement with one or more observations in
the optional slices.

Let T denote the total number of future obser-
vations in the optional slices, where T ranges from
1 to m. For T = 1, there are two possible arrange-
ments, as the observation could fall either in slice 1
or in slice 2. By similar reasoning, for T = 2, there
are three possible arrangements. In general, there
are T + 1 possible arrangements for each value of T .

However, there are a number of different order-
ings that give T observations in the optional slices.
Let X be a non-negative integer such that X ≤ mj

and T − X ≤ m −mj . Then, we may have mj − X
observations in segment A, (m − mj) − (T − X)
observations in segment B, and T observations in the
optional slices, where X ranges from T − (m − mj)
to mj . Therefore, the total number of arrangements
with one or more observations in the optional slices
is equal to

m∑

T=1

min{mj ,T}∑

X={T−(m−mj)}+
(T + 1)

(
nj − 2 + (mj −X)

mj −X

)

×
(

n− nj − 2 + (m−mj)− (T −X)
m−mj − (T −X)

)
.

This enables us to find the maximum number of dif-
ferent arrangements of the m future observations in
which mj observations are in cj , leading to the upper
probability

P (Mj = mj) =
(

n + m− 1
m

)−1

[
(

nj − 2 + mj

mj

)

×
(

n− nj − 2 + (m−mj)
m−mj

)
+

m∑

T=1

min{mj ,T}∑

X={T−(m−mj)}+

× (T + 1)
(

nj − 2 + (mj −X)
mj −X

)

×
(

n− nj − 2 + (m−mj)− (T −X)
m−mj − (T −X)

)
].

(3)
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Again, this formula holds for any positive integers m
and mj such that mj ≤ m. As before, it is assumed
here that nj ≥ 2. An unobserved category can be
assigned at most one slice of the wheel, leading to
P (Mj = mj) =

(
n+m−1

m

)−1(n−nj−2+m−mj

m−mj

)
. In the

case nj = 1, the formula reduces to

P (Mj = mj) =
(

n + m− 1
m

)−1

(mj + 1)

×
(

n− nj − 2 + m−mj

m−mj

)
.

In the case nj ≥ n−1, every slice on the wheel may be
assigned to category j and furthermore there is only
one optional slice.
Example 2.2. Suppose that our possible categories
are blue (B), red (R), yellow (Y) and green (G). Our
data set consists of 5 observations as shown on the
probability wheel below.

B
B

R
G

Y

We want to make inferences about 3 future ob-
servations, and we want to find the probability that
precisely two of these are blue. To find the lower
probability, we use (2) with mB = 2. Using the values
n = 5, m = 3 and nj = 2, this gives

P (MB = 2) =
1
35

(
2
2

)(
2
1

)
=

2
35

.

To find the upper probability, we use (3) with mB = 2.
This gives

P (MB = 2) =
1
35

[2 + 2 + 4 + 3 + 6 + 4] =
21
35

.

So we see that P (MB = 2) = [ 2
35 , 21

35 ].
Theorem 2.2. For general m, when selecting the cat-
egory which has the largest lower or upper probability
of containing all of the future observations, it is opti-
mal to select the category with the greatest number of
observations.

Proof. The general formulae for the lower probability
(2) and upper probability (3) can be simplified in the
case Mj = m, because in this case m −mj = 0 and
also the only possible value of X in the summation is
T , leading to T −X = 0. We find that

P (Mj = m) =
(

n + m− 1
m

)−1(
nj − 2 + m

m

)

and

P (Mj = m) =
(

n + m− 1
m

)−1

[
(

nj − 2 + m

m

)

+
m∑

T=1

(
nj − 2 + (m− T )

m− T

)
].

The values of n, m and T do not depend on the cate-
gory selected, and since these lower and upper proba-
bility formulae are both increasing in nj , it is always
optimal to select the category with the largest value of
nj , ie. the greatest number of data observations.

It is also of interest to investigate which value of nj

will maximise the lower probability P (Mj = mj). We
will henceforth call this value n∗j . Plotting P (Mj =
mj) against values of nj ranging from 1 to n shows
the graph to be monomodal with a smooth line of
best fit. Intuitively, we expect that the peak will oc-
cur near to nj = nmj

m , because it seems natural that
the proportion of the future observations which are in
cj should be similar to the proportion of the data ob-
servations that are in cj . We will now formally assess
which value of nj gives the maximal lower probability.

Theorem 2.3. For general m, the value of nj which
will maximise P (Mj = mj) is the integer which lies
in the interval [1 + mj

m (n− 3), 2 + mj

m (n− 3)].

Proof. The proof follows from considering the two ra-
tios

P (Mj = mj |nj)
P (Mj = mj |nj + 1)

and
P (Mj = mj |nj)

P (Mj = mj |nj − 1)
.

To see whether this result corresponds to our initial
prediction, we check whether nmj

m lies in this interval,
as shown below.

1 +
mj

m
(n− 3) ≤ nmj

m
⇐⇒ mj ≥

1
3
m

nmj

m
≤ 1 +

mj

m
(n− 3) ⇐⇒ mj ≤

2
3
m

We see that if 1
3m ≤ mj ≤ 2

3m, then nmj

m will indeed
be within the interval. We can also show that if mj <
1
3m, then nmj

m +1 is within the interval, meaning that
nmj

m is just to the left of the interval. Similarly, if
mj > 2

3m, then nmj

m −1 is within the interval, meaning
that nmj

m is just to the right of the interval. So in
all cases, the optimal value n∗j is close to nmj

m , as
intuitively expected.
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Corollary 2.1. For general m, when selecting a cat-
egory which maximises P (Mj = mj), the optimal cat-
egory is selected as follows:

1. If there exists cj such that nj ∈ [1+ mj

m (n−3), 2+
mj

m (n− 3)], then this category is optimal.

2. If there is no cj such that nj ∈ [1+ mj

m (n−3), 2+
mj

m (n − 3)], then find the value of nj which is
closest to the interval on each side. Compare the
values of P (Mj = mj) for the two corresponding
categories. The category which gives the largest
lower probability is optimal.

We also notice that if we have a lot of observations
and if both mj and m are very large, then mj

m will tend
to some limit l and therefore the interval [1 + mj

m (n−
3), 2 + mj

m (n − 3)] will shrink to the point value nl.
This means that the optimal value of the ratio will
tend to the same limit l, as is to be expected.

Example 2.3. Suppose we have a categorical data
set consisting of 100 observations. There are 4
possible categories: blue (B), red (R), yellow (Y) and
green (G). We have observed 20 B, 25 R, 28 Y and
27 G. We are making inferences about the next 50
observations, and we wish to select the category that
maximises the lower probability P (Mj = 11).

The plot of P (Mj = 11) against all possible
values of nj is shown below. From this graph, we
expect that n∗j will be between 20 and 25, as this is
where the peak occurs.

By Theorem 2.3, the optimal value n∗j lies in the
interval [1 + 11

50 (97), 2 + 11
50 (97)] = [22.34, 23.34], so

the ideal choice of nj would be nj = 23. However,
there is no cj in the data set with this value of nj,
and so by Corollary 2.1 we must look at either side

of the interval.

To the left of the interval, we have nj = 20
corresponding to the blue category. By (2), the rele-
vant lower probability here is P (MB = 11) = 0.0443.
To the right of the interval, we have nj = 25 corre-
sponding to the red category. The lower probability
here is P (MR = 11) = 0.0462. As the second
probability is largest, we see that nj = 25 is the
optimal choice, and so we select red as our optimal
category.

2.2.2 Deriving P(Mj ≥mj)

The other event of interest here is that at least
mj of the m future observations will belong to
category cj . For the lower probability, we again
count the minimum number of relevant arrangements
of the future observations. However, we are now
interested in all arrangements which have R future
observations which fall in the shaded segment A,
where mj ≤ R ≤ m. We consider each possible
value of R separately in order to avoid counting any
arrangements more than once. For a given value
of R, there are

(
nj−2+R

R

)
different arrangements

within this segment. We must also consider the
remaining m − R observations. Contrary to our
lower probability formula above (2), arrangements
with one or more observations in an optional slice
will now be counted. We did not count these when
finding the lower probability P (Mj = mj), because
for example an arrangement with mj observations
in segment A and 1 in an optional slice could be
allocated to the event Mj = mj + 1 when deriving
P (Mj = mj). However, such arrangements are now
relevant because we are simultaneously considering
all events Mj ∈ {mj , mj + 1, ...,m}.

By (1), the number of different arrangements of
m − R future observations within the shaded seg-
ment B plus the two optional slices is equal to(
n−nj+(m−R)

m−R

)
.

Multiplying the two binomial coefficients above
leads to the minimum number of arrangements in
which R future observations are in cj . We now
sum over R from mj to m, which gives the lower
probability

P (Mj ≥ mj) =
(

n + m− 1
m

)−1 m∑

R=mj

(
nj − 2 + R

R

)

×
(

n− nj + (m−R)
m−R

)
.

(4)
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It is assumed here that nj ≥ 2, because otherwise
the lower probability will be zero. We also assume
mj > 0.

To find the corresponding upper probability, we
have to maximise the number of arrangements which
have at least mj of the m future observations in cat-
egory cj . We still need to count all the arrangements
described above, so all of the

(
nj−2+R

R

)(
n−nj+(m−R)

m−R

)

arrangements will be included in our total, where
mj ≤ R ≤ m. However, we also want to include
any arrangements where there are fewer than mj

observations in segment A but where observations in
the optional slices can be counted as belonging to cj .

Suppose we have Y observations in segment A,
where 0 ≤ Y ≤ mj − 1. We need to count any
arrangement which has mj − Y or more observations
in an optional slice. Let T denote the total number
of future observations in the optional slices. T may
range from mj − Y to m − Y for a given value of
Y . As explained above, there are T + 1 possible
arrangements of these observations for each value
of T . Therefore, by (1), the number of different
arrangements is equal to

mj−1∑

Y =0

m−Y∑

T=mj−Y

(T + 1)
(

nj − 2 + Y

Y

)

×
(

n− nj − 2 + (m− Y − T )
m− Y − T

)
.

Summing together both of the above numbers gives
the total number of relevant arrangements, leading to
the upper probability

P (Mj ≥ mj) =
(

n + m− 1
m

)−1

[
m∑

R=mj

(
nj − 2 + R

R

)

×
(

n− nj + (m−R)
m−R

)

+
mj−1∑

Y =0

m−Y∑

T=mj−Y

(T + 1)
(

nj − 2 + Y

Y

)

×
(

n− nj − 2 + (m− Y − T )
m− Y − T

)
].

(5)

As before, we assume nj ≥ 2 and mj > 0. In the
cases nj = 1 and nj = 0, the formula reduces to

P (Mj ≥ mj) =
(

n + m− 1
m

)−1 m∑

T=mj

(T + 1)

×
(

n− nj − 2 + (m− T )
m− T

)

and

P (Mj ≥ mj) =
(

n + m− 1
m

)−1 m∑

T=mj

×
(

n− nj − 2 + (m− T )
m− T

)

respectively.

These formulae can be used in a number of dif-
ferent ways. For example, suppose we wanted to
select a category for which there was at least a 75%
lower probability that two or more of the future
observations would be in that category. We would
use the above formulae to find all cj such that
P (mj ≥ 2) ≥ 0.75. Alternatively, suppose we wanted
to select the category which was most likely to
contain 10% or more of the future observations. We
would evaluate P (mj ≥ m

10 ) for each of the possible
categories, and then select the category according to
these values.

This method of selection is illustrated in the
example below.

Example 2.4. Consider Example 2.2, where our
possible categories are blue (B), red (R), yellow
(Y) and green (G) and our data set consists of 5
observations as shown on the probability wheel in
Example 2.2.

We are making inferences about 3 future obser-
vations, and we want to select the category with the
highest probability of containing at least one third of
the future observations. To find the lower probability
of the event Mj ≥ m

3 , we use (4) with mj = 1. We
first consider the blue category. Using the values
n = 5, m = 3 and nj = 2, we find that

P (MB ≥ 1) =
1
35

[
(

5
2

)
+
(

4
1

)
+
(

3
0

)
] =

15
35

.

To find the upper probability, we use (5) with mj = 1.
For blue, this gives

P (MB ≥ 1) =
1
35

[15 +
3∑

T=1

(T + 1)
(

0
0

)(
4− T

3− T

)
]

=
1
35

[15 + 2
(

3
2

)
+ 3
(

2
1

)
+ 4
(

1
0

)
] =

31
35

.

So we see that P (MB ≥ 1) = [ 1535 , 31
35 ]. We investi-

gate the three remaining categories in the same way,
and we find that P (Mj ≥ 1) = [0, 25

35 ] for all three
categories. So the category we select here is blue.
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3 Predictive subset selection

We now consider the use of predictive methods to se-
lect a subset of categories, rather than a single cate-
gory, from a multinomial data set. As before, we have
K possible categories, and we have a data set con-
sisting of n observations where n1, ..., nK denote the
number of times we have observed categories c1, ..., cK

respectively. Recall that k represents the total num-
ber of categories that have been observed. We will
select our subset based on inferences about m future
observations. Our inferences use the general theory
of nonparametric predictive inference [7].

3.1 One future observation

In this case, our aim will be to select a subset in
order to maximise the NPI lower probability that the
next observation, Yn+1, belongs to a category within
that subset.

Let S denote our selected subset of categories.
Let OS denote the index set for already-observed
categories in S, and let US denote the index set for
unobserved categories in S. The sizes of these sets
are denoted r and l respectively. Then, according
to the NPI model [7], the formula for the lower
probability P (Yn+1 ∈ S) is

P (Yn+1 ∈ S) =
∑

j∈OS

nj − 1
n

+
(2r + l −K)+

n
(6)

and the formula for the upper probability P (Yn+1 ∈
S) is

P (Yn+1 ∈ S) =
∑

j∈OS

nj − 1
n

+
min{2r + l, k}

n
. (7)

Our objective is to find some S such that

P (Yn+1 ∈ S) ≥ p∗

for some specified threshold probability p∗. We also
want S to be of minimal size. If several such subsets
exist, we select the one with maximum lower proba-
bility.

Example 3.1. Consider Example 2.1, where our
possible categories are blue (B), red (R), yellow (Y)
and green (G), and our data set consists of 8 observa-
tions including 3 B, 2 G, 2 Y and 1 R. Now, we want
to find a subset of categories S of minimal size which
satisfies the criterion P (Yn+1 ∈ S) ≥ 3

8 . As shown
in Example 2.1, B is the optimal choice when we are
selecting a single category, and P (mB = 1) = 2

8 . So
a subset of size 1 will not satisfy our requirements.

We instead look for a subset of size 2. Con-
sider the subset S = {B, G}. Here, r = 2 and l = 0.
The formula (6) gives

P (Yn+1 ∈ {B, G}) =
3− 1

8
+

2− 1
8

+ (4− 4) =
3
8
.

This satisfies the selection criterion. Applying the
same formula to other possible subsets of size 2 shows
that 3

8 is the highest lower probability that we can
achieve with a subset of size 2. So the subset we select
is S = {B, G}.
Theorem 3.1. When m = 1, and we want to select a
subset of categories according to our aforementioned
definition of the optimal subset, it is always optimal
to add categories to the subset in decreasing order of
number of observations in the data set.

Proof. We select a subset according to which gives the
highest lower probability P (Yn+1 ∈ S). The addition
of an already-observed category to S will add nj−1

n
to the first term in the lower probability formula and
will add 2 to the second term. The addition of an un-
observed category to S will add 0 to the first term and
1 to the second term. So we should always add ob-
served categories before unobserved categories. Fur-
thermore, the observed categories which will give the
largest increase to the lower probability when added
to S are those with the largest values of nj . So it is
always optimal to include categories in S in decreas-
ing order of nj , ie. in decreasing order of the number
of observations.

3.2 m future observations

We now consider inferences about multiple future ob-
servations. This requires some new notation: let MS

represent the number of future observations that are
in S. In terms of the probability wheel, the event
MS = ms means that precisely ms future observa-
tions fall in a slice allocated to S. Based on the NPI
model [7], there are

L =
∑

j∈OS

(nj − 1) + (2r + l −K)+ (8)

slices of the wheel which must be assigned to a
category in S.

In this section, we will consider the general case
where m may take any value. We will focus on the
event that MS reaches a certain threshold value, ie.
the event MS ≥ mS , because for selection purposes,
this is a more natural and useful event to consider
than the event that MS takes one specific value.
As before, we derive the most conservative bounds
possible within the NPI framework.
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First we consider the lower probability. We need to
find the minimum number of arrangements of the m
future observations such that at least mS are in the
subset S. This involves counting all arrangements
such that R observations fall in a slice which must be
assigned to S, where mS ≤ R ≤ m. It is important
that we do not count any arrangement multiple
times, and so we consider each value of R separately
and then sum over R to avoid this.

There are L slices which must be assigned to
S, so for a certain value of R, there are

(
L−1+R

R

)

arrangements of the R observations within the slices
which must be assigned to S.

We must also account for the other m − R ob-
servations. The remainder of the wheel consists of
n − L slices, and by (1) there are

(
n−L−1+(m−R)

m−R

)

different arrangements of the m − R observations
within these slices.

Multiplying the above binomial coefficients tells
us the minimum number of arrangements for which
MS = R. We can now sum over all relevant values of
R, leading to the lower probability

P (MS ≥ ms) =
(

n + m− 1
m

)−1 m∑

R=mS

(
L− 1 + R

R

)

×
(

n− L− 1 + (m−R)
m−R

)
.

(9)

We assume 0 < L < n, because L = 0 leads to lower
probability zero. We also assume ms > 0.

Now we consider the upper probability, which
means we need to maximise the number of ar-
rangements which have at least mS of the m future
observations in the subset S. We must still count
all of the arrangements described above, i.e. those
where at least mS of the future observations are in
a slice which must be assigned to S. As explained
above, there are a total of

(
L−1+R

R

)(
n−L−1+(m−R)

m−R

)

arrangements such as this.

However, there are other arrangements which
must now be included. We can now make use of
the optional slices, ie. those slices which we can
choose to assign either to S or to its complement.
By considering the difference between the lower and
upper probabilities given by the NPI model [7], we
see that there are

Q = min{2r + l, k} − (2r + l −K)+

optional slices. If we have fewer than mS observations
in slices which must be assigned to S, but we have
observations which fall in the Q optional slices, then
we can count these observations as belonging to S.

Suppose we have Y observations which fall in a
slice that must be assigned to the subset S, where
0 ≤ Y ≤ mS−1. Any arrangement which has mS−Y
or more observations in one of the optional slices must
be counted when calculating the upper probability.
Let T denote the total number of future observations
in the optional slices. T can take values from mS −Y
to m−Y for a particular value of Y . For a certain Y ,
there are

(
L−1+Y

Y

)
different arrangements of the Y

observations within the slices which must be assigned
to S. Also, there are

(
Q−1+T

T

)
different arrangements

of the T observations within the optional slices.
Finally, there are

(
n−L−Q−1+(m−Y−T )

m−Y−T

)
different

arrangements of the other observations within the
remaining slices of the wheel.

Combining these three binomial coefficents gives
us the following upper probability:

P (MS ≥ mS) =
(

n + m− 1
m

)−1

[
m∑

R=mS

(
L− 1 + R

R

)

×
(

n− L− 1 + (m−R)
m−R

)

+
mS−1∑

Y =0

m−Y∑

T=mS−Y(
L− 1 + Y

Y

)(
Q− 1 + T

T

)

×
(

n− L−Q− 1 + (m− Y − T )
m− Y − T

)
].

(10)

As before, we assume L > 0 and ms > 0. It is also
assumed here that L + Q < n. This is because in
the situation L + Q = n, every slice on the wheel
may be assigned to the subset S, leading to the upper
probability P (MS ≥ mS) = 1. In the case L = 0, the
formula reduces to

P (MS ≥ mS) =
(

n + m− 1
m

)−1

[
mS−1∑

Y =0

m−Y∑

T=mS−Y(
Q− 1 + T

T

)(
n−Q− 1 + (m− Y − T )

m− Y − T

)
].

Example 3.2. Consider the data set in Example
2.2, where our possible categories are blue (B), red
(R), yellow (Y) and green (G) and we have seen 5
observations including 2 B, 1 G, 1 Y and 1 R.
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We use inferences about three future observa-
tions, and we want to find the probability that at least
one of these is in the subset S = {B, G}. To find
the lower probability of this event, we use (9) with
mS = 1. We find that

L =
∑

j∈OS

(
nj − 1

n
) + (2r + l −K)+ = 1

and

Q = min{2r + l, k} − (2r + l −K)+ = 4

for this example, and we also know that n = 5 and
m = 3. Using these values we find that

P (MS ≥ 1) =
1
35

[
(

1
1

)(
5
2

)
+
(

2
2

)(
4
1

)
+
(

3
3

)
] =

15
35

.

When finding the upper probability, we observe that
L + Q = n, and this leads to P (MS ≥ 1) = 1 because
we may assign every slice on the wheel to S.

Now suppose that we want to find the probabil-
ity that at least two of the three future observations
are in S. We now apply (9) with mS = 2, and we
find that

P (MS ≥ 2) =
1
35

[
(

2
2

)(
4
1

)
+
(

3
3

)(
3
0

)
] =

5
35

.

As before, every slice on the wheel can be assigned to
S, and so P (MS ≥ 2) = 1.

So we see that P (MS ≥ 1) = [ 1535 , 1] and
P (MS ≥ 2) = [ 5

35 , 1].
Theorem 3.2. For general m, when selecting an op-
timal subset of categories (see Introduction for our op-
timality criteria), categories should always be added to
the subset in decreasing order of number of observa-
tions in the data set.

Proof. Our aim is to select the subset which has the
highest lower probability P (MS ≥ ms) for some given
value ms. L is the only variable in this formula which
changes according to which categories are included
in S. We therefore wish to determine the behaviour
of P (MS ≥ ms) as L increases. To do this, we will
consider two consecutive values of L. Consider the
ratio

P (MS ≥ ms|L)
P (MS ≥ ms|L + 1)

. (11)

If P (MS ≥ ms) were increasing in L, we would expect
this ratio to be always less than 1. Now consider the
term within the summation in the formula for this
lower probability. If

(
L−1+R

R

)(
n−L−1+(m−R)

m−R

)
(
L+R

R

)(
n−L+(m−R)

m−R

) (12)

is less than 1 for every possible value of R, then (11)
must always be less than 1. Using the identities of the
binomial coefficients, we can rewrite (12) as

L(n− L)
(L + R)(n− L + m−R)

.

Then, L(n − L) < (L + R)(n − L + m − R) ⇔ 0 <
(L + R)(m − R) + R(n − L). The term (L + R)
is clearly always positive, (m − R) must always be
positive regardless of the value of R since m is the
maximum value of R, and (n − L) must always
be positive since L will always be less than n.
Therefore P (MS ≥ ms) is increasing in L, and our
initial aim translates to making L as large as possible.

We now consider how the composition of the
subset S affects the value of L. By (8), the inclusion
of an unobserved category in S will add 0 to the
first term in L and 1 to the second term in L. The
inclusion of an observed category in S will add nj−1

n
to the first term in L and 2 to the second term in
L. So we see that it is always optimal to include
observed categories in S before unobserved ones.
Additionally, we see that the observed categories
which will increase L by the greatest amount are
those with the largest values of nj . It is therefore
always optimal to add categories to S in decreasing
order of nj .

The following example illustrates how Theorem 3.2
can be implemented when selecting subsets.

Example 3.3. Suppose that we have 8 possible
categories, which we label A to H. We have made 100
observations. The table below shows how many of
these observations were in each category.

Category A B C D E F G H
Observations 25 20 18 13 10 9 5 0

We want to investigate subsets of these 8 cate-
gories, and we will do this by making inferences about
2 future observations. There are two events of interest
here: first, the event that at least one of the two future
observations is in some subset S, and second, the
event that both of the two future observations are in S.

Consider an increasing sequence of subsets S1, ..., S8,
where we begin with a subset of size 1 and add one
category at a time. By Theorem 3.2, we know that
the categories will be added in decreasing order of
number of observations. The table below shows the
composition of each of the subsets.
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i Si P (MSi ≥ 1) P (MSi ≥ 2)
1 A [0.4206, 0.4505] [0.0594, 0.0695]
2 A,B [0.6727, 0.7166] [0.1873, 0.2234]
3 A-C [0.8376, 0.8822] [0.3624, 0.4378]
4 A-D [0.9196, 0.9543] [0.5204, 0.6257]
5 A-E [0.9697, 0.9846] [0.6903, 0.7754]
6 A-F [0.9945, 0.9980] [0.8655, 0.9220]
7 A-G [0.9998, 1.0000] [0.9802, 1.0000]
8 A-H [1.0000, 1.0000] [1.0000, 1.0000]

Using (9) and (10) with mS = 1, we can find
the lower and upper probabilities that at least one
of the two future observations will be in Si for
i = 1, ..., 8. Similarly, we can use (9) and (10) with
mS = 2 to find the lower and upper probabilities that
both of the two future observations will be in Si for
i = 1, ..., 8. The above table shows these probabilities.

Suppose that we want to select a subset of min-
imal size such that there is at least a 50% lower
probability that one or more of the future observa-
tions will belong to a category in that subset. Looking
at the above table of probabilities for the event
(MSi

≥ 1), we see that the first row which satisfies
P (MSi

≥ 1) ≥ 0.5 is the row corresponding to i = 2.
We therefore select the subset S2 = {A, B}.

However, now suppose that we want to select
the smallest possible subset of categories such that
there is at least a 50% lower probability that both
of the future observations will belong to a category
in that subset. We will now need to select a larger
subset in order to achieve the minimally required
probability. Looking at the above table for the event
(MSi

≥ 2), we see that the first row which satisfies
P (MSi

≥ 2) ≥ 0.5 is the row corresponding to i = 4.
We therefore select the subset S4 = {A, B,C, D}.

4 Concluding remarks

Coolen and Augustin [7] proved strong consistency
properties for NPI, including F-probability in Weich-
selberger’s theory of interval probability [10], but only
for inferences involving a single future observation.
For the case with multiple future observations, consid-
ered in this paper, these properties have not yet been
proved, as we have thus far only derived the lower and
upper probabilities of specific events. We would need
to derive general formulae in order to investigate such
properties. This is an interesting and important topic
for future research. Further related research topics in-
clude other applications of NPI for multinomial data,
where for example applications to classification are
being investigated. Detailed comparisons of the NPI
methods to more established alternatives may provide
further insight into their practical value.
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Abstract

The problem of aggregating two or more sources of in-
formation containing knowledge about a same domain is
considered. We propose an aggregation rule for the case
where the available information is modeled bycoherent
lower previsions, corresponding to convex sets of prob-
ability mass functions. The consistency between aggre-
gated beliefs and sources of information is discussed. A
closed formula, which specializes our rule to a particular
class of models, is also derived. Finally, an alternative ex-
planation of Zadeh’s paradox is provided.

Keywords. Information fusion, coherent lower previsions,
independent natural extension, generalized Bayes rule.

1 Introduction

In practical problems where modeling and handling
knowledge is required, information often comes piecewise
from different sources. The modeler usually wants to ag-
gregate these pieces of information into a global model,
that serves as a basis for various kinds of inference, like
decision making, estimation and many others. If the avail-
able information is characterized by uncertainty, Bayesian
theories can offer a suitable approach to problems of this
kind. Yet, there are situations where the level of un-
certainty characterizing the sources is so high that single
probability measures cannot properly model the available
information. This goes beyond the standard Bayesian the-
ory, and leads to alternative models of uncertainty, like for
example Choquet capacities [3], belief functions [7], pos-
sibility measures [6], and fuzzy measures [15]. As shown
in [14], all these models represent uncertainty through sets
instead of single probability measures, and can be all re-
garded as special cases of Walley’scoherent lower pre-
visions[13]. This theory, which is usually referred to as
imprecise probability, provides a very general model of
uncertain knowledge, for which also some rationality cri-
teria, that can be used to identify conflicts among the dif-
ferent sources and determine whether the model is self-
consistent, are provided. All these features seem to be

particularly suited for the aggregation of different sources
of information, that might be not only uncertain and vague
when considered singularly, but also conflictual or contra-
dictory when considered jointly.

In this paper, we apply Walley’s theory of coherent lower
previsions to develop a method of aggregation for uncer-
tain information coming from different sources. In order
to describe this aggregation task, let us us first formalize
the problem in the Bayesian framework.

Considern sources of information, all reporting knowl-
edge about a variableX, whose generic valuex varies in a
finite setX .1 For eachj = 1, . . . ,n, the knowledge asso-
ciated to thej-th source is modeled by a conditional prob-
ability mass functionp j(X|A j = a j). In this formalism,
the conditioning eventA j = a j describes the actualinter-
nal stateof each source, which is in fact modeled by a
variableA j , whose possible realizations take valuesa j in a
finite setA j . Examples of internal states of the sources can
be the two states of a binary variable denoting the fact that
a source is reliable or not, or a collection of measurements
collected for the phenomenon under study.

The information associated to the different sources is col-
lected by a singleinformation fusion center(IFC), which
aims at aggregating this information together with its prior
knowledge aboutX, modeled as a probability mass func-
tion p0(X). This is achieved by identifying the sources’
beliefs aboutA j given thatX = x with those of the IFC:

p0(a j |x) := p j(a j |x) =
p j(x|a j)p j(a j)

∑a j∈A j
p j(x|a j)p j(a j)

, (1)

for eachx∈ X , wherep j(A j) is the prior over the inter-
nal states of thej-th source. Thus, assuming conditional
independence between the variables in(A1, . . . ,An) given
X, we can aggregate those beliefs into the following joint:

p0(x,a1, . . . ,an) =
n
∏
j=1

p j(x|a j)p j(a j)
p j(x)

p0(x) , (2)

1Variables are denoted in this paper by uppercase letters; the corre-
sponding calligraphic and lowercase letters denote respectively their sets
of possible values and the generic values of these sets.
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with p j(x) = ∑a j∈A j
p j(x|a j)p j(a j) prior of the j-th

source. Finally, from (2), theaggregatedposterior is:

p0(x|ã1, . . . , ãn) ∝
n
∏
j=1

p j(x|ã j)
p j(x)

p0(x) , (3)

whereã j denotes the element ofA j corresponding to the
observed internal state of the source. According to (3),
p0(x|ã1, . . . , ãn) is only a function of the IFC’s priorp0(X),
and of the sources’ conditionalp j(X|ã j) and priorp j(X),
where the latter two are the only pieces of information to
be shared between the sources and the IFC. Note also that
the prior over the internal statesp j(A j) has been dropped
from (3) because of normalization.

Figure 1 depicts the sequential steps involved in the above
derivation. The idea there is that each source should be
regarded as an independent subject, that has inferred its
conditional beliefs aboutX given the actual internal state
of the source. As formalized in (1), each source induces
a model revisioninto the IFC’s beliefs. This means that,
regarding the state of the source conditional onX, the IFC
identifies its own beliefs with those of the source. Finally,
the IFC defines a global model over all the variables by
exploiting the independence among the sources as in (2).

p0(x|ã1, . . . , ãn) (e)

p0(ã1, . . . , ãn,x) (d)

p0(x) p0(ã1, . . . , ãn|x) (c)

. . .

. . .

. . . . . . . . .

p0(ã j |x) := p j(ã j |x) (b)

p j(x, ã j ) (a)

p j(x) p j(ã j ) p j(x|ã j )

. . .

. . .

. . . . . . . . .

IFC

source jj − 1 j + 1

Figure 1: Aggregation of the sources of information in the
Bayesian framework. The black-highlighted text describes
the information used by the IFC to compute the final pos-
terior density (still in black). The gray-highlighted text
denotes the intermediate steps needed to aggregate the in-
formation. The dashed boxes are used to group the beliefs
whose coherence will be checked in Section 4.

In this architecture it has been assumed that each source

processes its own information in order to compute the pos-
terior probabilityp j(x|a j), which can be regarded as asuf-
ficient statistical descriptor, to be shared with the IFC to-
gether withp j(x). This is a high-level form of aggrega-
tion, since the IFC aggregates pieces of information which
have already been elaborated from the sources. This is one
of the most common architectures for data fusion (see for
example [2, Chapter 8]).

In this paper we aim at generalizing this approach to Wal-
ley’s theory of imprecise probability in the general case
where, instead of probability mass functions, the uncer-
tainty about a variable is described bycoherent lower pre-
visions. To this end, in Section 2 we first recall the basics
of the theory of coherent lower previsions. In Section 3,
we detail the different steps of our derivation leading to
a combination rule for the general case of coherent lower
previsions. The consistency between the obtained results
and the original assessment is discussed in Section 4. The
rule is indeed specialized in Section 5 for a special class of
coherent lower previsions, calledlinear-vacuous mixtures.
Finally, in Section 6, we show how this rule can be applied
in practice for a possible explanation of Zadeh’s paradox
[16]. Conclusions and outlooks for future developments
are in Section 7.

2 Coherent Lower Previsions

The imprecise probabilitytheory [13] is an extension of
the Bayesian theory of subjective probability. The goal is
to model a subject’s uncertainty by looking at his disposi-
tions toward taking certain actions, and imposing require-
ments of rationality, or consistency, on these dispositions.
In order to do that, let us first recall the fundamental notion
of coherent lower prevision.

Given a variableX taking values in a setX , we usegam-
bles, i.e. bounded functionsf : X → R, in order to test
a subject’s uncertainty aboutX. For eachx ∈ X , the
real numberf (x) is regarded as the (possibly negative) re-
ward, expressed in some linear utility units, that the sub-
ject receives by accepting the gamble ifX = x. Uncer-
tainty about the actual value ofX can be modeled by the
willingness to accept certain gambles and to reject others.
Bayesian theory assumes that subjects are always able to
provide a fair priceP( f ) for f , whatever information is
available aboutX. This assumption is relaxed in the im-
precise probability framework, where subjects can express
two different prices, called respectively lower and upper
previsions and denoted byP( f ) andP( f ), that correspond
to the highest (lowest) buying (selling) price for the gam-
ble f . Since selling a gamblef for a given pricer is the
same as buying− f for the price−r, the conjugacy rela-
tion P( f ) =−P(− f ) holds and we can therefore focus on
lower previsions only. IfL (X ) denotes the set of all the
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bounded2 gambles onX , a lower previsionP can be re-
garded as a real-valued functional onL (X ).

Indicator functions3 are clearly a special class of gambles.
Given a setX ′ ⊆ X , we can consider the lower previ-
sion for the corresponding indicator functionIX ′ . The be-
havioural interpretation ofP(IX ′) is the supremum rate for
which the subject is disposed to bet on the eventx∈ X ′,
which is the subject’slower probabilityfor this event, sim-
ilarly P(IX ′) = 1−P(IX \X ′) is theupper probability.

Since lower previsions represent a subject’s dispositions
to act in certain ways, some criteria ensuring that these
dispositions do not lead to irrational behaviours should be
imposed.Coherenceis the strongest requirement consid-
ered in the theory of imprecise probability. A lower pre-
visionP is coherentif and only if it satisfies the following
properties:

(P1) min
x∈X

f (x)≤ P( f ) [accepting sure gains],

(P2) P( f +g)≥ P( f )+P(g) [super-additivity],

(P3) P(λ f ) = λP( f ) [positive homogeneity],

for all f ,g ∈ L (X ) and non-negative real numbersλ .
We point the reader to [13, Chapter 2] for a deep explana-
tion of the irrational consequences of modeling beliefs by
lower previsions that are not coherent. Here, we regard a
coherent lower prevision(CLP) as the more general model
of a subject’s (rational) beliefs about a variable.

Let us present some examples of CLP. Alinear previ-
sion Pon L (X ) is a CLP which is also self-conjugate,
i.e., P(− f ) = −P( f ) for each f ∈ L (X ). This property
makes the prevision a linear functional, i.e.,P(λ ( f +g))=
λP( f ) + λP(g) for all f ,g ∈ L (X ) and realλ . Any
linear previsionP is completely determined by itsmass
function p(x) := P(I{x}), since it follows from the previous
properties that for any gamblef , P( f ) = ∑x∈X p(x) f (x).
A CLP P onL (X ) such thatP( f ) = minx∈X f (x) can be
easily identified as the most conservative (i.e., less infor-
mative) CLP and is therefore calledvacuous. As both lin-
ear and vacuous previsions are coherent, we can construct
new coherent lower previsions by convex combination of
the two [13, Chapter 2]. IfP is a linear prevision, for each
0≤ ε ≤ 1, P( f ) := εP( f )+ (1− ε)minx∈X f (x) defines
a new CLP which is calledlinear-vacuous mixture. Wal-
ley proved that a CLP can be equivalently specified by a
convex set of linear previsions, and hence a convex set of
probability distributions [13].

Now consider also a second variableA with values inA .
Given a CLPP onL (X ×A ), we can easily compute its

2Although Walley’s theory has been developed for bounded gambles
only, an extension to the unbounded case can be found in [12].

3A real-valued function on a domain is called theindicator function
of a given subset of this domain if it takes the value one inside the subset
and zero otherwise.

marginalprevision onA for each f ∈ L (A ) by noting
that f can be equivalently regarded as a gamble inL (X ×
A ) which is constant with respect toX, and set

PA( f ) := P( f ), (4)

where the superscriptA emphasizes the fact that the
marginal prevision is defined onL (A ).

For eachh ∈ L (X ×A ) and a ∈ A , a subject’scon-
ditional lower prevision PX|A(h|A = a), denoted also as
PX|A(h|a), is the highest real numberr for which the sub-
ject would buy the gambleh for any price strictly lower
thanr, if he knew in addition that the variableA assumes
the valuea. We denote byPX|A(h|A) the gamble onA that
assumes the valuePX|A(h|A= a) for eacha∈A . Overall,
PX|A(h|A) is a gamble onA for eachh∈L (X ×A ) and
PX|A(·|A) is a map betweenL (X ×A ) andL (A ).

A conditional lower previsionPX|A(·|A) is said to besep-
arately coherentif PX|A(·|a) is a CLP onL (X ×A ) and
PX|A(IX ×{a}|a) = 1, for eacha ∈ A . The last condition
means that if the subject knew thatA= a, he would be dis-
posed to bet at all non-trivial odds on the event thatA= a.

If, besides the separately coherent conditional lower previ-
sionPX|A(·|A) on L (X ×A ), the subject has also spec-
ified an unconditional CLPP onL (X ×A ), thenP and
PX|A(·|A) should in addition satisfy the criterion ofjoint
coherence, that requires

P
(

IX ×{a}
[
h−PX|A(h|a)

])
= 0, (5)

for eacha∈A andh∈L (X ×A ). It can be proved [13,
Chapter 6] that, ifP(IX ×{a}) > 0,PX|A(h|a) is the only so-
lution of (5). Thus, given a joint CLP onL (X ×A ), a
(separately coherent) conditional lower prevision can be
obtained from (5). For this reason, this equation is also
calledgeneralized Bayes rule(GBR). GBR cannot be ap-
plied if P(IX ×{a}) = 0. Nevertheless, ifP(IX ×{a}) > 0,

a conditional previsionPX|A(·|a) can be computed by the
following regular extension

PX|A(h|a) = max{µ : P
(
IX ×{a} [h− µ ]

)
≥ 0}. (6)

On the other side, given a (separately coherent) conditional
lower previsionPX|A(·|A) and a coherent marginal previ-
sionPA onA , a joint CLP onL (X ×A ) can be obtained
by marginal extension:

P(h) = PA
(

PX|A(h|A)
)

. (7)

The marginal extensionP in (7) can be proved to be jointly
coherent withPX|A as in (5), and its marginal onA is still
PA [13, Chapter 6].

The standard notion of conditional independence consid-
ered in the Bayesian theory, requires a more general for-
mulation in the framework of CLPs. Given a joint CLPP
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on L (X ×Ai ×A j), we say that, according toP, A j is
epistemically irrelevantto Ai givenX, if:

PAi |X,A j (h|x,a j) = PAi |X(h|x), (8)

for eachh ∈ L (Ai), x ∈ X and a j ∈ A j , where both
PAi |X,A j and PAi |X are obtained fromP through GBR. If
A j is epistemically irrelevant toAi givenX, andAi is epis-
temically irrelevant toA j givenX, thenAi andA j are said
to be epistemically independent (givenX).

Let us adopt, for sake of compactness, the notationAn :=
(A1, . . . ,An) and A n := ×n

j=1A j . Given a collection of

separately coherent conditional lower previsionsP
A j |X
j on

L (A j), for each j = 1, . . . ,n, the most conservative sep-
arately coherent conditional lower previsionPAn|X which

is coherent with eachP
A j |X
j , under the assumption that, for

eachi, j = 1, . . . ,n with i 6= j, Ai andA j are epistemically
independent givenX, is defined as follows:4

P(g|x) = sup
g j∈L (A j )

j=1,...,n

inf
a j∈A j

j=1,...,n

{
g(a1, . . . ,an)−

n

∑
j=1

[
g j(a1, . . . ,an)−Pj(g j(a1, . . . ,a j−1, ·,a j+1 . . . ,an)|x)

]}

(9)

This is theindependent natural extension[5]5. The notion
of joint coherence between a separately coherent condi-
tional lower prevision and a joint CLP in (5) reflects the
fact that our assessments should be consistent not only
separately, but also with each other. For this case, joint
coherence can be characterized by the following theorem.

Theorem 1. The separately coherent conditional lower

previsions P
A j |X
j , with j = 1, . . . ,n, are jointly coherent

if there is a CLP Pon L (X ×A n) such that: (i) its
marginal PX assigns positive probability to the elements
of X ; (ii) its marginals PA j ,X are jointly coherent with

P
X|A j
j , for each j= 1, . . . ,n, in the sense of (5).

A more general formulation of Theorem 1 and its proof
can be found in [9].

3 Aggregating Coherent Lower Previsions

The theoretical results reviewed in Section 2 can be em-
ployed for a generalization to imprecise probabilities of
the aggregation rule presented in Section 1. Accordingly,
we suppose that thej-th source of information, for each
j = 1, . . . ,n, makes assessments about the value thatX as-
sumes inX conditionally on its internal states ˜a j ∈ A j .

4A more general formula for non-linear spaces can be found in [10].
5This paper includes a survey of different aggregation rulesfor CLPs.

Yet, our approach differs in aggregating knowledge referred to the same
domain.

Such assessments are expressed through separately coher-

ent conditional lower previsionsP
X|A j
j . Furthermore, also

extra assessments about the internal states of the sources
are available and again expressed in terms of CLPsP

A j
j on

L (A j) for j = 1, . . . ,n. The IFC should therefore gather
this information and aggregate it with its prior aboutX,
which is expressed as a CLPPX

0 onL (X ).

Our goal is to compute the IFC’s joint CLPP0 onL (X ×
A n) from which the beliefs aboutX conditional on the
actual internal states of the sources(ã1, . . . , ãn) could be
computed. By analogy with the derivation in Section 1,
this task is achieved by the following sequential steps:

(a) As outlined in (7), a CLPP j on L (X ×A j) can be

derived fromP
X|A j
j andP

A j
j by marginal extension

P j( f j ) := P
A j
j

(
P

X|A j
j ( f j |A j)

)
, (10)

for eachf j ∈L (X ×A j) and j = 1, . . . ,n.

(b) GBR is used to compute, givenP j , the conditional

CLP P
A j |X
j on L (X ×A j).6 Accordingly, by com-

puting the solutionµ of the equation

P j

(
I{x̃} · [ f j − µ ]

)
= 0, (11)

we haveP
A j |X
j ( f j |x̃) := µ , for each f j ∈ L (A j), x̃∈

X , and j = 1, . . . ,n.

The so-obtained separately coherent conditional lower
previsions associated to the sources are assumed to in-
duce amodel revisioninto the corresponding beliefs
of the IFC, i.e.,

P
A j |X
0 ( f j |x) := P

A j |X
j ( f j |x), (12)

for eachf j ∈L (A j) andx∈X .

(c) A conditional CLPPAn|X
0 is obtained fromP

A j |X
0 by

independent natural extension (9):

PAn|X
0 (g|x) = sup

g j∈L (A j )
j=1,...,n

inf
a j∈A j

j=1,...,n

{
g(a1, . . . ,an)

−
n

∑
j=1

[
g j(a1, . . . ,an)

−P
A j |X
0 (g j(a1, . . . ,a j−1, ·,a j+1 . . . ,an)|x)

]}
. (13)

(d) Then, the joint CLPP0 onL (X ×A n) is derived by
marginal extension (7):

P0(g) := PX
0

(
PAn|X

0 (g|X)
)

, (14)

for eachg∈L (X ×A n).

6We noted that GBR requiresPX
j (I{x̃}) > 0. If only P

X
j (I{x̃}) > 0

holds, regular extension (6) should be employed instead. Anexample of
the calculations required in this latter case is in Section 6.
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(e) Finally, assuming thatP An

0 (ã1, . . . , ãn) > 0, where
(ã1, . . . , ãn) ∈ A n are the observed internal states of
the sources, we again apply GBR,

P0

(
I{ã1,...,ãn} · [g− µ ]

)
= 0, (15)

to compute the separately coherent conditional lower

previsionPX|An

0 (·|An) onL (X ).7

The above derivation has been achieved by complete anal-
ogy with that in Section 1, but in the more general frame-
work of CLPs. Notice that, if the sources directly provide

the CLPsP
A j |X
j , we could still apply our procedure by con-

sidering only the steps from (c) to (e). In this case, the
posterior probabilities coincide with those returned by a
naive credal classifier(e.g., compare the equation in Ta-
ble 2 with the results in [17]). This holds in spite of the
different notion of independence assumed in [17], and can
be verified by means of the algorithm in [4].

The coherence between the joint CLP obtained at the step
(d) and the initial assessments will be investigated in the
next section.

4 Checking Coherence

The subjects involved in the derivation formalized in the
previous section (i.e., the sources and the IFC) should be
regarded as autonomous and distinct individuals. Never-
theless, we have assumed that the uncertain information
associated to a subject can induce in another subject a
model revision, i.e., the second agent can replace his own
CLPs (even in the conditional case) with those of the first
agent. More specifically, in our architecture, we allow
for an asymmetricalmodel revision, as we assume that
each source revises the IFC’s beliefs as in (1) or in (12),
while the contrary cannot take place because of the way
the sources and the IFC share the information. In this sec-
tion we discuss the coherence between the different be-
liefs specified in our model. According to the previous
argument, this will be done separately for each subject, by
considering also the beliefs induced by other subjects via
model revision.

Let us start from the coherence of the IFC’s beliefs. In
order to do that, we first consider the derivation in the pre-
cise case as in Section 1. As outlined in Figure 1, the mass
functions to be considered are the conditionalsp0(A j |x),
for each j = 1, . . . ,n, which are obtained through model
revision from the sources, and the marginalp0(X). The
consistency between these assessments when considered
jointly follows from the existence of a joint probability
mass function, which is clearly the one in (2), from which
these mass functions can be obtained. Concerning the IFC,

7Note that, also in this case, if we only have thatP
An

0 (ã1, . . . , ãn) > 0,
the regular extension (6) can be used instead.

we should also verify that this joint probability mass func-
tion preserves the assumption of independence between
the sources givenX. This holds since, after marginal-
ization and Bayes rule, the joint probability mass func-
tion p0 in (2) is such thatp0(ai |x,a j) = p0(ai |x) for each
i, j = 1, . . . ,n, ai ∈ Ai , a j ∈ A j andx ∈ X . Analogous
results, in the more general framework of imprecise prob-
ability, can be obtained by considering the joint CLPP0 in
(14), which is the basis to prove the following result.

Theorem 2. The separately coherent conditional lower

previsions P
A j |X
0 in (12) and PX

0 are jointly coherent.

Proof. The joint coherence of the assessmentsPX
0 and

P
A j |X
j (·|x), considered for eachj = 1, . . . ,n, can be proved

by considering the joint CLPPX,An
in (14). As a con-

sequence of marginal extension,PX,An
is jointly coher-

ent with bothPX
0 andPAn|X(·|x). Furthermore, as a con-

sequence of independent natural extension,PAn|X(·|x) is

jointly coherent with all theP
A j |X
j (·|x) for j = 1, . . . ,n,

because of the epistemic independence between the
variables in (A1, . . . ,An) given X. Finally, assuming
P An

j (I{a1,...,an}) > 0 because of GBR, the coherence of

PX|An
(·|a1, . . . ,an) follows from Theorem 1.

On the other side, checking the coherence of the beliefs

associated to a particular source is trivial, asP
X|A j
j andP

A j
j

are jointly coherent because of (5), for eachj = 1, . . . ,n.
We have argued that the IFC’s beliefs are not required to
be coherent with those of the sources, as they refer to sep-
arate subjects. Nevertheless, let us consider what can be
said about the consistency between different subjects in
the Bayesian (i.e., precise) formulation. By exploiting the
independencies between the sources, (2) rewrites as:

p0(x,a1, . . . ,an) =
n
∏
j=1

p0(x|a j)p0(a j)
p0(x)

p0(x) . (16)

By comparing (16) with (2), it can be noticed that the joint
coherence between the IFC’s beliefs and those of thej-th
source cannot be guaranteed in general. In fact, we can
always imposep0(x|a j) := p j(x|a j) andp0(a j) := p j(a j),
but, at least in general, it is not possible to have at the
same timep0(X) = p j(X), for each j = 1, . . . ,n. In fact,
since each source and the IFC are considered autonomous
subjects and the information flows from the sources to the
IFC, we cannot require that the sources agree on their
marginals overX , i.e., pi(X) = p j(X) for each i, j =
1, . . . ,n. Thus, the IFC can define a single global proba-
bilistic model over all the variables that reproduces all the
inputs from the sources only if the IFC and all the sources
have the same prior overX.
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5 Mathematical Derivation for
Linear-Vacuous Mixtures

Let us detail the derivation described in Section 3 in the
special case where the marginal associated to the IFC and
the separately coherent conditional lower previsions spec-
ified for the sources are linear-vacuous mixtures, while the
marginals overA j are linear.8 This corresponds to the fol-
lowing settings:

PX
0 (h) := ε0 ∑

x∈X

p0(x)h(x)+ (1− ε0) min
x∈X

h(x),

P
X|A j
j ( f j |a j) := εa j

j ∑
x∈X

p j(x|a j) f j (x,a j) (17)

+(1− εa j
j ) min

x∈X
f j (x,a j), ∀a j ∈A j

P
A j
j (g j) := ∑

a j∈A j

p j(a j)g j(a j), (18)

where p j(X|a j), p j(A j) and p0(X) are probability mass
functions, f j ∈ L (X × A j), g j ∈ L (A j), and h ∈
L (X ), for all j = 1, . . . ,n. The derivation is as follows.

(a) In this particular case, (10) rewrites as

P j( f j ) = ∑
a j∈A j

p j(a j) ·
(

εa j
j ∑

x∈X

p j(x|a j) · f j(x,a j)

+ (1− εa j
j ) min

x∈X
f j (x,a j)

)
, (19)

for eachf j ∈L (X ×A j) and j = 1, . . . ,n.

(b) Thus, for each ˜x∈X , (11) becomes:

∑
a j∈A j

p j(a j) ·
(

εa j
j [ f j (x̃,a j)− µ ]p j(x̃|a j)

+ (1− εa j
j )min{0, f j(x̃,a j)− µ}

)
= 0. (20)

Define the subsetA ∗
j (µ) of A j as follows:

A ∗
j (µ) := {a j ∈A j : f j (x̃,a j)− µ < 0}, (21)

where f j , x̃ are omitted from the arguments ofA ∗
j for

sake of simpler notation. Equation (20) rewrites as:

∑
a j∈A j

p j(a j)[ε
a j
j p j(x̃|a j)+(1−εa j

j )IA ∗
j (µ)(a j)] f j (x̃,a j)

−µ ∑
a j∈A j

p j(a j)[ε
a j
j p j(x̃|a j)+(1−εa j

j )IA ∗
j (µ)(a j)] = 0.

(22)

The solution of (20) is non-trivial becauseA ∗
j is a

function of µ . Yet, we can computeA ∗
j (µ) for the

particular valueµ̃ of µ that solves (20), without ex-
plicitly solving this equation. Accordingly, we set

8The last assumption will be relaxed at the end of this section.

A ∗
j := A ∗

j (µ̃), and the solutionP
A j |X
j ( f j |x̃) of (22)

is:9

∑
a j∈A j

p j(a j)[ε
a j
j p j(x̃|a j)+ (1− εa j

j )IA ∗
j
(a j)] f j (x̃,a j)

∑
a j∈A j

p j(a j)[ε
a j
j p j(x̃|a j)+ (1− εa j

j )IA ∗
j
(a j)]

.

(23)

(c) The (separately coherent) conditional lower previsions
associated to the sources and defined as in (23) induce
the followingmodel revisioninto the IFC’s beliefs,

P
A j |X
0 ( f j |x) := P

A j |X
j ( f j |x), (24)

for each f j ∈ L (A j), j = 1, . . . ,n andx∈ X . Their
independent natural extension toA n can be therefore
considered:

PAn|X
0 (g|x̃)= sup

g j∈L (X ×A j )
j=1,...,n

inf
a j∈A j

j=1,...,n

{
g(x̃,a1, . . . ,an)

−
n

∑
j=1

[
g j(x̃,a1, . . . ,an)

−P
A j |X
0 (g j(x̃,a1, . . . ,a j−1, ·,a j+1 . . . ,an)|x̃)

]}
, (25)

for each ˜x ∈ X . Notice that the gamble
g j(x̃,a1, . . . ,a j−1, ·,a j+1 . . . ,an) is in L (X × A j).
Let us consider, in (25), only gamblesg ∈ L (X ×
A n) such that, forX = x̃ and each(a1, . . . ,an) ∈ A n,
factorize as follows:

g(x̃,a1, . . . ,an) =
n

∏
j=1

g′j(x̃,a j), (26)

with g′j ∈L (X ×A j) for eachj = 1, . . . ,n. Assume
also that the gambleg′j(x̃, ·) ∈ L (A j) has a constant

sign inA j , and denote its sign byσ j = σ j(x̃)10. Un-
der these assumptions, if we intend, for fixed ˜x, g as a
gamble onA n, we have thatg has constant sign and
(25) reduces to:

PAn|X
0 (g|x̃)=

{
∏n

j=1P
A j |X
0 (g′j |x̃) if g≥ 0

− ∏n
j=1P

A j |X
0 (σ jg′j |x̃) if g < 0

(27)
whereg′j is theg j defined in (25), for eachj = 1, . . . ,n.
The proof is in [10]. The gambles we consider in the
following factorize as in (26), and we can therefore
use (27) instead of (25).

9This is possible unlessPj (I{x̃}×A j
) = ∑

a j∈A j

pj (aj )ε
a j
j pj (x̃|aj ) > 0.

10Setσ j = +1 if g′j (x̃, ·) > 0, σ j = −1 if g′j (x̃, ·) < 0 andσ j = 0 oth-
erwise.
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(d) By marginal extension (14), the following joint CLP
can be calculated:

P0(h) = PX
0

(
PAn|X

0 (h|x)
)

= ε0 ∑
x∈X

PAn|X
0 (h|x)p0(x)

+ (1− ε0) min
x∈X

PAn|X
0 (h|x). (28)

(e) Thus, by GBR, given{ã1, . . . , ãn} ∈ A n, the condi-

tional CLPPX|An

0 (g|ã1, . . . , ãn) is the solution of:

P0(I{ã1}×···×{ãn}(g− µ)) = 0, (29)

where we assumeP0(I{ã1}×···×{ãn}) > 0. Note also
that the only values of the gambleg that should be
considered for the solution of (29) are those such that
An 6= ãn, because otherwise the argument ofP0 is
zero. Furthermore, for fixedx, g(x, ã1, . . . , ãn)− µ
is constant. Thus, the gamble factorizes as in (26),
with g′i(x̃,ai) = I{ãi} ∀i < n andg′i(x̃,an) = I{ãn}(g(·)−
µ). Therefore, notice thatσi = 1 ∀i < n and σn =
sgn(g(·)− µ). Thus, (27) holds and we can write:11

PAn|X(h|x) = PA1|X
1 (I{ã1}|x) · · ·P

An|X
n (I{ãn}|x)

[g(x, ã1, . . . , ãn)− µ ]I{g(x,ã1,...,ãn)−µ≥0}

+P
A1|X
1 (I{ã1}|x) · · ·P

An|X
n (I{ãn}|x)

[g(x, ã1, . . . , ãn)− µ ]I{g(x,ã1,...,ãn)−µ<0} (30)

According to (30), (29) can be written as in Table 1,
where from (23) it can be derived that:

P
A j |X
j (I{ã j }|x̃) =

pj (ãj )ε
ã j
j pj (x|ãj )

∑
a j∈A j

pj (aj )[ε
a j
j pj (x|aj )+(1− εa j

j )IA j \{ã j }(aj )]
.

(31)
It can be easily verified thatA ∗

j = A j\{ã j} in this
case. Again from (23) it follows that:

P
A j |X
j

(
I{A j \ã j}|x

)
=

∑
a j∈A j ,a j 6=ã j

pj (ai)ε
a j
j pj (x|aj )

∑
a j∈A j

pj (aj )[ε
a j
j pj (x|aj )+(1− εa j

j )I{ã j }(aj )]
,

(32)
where, in this case,A ∗

j = {ã j}. According to the du-
ality relation reviewed in Section 2, the corresponding
upper probability is one minus the lower probability
in (32), and hence:

P
A j |X
j

(
I{ã j }|x

)
=

pj (ãj )[ε
ã j
j p

ã j
j (x)+(1− ε ã j

j )]

∑
a j∈A j

pj (ai)[ε
a j
j pj (x|aj )+(1− εa j

j )I{ã j }(aj )]
.

(33)

Finally, by solving the equation in Table 1 with re-
spect toµ , the conditional CLPsPX|An

0 (g|ã1, . . . , ãn)
can be calculated for each{ã1, . . . , ãn} ∈A n.

11Note that the indicator functions in (30) refer to sets that are implic-
itly defined through inequalities over gambles. This kind ofspecification
will be employed also in the followings.

The assumption of linearity for the prior beliefs over the
sources can be relaxed to the case where the previsions

P
A j
j are CLPs generated by the lower envelope of a finite

set of linear previsions [13, Chapter 3]. In this case, we
solve the equation in Table 1 for each element of this set,
and the minimum over these values is the solution in the
general case. The following results can be easily verified
to follow from our derivation.

1. If PX
0 is vacuous (i.e.,ε0 = 0), then alsoPX|An

0 is vac-
uous. This is consistent with the results in [11].

2. If P
X|A j
j is vacuous (i.e.,ε ã j

j = 0) for eachj = 1, . . . ,n,
thenPj(I{x̃}×A j

) = 0 and, (20) cannot be solved by
(23). In this case, from (20) it is straightforward

to verify that P
A j |X
j ( f j |x̃) is vacuous (ifp j(ai) > 0

for eachi), that PAn|X(g|x̃) is also vacuous and that

PX|An

0 (g|ã1, . . . , ãn) is equal toPX
0 (g).

3. In (3), it is shown that, since the posterior probabil-
ity distribution p0(x|a1, . . . ,an) does not depend on
p(a j), the only pieces of information to be shared be-
tween sources and IFC arep j(x) and p j(x|a j). In
the imprecise case, additional information must be
shared between sources and IFC. In fact, from Ta-
ble 1 and from (31) and (33), it can be seen that
PX|An

0 (g|ã1, . . . , ãn) depends on the sources’ priorsPX
j

and on(1− ε ã j
j )p(ã j). Notice, in fact, that the de-

nominator in (31) is just equal toPX
j (I{x})− (1−

ε ã j
j )p(ã j) = PX

j (IX \{x})− (1− ε ã j
j )p(ã j), while the

denominator in (33) isPX
j (I{x}) + (1− ε ã j

j )p(ã j).
Conversely, the dependency onp(ã j) in the numer-
ators of (31) and (33) is dropped in Table 1, since
the sum and the minimum are overx and, thus, the
p(ã j) can be simplified. Summarizing, the pieces of
information to be shared between sources and IFC
are: the marginal CLPPX

j , which corresponds to the

prior CLP of the sources; the quantity(1−ε ã j
j )p(ã j),

which is equal to the probability that thej-th source
is in the statep(ã j) multiplied by thedegree of un-

certaintyP
X|A j
j (I{x})−P

X|A j
j (I{x}) = 1− ε ã j

j .

6 Zadeh’s Paradox

The problem of aggregating beliefs over the same variable
has been already considered in other uncertainty theories.
In the case of Dempster-Shafer (DS) theory [7], Demp-
ster’s combination rule allows for the following aggrega-
tion of two belief functionsm1 andm2:12

m12(X) ∝ ∑
X1,X2:X1∩X2=X

m1(X1) ·m2(X2). (34)

12We point to [7] for details about DS theory.
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Table 1: The unique solutionµ of GBR corresponding to the conditional CLPPX|An

0 (g|ã1, . . . , ãn)

0 = ε0 ∑
x∈X

{[
PA1|X

0 (I{ã1}|x) · · ·P
An|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ≥0}

+ P
A1|X
0 (I{ã1}|x) · · ·P

An|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ<0}

]
(g(x, ã1, . . . , ãn)− µ)p0(x)

}

+ (1− ε0) min
x∈X

{[
PA1|X

0 (I{ã1}|x) · · ·P
An|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ≥0}

+ P
A1|X
0 (I{ã1}|x) · · ·P

An|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ<0}

]
(g(x, ã1, . . . , ãn)− µ)

}

Yet, in the 1980s, DS theory suffered a serious blow when
Zadeh proposed his “paradox”, an example for which
the Dempster’s rule of combination gave an apparently
counter-intuitive result [16].

Zadeh’s example is as follows. Two doctors examine a pa-
tient and agree that he suffers from either meningitis (x1),
contusion (x2) or brain tumor (x3). Thus,X = {x1,x2,x3}
is the frame of the variable of interest. The doctors agree
in considering a tumor quite unlikely, but disagree in the
likely cause, thus providing the following diagnosis:

Doctor 1→ m1(x1) = 0.99, m1(x3) = 0.01,
Doctor 2→ m2(x2) = 0.99, m2(x3) = 0.01,

(35)

while the basic belief masses of the other elements of the
power set ofX are null. By (34) one gets

m12(x1) = 0, m12(x2) = 0, m12(x3) = 1. (36)

Hence, from direct application of the DS theory, it turns
out that the patient suffers from brain tumor with certainty.
This result arises from the fact that the two doctors agree
that the patient most likely does not suffer from tumor but
are in almost full contradiction for the other causes of the
disease. Since doctors’ diagnoses are modeled by precise
probability mass functions, also Bayesian approaches like
the one in Section 1 might be applied to Zadeh’s example;
yet the same result is obtained.

Haenni has shown that the controversy of Zadeh’s exam-
ple can be overcome by assuming that the doctors are not
fully reliable [8]. To take this into account, one has to
build a model that includes two more variables, modeling
the reliabilities of the doctors. LetA1 = a1 correspond
to the statement “Doctor 1 is reliable”, andA1 = ¬a1 to
“Doctor 1 is unreliable”,p1(a1) can be therefore inter-
preted as the probability that the first source is reliable,
p1(¬a1) = 1− p1(a1) that is unreliable, and similarly for
Doctor 2. By following this idea, our aggregation rule
can be applied to Zadeh’s example. The doctors’ diag-
noses (35) can be formalized as in (17) by settingεa1

1 = 1,
p1(x1|a1) = 0.99, p1(x2|a1) = 0, p1(x3|a1) = 0.01 and
ε¬a1

1 = 0 for Doctor 1, and similarly but withp2(x1|a2) = 0

and p2(x2|a2) = 0.99 for Doctor 2. Notice that, by set-

ting ε¬a1
1 = ε¬a2

2 = 0, it has been assumed thatPX|¬a1
1

andPX|¬a2
1 are vacuous, i.e., when the doctors are unre-

liable they do not provide any useful information. Further-
more, we assume thatp1(a1) = p2(a2) = δ with δ ∈ (0,1)
andε0 = 1, p0(x1) = p0(x2) = p0(x3) = 1/3. The goal

is the evaluate the posterior beliefPX|A1,A2
0 (I{x̃}|ã1, ã2),

which represents the lower probability of the diagnosis
x̃ ∈ X conditional on the fact that the sources are in a
particular state(ã1, ã2). In this case, we can compute the

lower probabilityPX|A1,A2
0 (I{x̃}|ã1, ã2) by simply putting

g(x, ã1, ã2) = I{x̃} in the equation in Table 1. The fi-
nal conditional are shown in Table 2. For Doctor 1, the

CLPsP
A j |X
1 for X = x1 or X = x3 can be derived by ap-

plying equations (32)-(33). Conversely, forX = x2, since

P1(I{x2}×A1
) = 0, the GBR cannot be applied to getP

A j |x2
1

and, thus, (32)-(33) are not valid anymore. However, since

P1(I{x2}×A1
) = ∑

ã j∈A1

p1(ã j) ·
(

ε ã j
j ∑

x∈X
p1(x|ã j)

·I{x2}×A1
(x, ã j)+ (1− ε ã j

j )max
x∈X

I{x2}×A1
(x, ã j)

)

= p1(¬a1) > 0

,

the regular extension (6) can be used to derive

P
A j |x2
1 (g|x2) = max

µ
P

(
I{x2}×A1

[g− µ ]
)
≥ 0

where the gambles we are interested in are onlyI{a1} and

I{¬a1}. From (22),P
A j |x2
1 (g|x2) can be calculated by find-

ing the maximum value ofµ for which

∑
ã j∈A1

p j(ã j)[ε
ã j
j p j(x2|ã j)+ (1− ε ã j

j )IA ∗
1 (µ)(ã j)]g(ã j)

−µ ∑
ã j∈A1

p j(ã j)[ε
ã j
j p j(x2|ã j)+(1−ε ã j

j )IA ∗
1 (µ)(ã j)]≥ 0.

(37)

The values ofµ which satisfy (37) in the casesg =
I{a1} andg = I{¬a1} are µ = 0 and, respectively,µ = 1.

Hence, it follows thatP
A j |x2
1 (I{a1}|x2) = P

A j |x2
1 (I{a1}|x2) =
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Table 2: Upper and lower conditional probability for the Zadeh’s example fori, j,k = 1,2,3 andi 6= j 6= k

PX|A1,A2
0 (I{xi}|ã1, ã2) =

PA1|X
1 (I{ã1}|xi )P

A2|X
2 (I{ã2}|xi )

PA1|X
1 (I{ã1}|xi )P

A2|X
2 (I{ã2}|xi)+P

A1|X
1 (I{ã1}|xj )P

A2|X
2 (I{ã2}|xj )+P

A1|X
1 (I{ã1}|xk)P

A2|X
2 (I{ã2}|xk)

P
X|A1,A2
0 (I{xi}|ã1, ã2) =

P
A1|X
a (I{ã1}|xi )P

A2|X
2 (I{ã2}|xi )

P
A1|X
1 (I{ã1}|xi )P

A2|X
2 (I{ã2}|xi)+PA1|X

1 (I{ã1}|xj )P
A2|X
2 (I{ã2}|xj )+PA1|X

1 (I{ã1}|xk)P
A2|X
2 (I{ã2}|xk)

0 andP
A j |x2
1 (I{¬a1}|x2) = P

A j |x2
1 (I{¬a1}|x2) = 1 . A simi-

lar derivation can be clearly achieved for Doctor 2. The
posterior lower and upper probabilities calculated for the
reliability valueδ = 0.8 are shown in Table 3. The values
of the conditionals which depend onδ are highlighted in
bold-face. It can be noticed that, in the case the sources
are in the states ˜a1 = a1 and ã2 = a2, i.e., both sources
are reliable, one gets the following precise conditional

probabilityPX|A1,A2
0 (I{x1}|a1,a2) = P

X|A1,A2
0 (I{x1}|a1,a2) =

0, PX|A1,A2
0 (I{x2}|a1,a2) = P

X|A1,A2
0 (I{x2}|a1,a2) = 0, and

PX|A1,A2
0 (I{x3}|a1,a2) = P

X|A1,A2
0 (I{x3}|a1,a2) = 1. This re-

sult holds for each value ofδ and shows that, when both
the sources are reliable, the answer provided in (36) by
both DS and Bayesian theory is coherent with the initial
assessments. In fact, since Doctor 1 says implicitly that
x2 is wrong (with almost absolute certainty), and Doctor 2
says thatx1 is wrong, it follows then thatx3 must be the
true diagnosis when both doctors are reliable.

According to Table 3 it can also be noticed that when
both doctors are unreliable the conditionals are vacuous
for all the diseases. Conversely, in the case only one
doctor is reliable, e.g., Doctor 1 in Table 3, the disease
that he believes wrong has precisely zero probability. For

δ > 0.9, it can be verified thatPX|A1,A2
0 (I{x1}|a1,¬a2) >

P
X|A1,A2
0 (I{x3}|a1,¬a2) and, thus, the lower probability of

x1 dominates the upper probability of the other element.
In this case, the IFC can decide, without doubts, that the
patient suffers from the diseasex1.

In general, in this kind of reliability problems, the sources
of information do not provide their reliability status
{ã1, ã2} and, thus, the IFC cannot know it. However,
since the doctors’ diagnoses are almost in full contradic-
tion, the IFC can infer that at least one of the doctors
must be unreliable and, thus, apply the aggregation rule
by computing the following lower conditional probabil-

ity PX|A1,A2
0 (·|A 2\{a1,a2}). In practice, the condition-

ing event is the complementary event of{a1,a2}, which
means that at least one doctor is unreliable.

Since IA 2\{a1,a2} do not factorize as in (26), we can-

not apply (30) to computePA2|X(·|x). However, since
PA2|X(·|x) is a CLP, we can exploit the following

property: PA2|X(IA 2\{a1,a2}|x) = 1− P
A2|X(I{a1,a2}|x) =

1−P
A1|X(I{a1}|x)P

A2|X(I{a2}|x) andP
A2|X(IA 2\{a1,a2}|x) =

1−PA2|X(I{a1,a2}|x) = 1−PA1|X(I{a1}|x)PA2|X(I{a2}|x).

Since P
A1|X(I{a1}|xi)P

A2|X(I{a2}|xi) = 0 and

PA1|X(I{a1}|xi)PA2|X(I{a2}|xi) = 0 for i = 1,2, and

P
A1|X(I{a1}|x3)P

A2|X(I{a2}|x3) = 1, the lower and up-
per probabilities are those in Table 4. Because of

PX|A1,A2
0 (I{x1}|IA 2\{a1,a2}) = PX|A1,A2

0 (I{x2}|IA 2\{a1,a2}) ≥
P

X|A1,A2
0 (I{x3}|IA 2\{a1,a2}), the IFC can infer that the

patient suffers fromx1 or x2 but not fromx3. It can be no-
ticed that when the reliabilityδ approaches one, the lower
and upper probabilities converge to the following precise

probability mass function:pX|A1,A2
0 (I{x1}|IA 2\{a1,a2}) =

pX|A1,A2
0 (I{x2}|IA 2\{a1,a2}) = 1/2.

Summarizing, the results of this section generalize those in
[8, 1] to CLPs by showing that: (i) if both the doctors are
reliable the result obtained by the Bayes’ and Dempster’s
rule in (36) is correct and coherent with the initial assess-
ments; (ii) if we assume that at least one of the doctors
is unreliable, we obtain that the patient must suffer from
eitherx1 or x2.

7 Conclusions and Outlooks

A general aggregation rule for coherent lower previsions
defined on the same domain has been proposed. This is
achieved by a simultaneousmodel revisionof beliefs asso-
ciated to different sources of information. The coherence
of the aggregated beliefs is also discussed. Furthermore,
in the particular case of linear-vacuous mixtures, a closed
formula for the aggregated beliefs has been derived. As an
example of applications of this approach, Zadeh’s paradox
is treated and an alternative explanation is concluded.

As a future work, we aim to generalize our formula for
linear-vacuous mixtures to the more general case of 2-
monotone capacities. That would be the basis for a recur-
sive application of our approach. Furthermore, although
the size of the possibility space of the variable of inter-
est has been assumed finite, it seems possible to extend
our results to the infinite case. Yet, further investigations
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Table 3: Posterior lower and upper probabilities in the caseδ = 0.8

PX|A1,A2
0 (·|a1,a2) P

X|A1,A2
0 (·|a1,a2) PX|A1,A2

0 (·|a1,¬a2) P
X|A1,A2
0 (·|a1,¬a2) PX|A1,A2

0 (·|¬a1,¬a2) P
X|A1,A2
0 (·|¬a1,¬a2)

x1 0 0 0.45 1 0 1
x2 0 0 0 0 0 1
x3 1 1 0 0.54 0 1

Table 4: Upper and lower conditional probabilities conditioned onIA 2\{a1,a2} for i = 1,2

PX|A1,A2
0 (I{xi}|IA 2\{a1,a2}) =

1

3−PA1|X(I{a1}|x3)PA2|X(I{a2}|x3)
, P

X|A1,A2
0 (I{xi}|IA 2\{a1,a2}) =

1
2

PX|A1,A2
0 (I{x3}|IA 2\{a1,a2}) = 0, P

X|A1,A2
0 (I{x3}|IA 2\{a1,a2}) =

1−PA1|X(I{a1}|x3)PA2|X(I{a2}|x3)

3−PA1|X(I{a1}|x3)PA2|X(I{a2}|x3)

about the coherence of the corresponding model should be
considered. We also want to investigate the relationships
between our approach in the case of a single source and
Jeffrey’s updating. Finally, we intend to apply our rule to
practical problems of information fusion in signal and data
processing and communications.
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Abstract

Statistical tests of the mean are quite common.
Sometimes the analyst cannot validate the as-
sumptions underlying the test, such as normality,
symmetry, independence of measurements, etc. This
causes unknown deviation of the actual sampling
distribution from the distribution assumed by the
test, and thus unknown size and power of the test.
This distributional uncertainty makes it difficult to
reliably choose the decision threshold (critical value)
and sample size. We present a method for evaluating
the robustness of a test to an unknown degree of
distributional uncertainty, based on info-gap decision
theory. Analysis of robustness is useful in evaluating
effective size and power, and for selecting the de-
cision threshold and sample-size. We study binary
simple-hypothesis tests of the mean and consider
both type I and type II errors. We show quantita-
tively that robustness to distributional uncertainty
improves, at fixed nominal level of significance, as the
effective level of significance deteriorates. Likewise,
robustness improves as the effective power of the test
deteriorates. Furthermore, we show how to choose
the decision threshold and sample size in light of
distributional uncertainty. We illustrate our results
by application to the t test and to a test of false nulls
in epidemiology.

Keywords: binary hypothesis tests, distributional
uncertainty, info-gaps, robustness, tests of the mean,
t test, chronic wasting disease, false nulls.

1 Introduction

Statistical tests of the mean value of a population
property are exceedingly common, and numerous
tests are available. These tests depend on various as-
sumptions about the data and the population. Some-
times normality is assumed, and almost invariably
random sampling is posited: the measurements are

made independently but with the same instrument
and from the same population which is unaffected by
the sample. However, in many situations the data
generating process is not normal, or the sample is not
random: the measurement instrument is not constant,
or the sample is biased, or the measurements influence
one another to some extent, or the statistical charac-
ter of the population which is sampled is not constant.
Determination of the level of significance and power
of the test, and selection of the sample size, depend on
the test which is used and its underlying assumptions.
In some situations the analyst is unable to character-
ize the violation of test assumptions and is thus unable
to adjust the test accordingly, and unable to reliably
evaluate the level of significance and power or choose
a sample size. We present a method for dealing with
such situations.

Violation of the test assumptions can result in devia-
tion of the actual sampling distribution from the dis-
tribution upon which the test is based. In situations
where the violations are poorly known, the distribu-
tional deviations are similarly uncertain. We will refer
to this as distributional uncertainty.

Considerable effort has been devoted to deriving
methods which are robust to distributional uncer-
tainty. Careful test design is a major antidote, though
not always adequate. In some cases the distribu-
tional uncertainty can be characterized as a mixture
of several (or many) distributions of known struc-
ture. Given adequate data, methods exist for esti-
mating the parameters of the distributions and their
weights in the mixture (Titterington et al. 1985).
In other situations Monte Carlo methods are used
to construct a sampling distribution based on prior
knowledge of the distributional complexity (Robert,
2004). In these situations one can evaluate the ro-
bustness of a test as the extent of difference between
simulated type I and type II error rates and the theo-
retical error rates in the absence of distributional un-
certainty. Non-parametric methods exist which avoid
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or weaken some assumptions about the sampled dis-
tribution. These tests do posit random sampling, or
identity of two distinct distributions, or other assump-
tions (Johnson, 1995), and some are strictly valid only
asymptotically. Numerical methods are available for
evaluating the robustness of non-parametric statistics
to specific violations, such as small-sample applica-
tions. However, non-parametric statistics can be very
sensitive to a small number of outlying measurements.
This focusses attention on the problem of long tails
of the sampled distribution. The jacknife technique
(Mooney and Duval, 1993), or trimmed means (DeG-
root, 1986), attempt to rectify the effects of outliers.
More generally, robustness can be evaluated as in-
sensitivity to small deviations from the distributional
assumptions (Huber, 1981), leading to M estimates
and other techniques.

The distributional uncertainty on which we focus here
is more unstructured than that for which these meth-
ods are explicitly designed. We illustrate our con-
cept of distributional uncertainty, and its origin in
ecological assessment and epidemiology, in section 2.
Briefly, however, we consider situations in which the
sampling distribution is highly uncertain and may be
skewed, heavy tailed, multi-modal or non-random in
ways which are unknown to the analyst. Distribu-
tional uncertainty, in the sense which concerns us
here, arises for example in the use of historical data
from diverse and unknown sources, taken with a va-
riety of protocols (or lack of protocols in any profes-
sional sense), sampled from different and varying pop-
ulations whose identity is imperfectly known. In such
situations one must account for enormous and highly
unstructured variability of the sampling distribution.

This sort of distributional uncertainty cannot be han-
dled by the analysis of compound hypotheses. Distri-
butional uncertainty presents us with an unbounded
infinity of possible distributions—hypotheses—so it
would seem impossible to formulate a compound hy-
pothesis, or to identify a mixture of distributions.

We study two sets of problems. First, in the face of
severe distributional uncertainty, what level of signif-
icance and power can one reliably ascribe to a binary
simple-hypothesis test of the mean? We develop a
method for quantitatively evaluating the reduction in
level of significance and power, as distributional un-
certainty increases. This analysis supports judgments
about the effective level of significance and power, as
expressed by their robustness to distributional uncer-
tainty. Second, we show how to choose the decision
threshold (critical value) and sample size when facing
distributional uncertainty.

Our analysis employs info-gap decision theory for

evaluating the robustness to large and highly unstruc-
tured uncertainty in the sampling distribution. We
illustrate our results with simple t tests of the mean,
but the methodology is applicable to a broad range of
statistical tests.

We begin, in section 2, with an intuitive discussion
of the origin and nature of distributional uncertainty.
Section 3 formulates the binary hypothesis test which
we study. Section 4 presents an info-gap model for
distributional uncertainty. Section 5 formulates the
info-gap robustness functions for type I and type II
errors. A numerical example illustrating the decisions
and judgments which the analyst must make is pre-
sented in section 6. A concluding discussion appears
in section 8.

2 Origins of Distributional Uncer-

tainty in Ecology and Epidemiology

Recall that by ‘distributional uncertainty’ we mean
uncertainty in the form of the sampling distribution
which results from unknown violations of assumptions
underlying a statistical test. Distributional uncer-
tainty is not uncommon in ecological assessment, aris-
ing from violations of test assumptions which the an-
alyst is unable to characterize.

The main antidote to violation of test-assumptions is
of course careful test design. This typically requires
good basic understanding of the processes which are
studied. However, measurements are sometimes made
for the very purpose of augmenting our (sometimes
quite deficient) understanding of these processes. For
instance, Boone and Krohn (1999) show that the accu-
racy of model-based predictions of occurrence of avian
species is a function of the frequency of species occur-
rences; not surprisingly, rare species are more difficult
to model accurately than common species. Similarly,
Craft et al. (1999) study the rate of restoration of eco-
logical attributes in artificially constructed marshes
as compared to natural marshes, noting that there
are no long-term comparative studies. If the factors
which influence long-term restoration and growth are
incompletely understood, it may be difficult to charac-
terize the relevant statistical properties of the control
and test sites and to verify that they are equivalent.
Finally, it is sometimes necessary to use very small
samples, such as when data are based on large-scale
natural experiments (Carpenter, 1989). Tests based
on phenomena which are rare and poorly understood,
or newly identified and unstudied, are vulnerable to
distributional uncertainty.

There are also other potential causes of distributional
uncertainty. Franklin (1999) uses a range of obser-
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vational data from many different sources over the
past 150 years—of varying accuracy and reliability—
to evaluate change in bird assemblages in northern
Australia. Some of these sources were trained bi-
ologists, though professional protocols changed over
the sampling period. Some observers were casual or
untrained observers who may exert less effort, and
thus miss the rare events, or who are enthusiastic in
the search for rare occurrences and may systemati-
cally over-report extreme observations. While histor-
ical observational data are an important and valuable
source, it is difficult to verify that test-assumptions
are not violated.

McCarthy (1998) uses museum collections to evalu-
ate trends in marsupials and monotremes, recognizing
that variable collection efforts introduce uncertainties.
Similarly, Burgman et al. (1995) recognize that “col-
lection frequencies will reflect changing trends in mu-
seum and herbarium collections”, which introduces
uncertainties in evaluating extinction threats based on
historical development of collections. Stewart-Oaten
et al. (1992) study tests of changes of a mean pop-
ulation property, before and after an impact, where
the impact cannot be replicated (e.g., construction of
a power plant). They note that data from such mea-
surements “do not necessarily satisfy” the assump-
tions of standard tests. They state that “there is no
panacea” for violation of test assumptions, and if the
assumptions “are seriously wrong, alternative analy-
ses are needed. This will often require a long time
series of data.” These authors discuss many sources
of violation of test assumptions, stressing the impor-
tance of unknown skewness of distributions or corre-
lations among measurements.

Evidence for violation of test assumptions is not
uncommon in epidemiological studies. Bausch et

al. (2003) report non-normal distributions of large
samples, and non-random selection of participants,
with disproportionate participation of particular sub-
populations, due perhaps to the fear of stigma.

In short, analysts not infrequently face considerable
uncertainty about the actual sampling distribution of
their data. There surely is a true sampling distribu-
tion from which the data were obtained, but this dis-
tribution is unknown, and unknowable on the basis of
available information. On the other hand, there is un-
doubtedly a population property—such as a mean—
which is reflected in some way in the data. It is the
aim of the statistical test to discriminate something
about this population property, and to assess the con-
fidence of this discrimination. A conventional sta-
tistical approach would be to transform the pdf, or
modify the test, for formulate a compound or mix-
distribution hypothesis, to accommodate violations

of specific assumptions. We cannot do that because
we don’t know what specific violations have occurred.
That’s precisely the distributional uncertainty which
we are studying.

3 Binary-Hypothesis Test

We have a set of measurements X = {x1, . . . , xn}
which do not necessarily constitute a random sample
of any known distribution, as discussed in sections 1
and 2. These data reflect a population mean, µ, but
they suffer from an unknown degree of distributional
uncertainty. We wish to use this data to decide be-
tween two simple hypotheses:

H0 : µ = T0 (1)

H1 : µ = T1 (2)

where each Ti is a specified number, and T1 > T0.

Let y be a statistic, for instance the t statistic, and
let Fi(y) denote the cumulative distribution function
(cdf) of y under Hi. For any distribution F (y), let
qα(F ) denote the (1 − α)th quantile of F (y):

qα(F ) = inf {y : F (y) ≥ 1 − α} (3)

We reject H0 with significance α if:

y ≥ qα(F0) (4)

The size, α, is the probability of falsely rejecting the
null hypothesis, H0, and the power, 1−β, is the prob-
ability of correctly rejecting H0. β is the probability
of falsely rejecting H1. If the cdf’s are continuous at
qα(F ) then the size α, and power, 1 − β, are:

1 − α = F0[qα(F0)] (5)

β = F1[qα(F0)] (6)

4 Info-Gap Models for

Distributional Uncertainty

Suppose that the data X are not believed to be a
random sample, or other assumptions underlying the
test which is to be used are violated, but the nature
of the violation is not known. In other words, suppose
that the data are subject to distributional uncertainty.
Let y be the test statistic (perhaps the t statistic,

but not necessarily), and let F̃ i(y) denote the best
(or perhaps only) guess of the distribution of the test
statistic y, under hypothesis Hi. For instance, our
best guess might be that F̃ 0(y) is the t distribution
with n−1 degrees of freedom for the regular t statistic
y = (x− T0)/(s/

√
n) with sample mean and variance
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x and s2, while F̃ 1(y) = F̃ 0(y − δ) where δ = (T1 −
T0)/(s/

√
n).

F̃ i(y) is our best guess of the pdf of y but we don’t
know how wrong this guess is, and we have no “worst
case” estimate. This distributional uncertainty in y,
under hypothesis Hi, is represented by an info-gap
model, U i(h), which is an unbounded family of cdf’s

centered on F̃ i(y). For example, the uniform-bound
info-gap model for uncertainty in the cdf of y is:

U i(h) =
{

F (y) : F (y) ∈ P, |F (y) − F̃ i(y)| ≤ h,

∀ y
}

, h ≥ 0 (7)

where P is the set of all normalized non-negative cdf’s.
The info-gap model is an unbounded family of nested
sets, U i(h), of cdf’s. In the absence of uncertainty,
that is, when h = 0, the set is a singleton containing
only the estimated cdf:

U i(0) = {F̃ i} (8)

The sets become more inclusive as the horizon of un-
certainty increases:

h < h′ implies U i(h) ⊆ U i(h
′) (9)

The horizon of uncertainty, h, is unknown, so there is
no known worst case or largest set of cdf’s other than
the set of all mathematically allowed cdf’s (which oc-
curs for h ≥ 1). Eqs.(8) and (9) are the “contraction”
and “nesting” axioms, respectively.

The uniform-bound info-gap model of eq.(7) entails
enormous uncertainty in the cdf’s. For sufficiently
large h, the set U i(h) contains densities which are
highly asymmetric, multi-modal, with heavy or light
tails, and with bumps, dimples, or “atoms” (infinite
probability density at a single value of y) arbitrar-
ily far from the mean resulting in arbitrarily large
moments. Most importantly, the uncertainty in the
cdf’s which is represented by an info-gap model such
as eq.(7) is different from estimation error or deviation
from an asymptotic form. The info-gap model repre-
sents distributional uncertainty arising from unknown
and possibly serious violation of fundamental assump-
tions underlying the hypothesis test. We do not mo-
tivate the structure of the info-gap model from con-
sideration of estimation analytics or convergence (as
in the Berry-Esseen inequality, Feller, 1971). Rather,
the family of sets in eq.(7) reflects distributional un-
certainty.

Other forms of info-gap model can be used if further
information is available to constrain the relevant cdf’s
(Ben-Haim, 2006). For instance, one might have in-
formation indicating that the error of the estimated

cdf is localized, e.g. on the tails, so the inequality
in eq.(7) is modified in the envelope-bound info-gap
model:

U i(h) =
{

F (y) : F (y) ∈ P, |F (y) − F̃ i(y)| ≤ hψ(y),

∀ y
}

, h ≥ 0 (10)

where ψ(y) is a known function. A related class of
info-gap models is treated by Fox et al. (2007).

Alternatively one might make the judgment that
probability atoms do not occur, but that the distribu-
tion may have bumps or dimples, or the tails may be
heavy or light in unknown ways. An info-gap model
which represents this is the fractional-error model ap-
plied to the probability density function (pdf) rather
than to the cdf:

U i(h) =
{

f(y) : f(y) ∈ D, |f(y) − f̃ i(y)| ≤ hf?
i ,

∀ y
}

, h ≥ 0 (11)

where D is the set of all normalized non-negative
pdf’s and f?

i is a normalization constant with units
of probability density. For instance, one might choose
f?

i = maxy f̃ i(y), which is the value of the pdf at its
mode.

A much more restrictive info-gap model than eq.(11)
is:

U i(h) =
{

f(y) : f(y) ∈ D, |f(y) − f̃ i(y)| ≤ hf̃ i(y),

∀ y
}

, h ≥ 0 (12)

To understand the difference between the uncertainty
models in eqs.(11) and (12), consider the case where y

varies from −∞ to +∞ and the estimated pdf, f̃ i(y),
has tails which diminish asymptotically to zero. The
uncertainty set U i(h) in eq.(11) allows bumps as large
as hf?

i arbitrarily far out on the tail. This is not the
case for the set U i(h) in eq.(12) for which a bump

cannot be larger than hf̃ i(y) which will become very
small for large y. The info-gap model of eq.(11) allows
much more deviant tails than the info-gap model of
eq.(12).

5 Robustnesses for Type I and Type

II Errors: Formulation

Consider a test of size α?, namely, a test which rejects
H0 when:

y ≥ qα?(F̃ 0) (13)

α? is the “nominal” size of the test since it is based
on the best-estimate of the cdf under H0, F̃ 0.
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We now define the robustness of this test with respect
to distributional uncertainty in F̃ 0, for falsely reject-
ing H0. The robustness is the maximum horizon of
uncertainty, h, up to which the test at nominal size
α? falsely rejects H0 with probability no greater than
α:

ĥ0(α
?, α) = max

{
h :

(
min

F∈U0(h)
F [qα?(F̃0)]

)
≥ 1 − α

}

(14)

We use the quantile qα?(F̃ 0) because the test is im-
plemented with the quantile of the best-guess distri-
bution under H0, F̃ 0(y), and is of nominal size α?,
while the actual size (probability of falsely rejecting
H0) is then determined by the unknown true distri-
bution under H0, F (y), which is info-gap-uncertain.

ĥ0(α
?, α) is related to type I error (falsely rejecting

H0). Specifically, ĥ0(α
?, α) is the greatest horizon of

uncertainty up to which the probability of type I error
is no greater than α. The following expression for
ĥ0(α

?, α), for the info-gap model in eq.(7), is derived
in appendix A:

ĥ0(α
?, α) = α − α? (15)

or zero if this is negative. We refer to α as the effective
size, while α? is the nominal size. Section 6 explains
how the analyst evaluates and chooses the effective
size.

Note that, for any choice of α?, the robustness curve
for type-I error, ĥ0(α

?, α) vs. α, is entirely indepen-
dent of the form of the test statistic. The implemen-
tation of the test, eq.(13), does depend on the type of

test, through the value of the quantile qα?(F̃ 0).

We now define a different robustness, related to type
II error (falsely accepting H0). ĥ1(α

?, β) is the great-
est horizon of uncertainty up to which the probability
of falsely accepting H0, with a test of nominal size α?,
is no greater than β:

ĥ1(α
?, β) = max

{
h :

(
max

F∈U1(h)
F [qα?(F̃0)]

)
≤ β

}

(16)
Let 1 − β? be the nominal power:

1 − β? = 1 − F̃ 1[qα?(F̃0)] (17)

The following expression for ĥ1(α
?, β), for the info-

gap model in eq.(7), is derived in appendix B:

ĥ1(α
?, β) = 1 − β? − (1 − β) (18)

or zero if this is negative. We refer to 1− β as the ef-
fective power, while 1−β? is the nominal power. Sec-
tion 6 explains how the analyst evaluates and chooses
the effective power.

Note that, for any choice of α?, the robustness curve
for type-II error, ĥ1(α

?, β) vs. β, depends on the form
of the test, unlike for the type-I robustness. This is
because the value of β? depends on α? through the
cdf’s of the test statistic, F̃ 0 and F̃ 1.

6 Decisions and Judgments

The analyst must make two decisions and two judg-
ments. The analyst must decide on the nominal test
size α? and the sample size n. Together these de-
cisions determine the decision threshold qα?(F̃ 0) in
eq.(13). Also, the analyst must judge what are reli-
able and acceptable values of the effective size α and
effective power 1 − β by considering the robustness
functions ĥ0(α

?, α) and ĥ1(α
?, β). (Recall that α is

the probability of falsely rejecting H0, while 1 − β is
the probability of correctly rejecting H0.)

We will illustrate these decisions and judgments with
an example employing the t test. The test statistic,
y, is (x − T0)(s/

√
n) where x is the sample mean, s2

is the sample variance, and n is the sample size. The
estimated distribution under H0, F̃ 0(y), is the cdf of
the t statistic with n − 1 degrees of freedom. The
estimated distribution under H1 is F̃ 1(y) = F̃ 0(y− δ)
where δ = (T1 − T0)/(s/

√
n). The true distributions

under H0 and H1 are unknown and the uncertainty
in each cdf is represented by the info-gap model in
eq.(7).

α? = 0.01 α? = 0.05
n 1 − β? n 1 − β?

5 0.1027 3 0.1784
7 0.3185 4 0.3736
9 0.5400 5 0.5390
12 0.7644 7 0.7457
31 0.9980 31 0.9997

Table 1: Size and power in the absence of distribu-
tional uncertainty.

The need for these judgments disappears in the ab-
sence of distributional uncertainty, since α? is the ac-
tual size and the actual power, 1−β?, is entirely deter-
mined by α? and n. Values of α? and 1−β? are shown
in table 1 for several sample sizes. Power, 1 − β?,
improves (gets larger) as level of significance α? gets
worse (gets larger) at fixed sample size n. Likewise,
1 − β? improves as n increases at fixed α?.

However, the presence of distributional uncertainty
makes it necessary to form judgments on effective size
α and power 1−β. These judgments are based on the
robustness functions, plots of which appear in figs. 1
and 2: ĥ0(α

?, α) vs. α (positive slope) and ĥ1(α
?, β)
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vs. 1 − β (negative slope).

Consider first the robustness curve for type-I error,
ĥ0(α

?, α). The horizontal intercept of ĥ0(α
?, α) is the

nominal size, α?, because ĥ0(α
?, α?) = 0. This means

that a test designed for size α? has no robustness to
distributional uncertainty if one requires that the ef-
fective size actually equal α?. The positive slope of
ĥ0(α

?, α) vs. α means that positive robustness is ob-
tained only for effective size, α, greater (worse) than
the nominal size α?. Stated differently, the positive
slope of ĥ0(α

?, α) expresses a trade-off: the robustness
against distributional uncertainty improves as the ef-
fective level of significance, α, get worse: robustness
is exchanged for significance.
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Figure 1: Robustness curves for the t
test, ĥ0(α

?, α) for falsely rejecting H0, and

ĥ1(α
?, α) for falsely rejecting H1. Nominal

size is α? = 0.01. ĥ1(α
?, α) calculated at 5

different sample sizes: n = 5, 7, 9, 12 and 31.
δ = 1.
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Figure 2: Robustness curves for the t
test, ĥ0(α

?, α) for falsely rejecting H0, and

ĥ1(α
?, α) for falsely rejecting H1. Nominal

size is α? = 0.05. ĥ1(α
?, α) calculated at 5

different sample sizes: n = 3, 4, 5, 7 and 31.
δ = 1.

We now can see how one makes judgments of reliable
effective size, α. A test designed for size α? = 0.01,
as in fig. 1, has no robustness for size 0.01. How-
ever, consider an effective size α = 0.05 and refer to
eq.(15). The test designed for α? = 0.01 will falsely
reject H0 with probability no greater than 0.05 if
the actual cdf, F (y), differs from the estimated cdf,

F̃ 0(y), by no more than 0.04 in cumulative probabil-
ity. For instance, type I error will have probability
no larger than 0.05 if the tails of the true distribu-
tion are too heavy or too light by no more than 4%
of the total probability weight. The distributional
uncertainty may arise from the presence of an outly-
ing sub-population. The probability of type I error
will not exceed 0.05 provided the sub-population is
no larger than 4% of the total, regardless of how it is
distributed. Similarly, at effective size α = 0.1, a test
designed for size α? = 0.01 is robust to distributional
uncertainty up to 0.09 in cumulative probability.

Now consider the robustness curves for type-II er-
ror, ĥ1(α

?, β), eq.(18). The horizontal intercept of

ĥ1(α
?, β) is the nominal power, 1 − β?, because

ĥ1(α
?, β?) = 0. This means that a test designed for

size α? has no robustness to distributional uncertainty
if one requires that the effective power actually equal
1 − β?. The negative slope of ĥ1(α

?, β) vs. 1 − β
means that positive robustness is obtained only for
effective power, 1 − β, lower (worse) than the nom-
inal power 1 − β?. Stated differently, the negative
slope of ĥ1(α

?, β) expresses a trade-off: the robust-
ness against distributional uncertainty improves as
the effective power, 1 − β, get worse: robustness is
exchanged for power.

We can now see how one makes judgments of reli-
able effective power, 1 − β. A test designed for size
α? = 0.01 with sample size n = 9 (dot-dash in fig. 1),
has no robustness for power 0.54 (the horizontal in-
tercept and nominal power). However, consider an
effective power 1−β = 0.44 and refer to eq.(18). This
test will falsely accept H0 with probability of 0.44 if
the actual cdf differs from the estimated cdf by no
more than 0.1. At effective size 1 − β = 0.44, this
test is robust to distributional uncertainty up to 0.1
in cumulative probability. For instance, if the tails
err by as much as 10% of the total probability, or
if a sub-population with unknown distribution has no
more than 10% weight, then the probability of type II
error will be no more than 0.44. Similarly, at effective
size 1 − β = 0.34, this test is robust to distributional
uncertainty up to 0.2 in cumulative probability.

Finally, let us consider the choice of the sample size.
Only the type-II robustness is influenced by the sam-
ple size, as we see from eqs.(15) and (18) and from
figs. 1 and 2. The nominal and effective power both
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increase with increasing sample size, and are also sub-
stantially influenced by the nominal size α? as we see
by comparing the two figures. The analyst decides
on the sample size in light of the effective power and
robustness which are needed. We illustrate the deci-
sions and judgments with the aid of fig. 3, which is
expanded from fig. 1.
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Figure 3: Expanded from fig. 1.

In fig. 3 we are contemplating the choice of nom-
inal size α? = 0.01. Consider the judgment that
effective size α = 0.05 is adequate and reliable be-
cause the robustness is ĥ0(0.01, 0.05) = 0.04, eq.(15).
This judgment considers the robustness and the ef-
fective size together since they are linked through the
trade-off between them. For instance, the judgment
is that the tails are unlikely to err by more than 4%,
and the 5% risk of type I error is acceptable. Now
apply this robustness to type II error by requiring
ĥ1(α

?, β) = 0.04. From fig. 3 we find effective powers
of 0.50, 0.72 and 0.96 for sample sizes 9, 12 and 31.
Judging that power of 0.50 is too small, we require a
sample larger than n = 9. If power of 0.72 is adequate
then we adopt a sample of size 12. Choosing a sample
of size 31 would result in power of 0.96.

Let us continue our consideration of the judgment in
the previous paragraph that effective size α = 0.05 is
adequate and reliable. Judgment is subjective, and
this is a two-fold judgment since size and robustness
are linked through the trade-off between them. Size,
α, is subjectively judged in terms of the risk of type
I error. Robustness in this case can also be subjec-
tively judged in terms of probability. For instance one
might make the judgment that the distribution is dis-
torted by an outlying sub-population whose weight is
no more than a few percent of the main population.
This robustness judgment can be cast in terms of risk:
by accepting a robustness of 0.04 we are accepting the
risk that the parent population is contaminated by an
outlying population whose weight is no more than 4%.

It may be convenient and familiar for some analysts

to judge robustness in this example in terms of prob-
ability and risk as just described, However, this is not
necessary. Info-gap models of uncertainty are inher-
ently non-probabilistic, and value judgments about
robustness can be formed non-probabilistically. Judg-
ments of acceptable risk are based on experience and
context. In the same way, analysts can acquire subjec-
tive feel for fractional error, or other non-probabilistic
quantities, which leads to judgments of acceptable
robustness. The concept of analogical inference has
been employed to form non-probabilistic value judg-
ments of robustness (Ben-Haim, 2006, chap. 4).

Let us now return to our discussion of choosing the
sample size, three paragraphs before, and remove a
simplification which we made: applying the same ro-
bustness to both type I and type II errors. Hav-
ing accepted robustness of 0.04 for type I error,
ĥ0(0.01, 0.05) = 0.04, we then evaluated the sample
size in terms of the same robustness for type II er-
ror, ĥ1(α

?, β) = 0.04. This is justified if one faces the
same severity of distributional uncertainty for both
hypotheses. However, one might well image situations
in which the distributional uncertainty is different for
the two hypotheses. For instance, one hypothesis may
represent a “healthy” state which is more thoroughly
studied than the “unhealthy” state represented by the
other hypothesis. In such a situation one makes sepa-
rate judgments of robustness and its trade-off partner
(either size or power) for each hypothesis. The judg-
ment of effective size, α, is linked to a judgment of
ĥ0-robustness. Then one chooses the sample size to
yield what is judged to be acceptable type-II robust-
ness, ĥ1, at acceptable power.

7 Example: Chronic Wasting Disease

Verbal description. Chronic wasting disease
(CWD) in deer can be detected by inoculating a par-
ticular strain of mice with an extract from the antler
velvet of the infected deer. The prion protein (PrP)
which is characteristic of this disease is expressed in
the mice after a time t which is randomly distributed.
This distribution is highly uncertain, and it has been
observed that PrP expression with antler velvet from
diseased deer frequently does not occur even anoma-
lously long after the mean time (Angers et al. 2009).
The expression of PrP is much more reliable if the
injections are made from the brains of the deer. How-
ever, brains may not be available. For instance, antler
velvet is used in various traditional Asian medicines
which may be the only source for testing.

Suppose that we have inoculated n mice and after
incubation times t1, . . . , tn, no expression of the PrP
is observed in any of the mice. How confident are we
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that CWD is not present in the deer?

System model. Let p(t) denote the probability den-
sity function (pdf) of the incubation time, with cu-
mulative distribution function (cdf) P (t). We assume
that the incubation times are statistically indepen-
dent, so the probability of a false null—true presence
with no observed expression of the PrP—is:

Pfn(t1, . . . , tn) =

n∏

i=1

[1 − P (ti)] (19)

Uncertainty model. Let p̃(t) and P̃ (t) denote the
estimated pdf and cdf. Let ts denote a point on the
upper tail beyond which the estimated pdf is quite
uncertain. For instance we might choose ts to be 2
standard deviations from the mean. We will define
an info-gap model in which there are functions whose
upper tail, beyond ts, decays as 1/t2, much slower
than the decay of exponential or normal distributions.

Let P denote the set of non-negative normalized pdf’s.
The info-gap model, for h ≥ 0, is:

U(h) =

{
p : p ∈ P, p(t) ≤ p̃(t) +

tsh

t2
∀t ≥ ts

}
(20)

The first condition assures that the functions are
mathematically legitimate pdf’s. The second condi-
tion allows the upper tail, beyond ts, to exceed the
exponential by as much as tsh/t2, conditional on the
rest of the distribution being able to adjust to assure
non-negativity and normalization.

Note that
∫ ∞

ts
tsh/t2 dt = h. Thus the horizon of un-

certainty, h, represents the fraction of the entire sta-
tistical weight which is uncertain. For instance, if the
uncertainty of the pdf is thought of as an uncertain
mixture of populations, then h is the fraction of the
non-p̃ population.

Performance requirement. The probability of a
false null must be less than a critical value:

Pfn(t1, . . . , tn) ≤ Pfnc (21)

Robustness function. The robustness is defined as:

ĥ(n, Pfnc) = max

{
h :

(
max

p∈U(h)
Pfn

)
≤ Pfnc

}
(22)

We will evaluate the inverse of ĥ(n, Pfnc).

Let us denote the inner maximum in eq.(22) by m(h),

which is the inverse of ĥ(n, Pfnc). We will assume that
all the observed times, t1, . . . , tn, exceed ts, so they
fall in the domain of the uncertain tail. In this case,
m(h) is evaluated with the upper envelope at horizon

of uncertainty h, provided that this distribution can
be normalized. For each individual observation:

max
p∈U(h)

[1 − P (ti)] = min

[
1,

∫ ∞

ti

(
p̃(t) +

tsh

t2

)
dt

]

= min

[
1, 1 − P̃ (ti) +

tsh

ti

]
(23)

Since the n observations are independent we find the
inner maximum in eq.(22) to be:

m(h) =

n∏

i=1

min

[
1, 1 − P̃ (ti) +

tsh

ti

]
(24)

Plotting m(h) vs h is equivalent to Pfnc vs ĥ(n, Pfnc).

Eq.(24) can be simplified when the observations, ti,

are large, so that 1 − P̃ (ti) is nearly zero. For h ≤ 1:

m(h) ≈ tns hn

∏n
i=1 ti

(25)

Equating this to Pfnc and solving for h yields an ap-
proximate expression for the robustness which is valid
when the observations are large:

ĥ(n, Pfnc) ≈
1

ts

(
Pfnc

n∏

i=1

ti

)1/n

(26)

Denoting the geometric mean of the n observations
by tgm, this becomes:

ĥ(n, Pfnc) ≈
tgm
ts

P
1/n
fnc (27)

The geometric mean observation, tgm, will change as
the sample grows, but the dominant effect of sample

size is in the term P
1/n
fnc which grows rapidly as n

increases when n and Pfnc are small. Furthermore,
when Pfnc is very small, the slope of ĥ vs Pfnc increases
as n increases. This means that, when Pfnc is small,
the cost of robustness, in units of increased Pfnc, is
small when n is large.

Example. Fig. 4 shows robustness curves, based on
eq.(24), for 5 sample sizes with the following data ti =
500, 530, 510, 520, 505 days. The bottom curve (n =
1) uses only the first datum; the next curve uses the
first 2 data; etc. The estimated distribution is normal
with mean and standard deviation of 450 and 20 days.
ts = 490.

The positive slopes of the curves express the trade-
off between robustness, ĥ, and critical probability of
false null, Pfnc. Large robustness is obtained only by
accepting large Pfnc. The robustness is zero at the
estimated value of Pfnc.
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Figure 4: ĥ(n, Pfnc) vs Pfnc, n = 1 to 5 (bottom to top).

The robustness increases substantially as the sample
size increases from n = 1 to 2. The marginal increase
in robustness decreases with increasing n. From
the insert in the figure we see that the slope of
the robustness curve increases dramatically as the
sample size increases. A high slope means that the
robustness can be increased without significantly
increasing the critical probability of false null, Pfnc.

8 Methodological Conclusion

This paper concentrates on binary simple-hypothesis
statistical tests, subject to distributional uncertainty,
by which we mean uncertainty in the sampling distri-
bution resulting from unknown violations of the test
assumptions. We have focussed on two decisions and
two judgments which the analyst must make. How
can one decide upon the decision threshold and the
sample size, and how does one judge the effective size
and power of a test? We have developed a generic ap-
proach to these questions based on info-gap decision
theory, and illustrated the method with the t test and
with a test for false nulls. The method can be applied
to other tests as well.

Consider a test which is designed to have nominal
level of significance α?. The robustness of this test
with respect to distributional uncertainty, for falsely
rejecting H0 in eq.(1), is denoted ĥ0(α

?, α) and de-

fined in eq.(14). ĥ0(α
?, α) is the greatest horizon of

distributional uncertainty up to which the test, with
nominal size α?, falsely rejects H0 with probability
no greater than α. That is, ĥ0(α

?, α) is the greatest
horizon of uncertainty up to which the probability of
type I error (false rejection of H0) is no greater than
α, when using a test with nominal size α?.

ĥ0(α
?, α) is necessarily zero when α = α?, implying

that the test has no robustness to distributional un-
certainty at its nominal size, α?. The robustness is
positive for α > α?, and the robustness increases as
α gets larger. This expresses the trade-off between
robustness to distributional uncertainty on the one

hand, and effective level of significance on the other
hand, as illustrated by eq.(15) and the lines of positive
slope in figs. 1–3.

The robustness function ĥ0(α
?, α) is the basic tool for

choosing the decision threshold, qα?(F̃ 0) in eq.(13),
and for evaluating the effective size, α, of the test.
If ĥ0(α

?, α) is large then one has confidence that the
probability of falsely rejecting H0 is no greater than
α. What constitutes a ‘large’ robustness, and ‘how
large is large enough’ are delicate value judgments,
somewhat like the choice of level of significance. We
discussed this in section 6, though there is no absolute
answer.

We have also considered the robustness to distribu-
tional uncertainty in evaluating the effective power.
For any test designed for size α?, the robustness to dis-
tributional uncertainty, for falsely accepting H0 (type

II error), is denoted ĥ1(α
?, β), defined in eq.(16). The

power, 1 − β, is the probability of correctly rejecting
H0. ĥ1(α

?, β) is the greatest horizon of distributional
uncertainty up to which the test, with nominal size
α?, will falsely accept H0 with probability no greater
than β. The robustness is zero when β is the value
obtained, at size α?, in the absence of distributional
uncertainty. That is, there is no robustness for the
nominal power. The robustness increases as the power
decreases, as illustrated by eq.(18) and the lines of
negative slope in figs. 1–3.

The robustness functions ĥ1(α
?, β) and ĥ0(α

?, α) are
the basic tools for choosing the sample size and for
evaluating the effective power of a test. If ĥ1(α

?, β)
is large then one has confidence that the probability
of correctly rejecting H0 is no less than 1 − β with
the chosen sample size. Once again, judgments of
adequate power and large robustness are subjective.

We have concentrated on tests of the mean with
binary simple hypotheses, both because such tests
are exceedingly common in practice, and because
the main aim was to demonstrate the methodology
of info-gap theory for evaluating effective size and
power and for selecting the decision threshold and
sample-size. The methodology developed in this
paper can be extended to other test structures, and
to tests of quantities other than the mean. Further-
more, the close relation between hypothesis tests and
confidence intervals enables the application of the
methodology to evaluating and selecting confidence
intervals.
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A Evaluating the Robustness ĥ0(α
?, α)

for Falsely Rejecting H0

In this appendix we derive ĥ0(α
?, α) based on the info-

gap model in eq.(7).

First V (x) = 0 if x < 0, V (x) = x if 0 ≤ x ≤ 1,
V (x) = 1 if x > 1.

Let m0(h) denote the inner minimum in the defini-
tion of the robustness in eq.(14). The robustness,

ĥ0(α
?, α), is the greatest horizon of uncertainty, h, at

which m0(h) ≥ 1 − α. m0(h) decreases with increas-
ing h because the sets U0(h) of the info-gap model
become more inclusive as h increases (the nesting
axiom). Hence the robustness is the greatest non-
negative value of h for which m0(h) = 1− α. If there
is no such value of h, then the robustness is zero.

The inner minimum in eq.(14) is obtained when F (y)

is as small as possible at qα?(F̃ 0), subject to member-
ship in U0(h). From the info-gap model in eq.(7) we
find:

m0(h) = V
(
F̃ 0[qα?(F̃ 0)] − h

)
= V (1−α? −h) (28)

where we recall that F̃ 0[qα?(F̃ 0)] = 1 − α?. The
greatest value of h at which m0(h) = 1 − α is the
robustness, eq.(15).

B Evaluating the Robustness ĥ1(α
?, β)

for Correctly Rejecting H0

In this appendix we derive ĥ1(α
?, β) based on the info-

gap model in eq.(7).

Let m1(h) denote the inner maximum in the defini-
tion of the robustness in eq.(16). The nesting ax-
iom implies that m1(h) increases monotonically as

h increases. Consequently the robustness, ĥ1(α
?, β),

is the greatest horizon of uncertainty, h, at which
m1(h) = β.

From the info-gap model in eq.(7), and using the step
function V (x) defined earlier, we find:

m1(h) = V
(
F̃ 1[qα?(F̃ 0)] + h

)
(29)

Equating this to β and solving for h we find the ro-
bustness in eq.(18) with the aid of the expression for
the nominal power in eq.(17).
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Abstract

In the first part of this paper, recalling a general dis-
cussion on iterated conditioning given by de Finetti
in the appendix of his book, vol. 2, we give a repre-
sentation of a conditional random quantity X|HK as
(X|H)|K. In this way, we obtain the classical formula
P(XH|K) = P(X|HK)P (H|K), by simply using lin-
earity of prevision. Then, we consider the notion of
general conditional prevision P(X|Y ), where X and
Y are two random quantities, introduced in 1990 in
a paper by Lad and Dickey. After recalling the case
where Y is an event, we consider the case of discrete
finite random quantities and we make some critical
comments and examples. We give a notion of coher-
ence for such more general conditional prevision as-
sessments; then, we obtain a strong generalized com-
pound prevision theorem. We study the coherence
of a general conditional prevision assessment P(X|Y )
when Y has no negative values and when Y has no
positive values. Finally, we give some results on co-
herence of P(X|Y ) when Y assumes both positive and
negative values. In order to illustrate critical aspects
and remarks we examine several examples.

Keywords. conditional events, general conditional
random quantities, general conditional prevision as-
sessments, generalized compound prevision theorem,
iterated conditioning, strong generalized compound
prevision theorem.

1 Introduction

This paper takes as its starting point the definition of
general conditional prevision introduced by Lad and
Dickey in [16] and also considered by Lad in his book
[17]. In these works, the authors propose a general
theory of conditional prevision specifying its opera-
tional meaning. This theory, which considers condi-
tional prevision of the form P(X|Y ) where bothX and
Y are random quantities, generalizes the de Finetti’s
definition of a conditional prevision assertion P(X|H),

where H is an event. We observe that, denoting the
indicator of H by the same symbol, to assume ”H
true” amounts to assuming (H = 1) true, that is
(H 6= 0) true. Then, in the approach of Lad and
Dickey, X|H can be looked at as X|Y , where Y is
the indicator of H; hence, P(X|H) = P[X|(H = 1)].
Notice that we discard the case where Y is the con-
stant 0, as it reduces to the case X|H where (H 6= 0)
is impossible. We recall that, concerning (precise or
imprecise) conditional probability or prevision assess-
ments like P (E|H) or P(X|H), where E and H are
events and X is a random quantity, theoretical re-
sults and algorithms in the framework of coherence
have been given by many authors (see, for instance,
[2, 3, 4, 5, 6, 8, 9, 10, 19, 20, 21, 22]) The checking
of coherence and the extension of precise conditional
prevision assessments have been studied in [7].
In [16, 17] the general conditional prevision P(X|Y )
is defined as a number that you specify asserting your
willingness to engage any transaction yielding a suit-
able random net gain and it is shown that such a
generalization answers to questions of decision prob-
lems involving “state dependent preferences”. In his
book ([17]), Lad introduces the notion of general con-
ditional random quantity X|Y from the definition of
conditional prevision P(X|Y ). Obviously, as usual in
a subjective setting, engaging a transaction requires
a coherency of your assertion. In [16, 17], the co-
herency of P(X|Y ) requires that a generalized com-
pound prevision theorem is satisfied, that is the quan-
tities P(XY ), P(Y ) and P(X|Y ) must be such that
P(XY ) = P(X|Y )P(Y ). But, the general case is dif-
ferent from the case where Y is the indicator of an
event H. In fact, P(H) = 0 implies P(XH) = 0,
and using coherence ([15, 18]) we can directly assess
P(X|H). On the contrary, P(Y ) = 0 doesn’t imply
that P(XY ) = 0 and it could happen that it doesn’t
exist a finite value of P(X|Y ) which satisfies the gen-
eralized compound prevision theorem. Thus, in this
paper we propose a notion of coherence in order to
handle the case P(Y ) = 0, integrating the Lad’s defi-
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nition of P(X|Y ). Then, we give a strong generalized
compound prevision theorem which follows from our
definition of coherence. The random quantities, like
X and Y , considered in this paper are finite discrete.
The paper is organized as follows. In section 2 we
recall some preliminary concepts and results. In sec-
tion 3 we deepen, in the setting of coherence, the
operational meaning of the assessments P(X|H) and
P(X|HK), where H and K are events and X is
a random quantity; then, based on a general dis-
cussion on iterated conditioning given by de Finetti
in ([12], Vol. 2, Appendix, section 13), we look
at B|AH and X|HK, respectively, as (B|A)|H and
(X|H)|K); then, we give a representation for B|AH
and X|HK which allows to obtain the classical re-
sults P(AB|H) = P(B|AH)P (A|H) and P(XH|K) =
P(X|HK)P (H|K), by simply applying the linearity
of prevision. In section 4, we recall the definitions of
conditional prevision P(X|Y ) and conditional random
quantity X|Y ; then, we examine a critical example.
In section 5, after some critical comments, we propose
an explicit definition of coherence for the conditional
prevision P(X|Y ); then, we give a strong generalized
compound prevision theorem; we also examine many
examples to illustrate some further aspects. In section
6, we study the coherence of a conditional prevision
assessment P(X|Y ) = µ, when Y has no negative val-
ues, or Y has no positive values. In section 7, we give
some results concerning the coherence of the assess-
ment P(X|Y ) = µ, where Y assumes both positive
and negative values. In section 8, we show some re-
sults concerning the set of coherent prevision assess-
ments on X|Y ′, where Y ′ is a linear transformation of
Y . Finally, in section 9 we give some conclusions and
an outlook on future research, which should concern
more in general the case of imprecise conditional pre-
vision assessments on families of conditional random
quantities.

2 Some preliminary notions

We assume that each random quantity has a finite set
of possible values. We denote by Ω (resp., ∅) the sure
(resp., impossible) event; moreover, we denote by Ac

the negation of A and by A ∨ B (resp., AB) the dis-
junction (resp., the conjunction) of A and B. We use
the same symbol to denote an event and its indicator.
We recall that in the subjective approach to proba-
bility, your assessment P (E|H) = p means that You
accept a bet on the conditional event E|H in which
You pay an amount ps, with s 6= 0, by receiving the
random quantity sHE + psHc, so that your net ran-
dom gain is

G = sHE + psHc − ps = sH(E − p) .

By excluding trivial cases, the value of G is, respec-
tively, s(1 − p), or −ps, or 0, according to whether
EH is true, or EcH is true, or Hc is true.
We recall that, considering the restricted random
gain G|H = s(E − p) ∈ {s(1 − p),−ps}, it is
min G|H · max G|H = −s2p(1 − p). Then, the co-
herence of p is defined by the condition ([15, 18]):
min G|H ·max G|H ≤ 0; that is p(1− p) ≥ 0, which
amounts to: 0 ≤ p ≤ 1.
We observe that, to determine the coherent values
of p, we don’t consider all the values of G, but only
those of G|H; in other words the value 0 of G associ-
ated with the case ”H false” is ”discarded”.
We also observe that, denoting by the same sym-
bol the (conditional) events and their indicators, by
choosing s = 1 we obtain

E|H = EH + pHc = EH + (1−H)p ,

where the indicator, or truth-value function, E|H
represents the quantity we receive when we pay the
amount p = P (E|H). Then, by the linearity of previ-
sion, we obtain:

P (E|H) = P (EH) + [1− P (H)]p ,

that is: P (EH) = P (H)P (E|H) (compound proba-
bility theorem). We recall that, starting with a pio-
neering work of de Finetti ([11]), the notion of condi-
tional event as a three-valued (logical and/or numer-
ical) entity has been proposed by many authors (see,
e.g., [1], [13], [14]). Based on the betting scheme, the
notions of conditional prevision and conditional ran-
dom quantity are defined and widely exploited in [17].
Truth-values of conditional events and their extension
to decomposable conditional measures of uncertainty,
with the aim of finding reasonable axioms for a gen-
eral theory, have been discussed in many papers by
Coletti and Scozzafava, see e.g. [9].

3 Representation of conditional
random quantities

We remark that the general formula P (AB|H) =
P (A|H)P (B|AH) can be obtained by using the gen-
eral coherence condition for conditional probability
assessments. The same formula can be obtained,
based on the linearity of prevision, by the following
refined reasoning. Let P = (x, y, z) a probability as-
sessment on F = {A|H,B|AH,AB|H}. We observe
that representing the indicator B|AH as

B|AH = ABH + (1−AH)y ,

we obtain

P (B|AH) = y = P (ABH) + [1− P (AH)]y ,
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from which it follows: P (ABH) = P (AH)y, i.e.
zP (H) = xyP (H); hence, to reach the conclusion
we need to assume P (H) > 0. To bypass this ob-
stacle, based on the general discussion on iterated
conditioning given by de Finetti in ([12], Appendix
of Vol. 2, section 13), we can look at B|AH as
(B|A)|H. Moreover, defining p = P (B|A), we have
B|A = AB+ (1−A)p. Of course, when we pass from
B|A to B|AH, we must replace p by y. Then

B|AH = (B|A)|H = AB|H + [(1−A)|H]y =

= AB|H + (Ac|H)y = (AB + yAc)|H .
(1)

The representation above is not surprising, as shown
by the following remarks:
(i) with the family F we can associate the partition
{ABH,ABcH,AcH,Hc};
(ii) under the hypothesis ”H true”, the random quan-
tities B|AH and (AB + yAc)|H coincide, as they al-
ways assume the same value, that is 1, or 0, or y,
according to whether ABH is true, or ABcH is true,
or AcH is true.
Hence, it must be: P(B|AH) = P[(AB + yAc)|H],
with P(B|AH) = P (B|AH) = y and

P(AB + yAc)|H = P(AB|H) + P(yAc|H) =

= P (AB|H) + yP (Ac|H) = z + y(1− x) .

Then, we obtain: y = z + y(1− x), i.e. z = xy.
Notice that, based on this result, we have that B|AH
and (AB + yAc)|H coincide also when Hc is true. In
fact, the value of B|AH (resp., (AB+yAc)|H) associ-
ated with Hc is y (resp., z+y(1−x) = y+z−xy = y).
Now, by generalizing the previous reasoning, given
an event H and a discrete finite random quantity
X ∈ {x1, x2, . . . , xn}, in the subjective approach the
conditional prevision assessment µ = P(X|H) is the
amount to be payed in order to receive the random
quantity X|H = XH + (1 −H)µ. The random gain
is G = X|H − µ = XH − µH and, as before, the co-
herence condition for µ is: min G|H ·max G|H ≤ 0,
which amounts to: min X|H ≤ µ ≤ max X|H.
Of course, we have

P(X|H) = µ = P[XH + (1−H)µ] =

= P(XH) + P(1−H)µ = P(XH) + µ− P (H)µ ,

from which it follows the well known formula:
P(XH) = P (H)µ = P (H)P(X|H).
More in general, given two events H,K and a random
quantity X, let M = (x, y, z) a conditional prevision
assessment on F = {H|K,X|HK,XH|K}.
By the same kind of reasoning, we have

X|HK = (X|H)|K = [XH + (1−H)y]|K =

= XH|K + yHc|K .
(2)

In fact, as for the case of conditional events, we can
show that the conditional random quantities X|HK
and [XH + (1−H)y]|K coincide by the following re-
marks:
(i) we denote by {x1, . . . , xn} the set of possible values
of X and, for the sake of simplicity by {x1, . . . , xr}
(resp., {x1, . . . , xr, . . . , xt}) the set of values of X
compatible with HK (resp., with K), where r ≤ t ≤
n; moreover, we set Ei = (X = xi) and with the fam-
ily F we associate the partition (of the sure event Ω)
{E1HK, . . . , ErHK,H

cK,Kc};
(ii) we have X =

∑n
i=1 xiEi and XH =

∑n
i=1 xiEiH;

then

X|HK =
r∑

i=1

xiEiHK + (1−HK)y ;

XH|K + yHc|K =
r∑

i=1

xiEiHK + (1−K)z +

+ yHcK + (1−K)y(1− x) ;

(iii) assuming ”K true”, if H is true, then X = xi for
some i ≤ r and X|HK = [XH + (1 − H)y]|K = xi;
if H is false, then X = xi for some i, with r < i ≤ t,
and X|HK = XH|K + yHc|K = y; hence, under the
hypothesis ”K true”, X|HK and [XH + (1−H)y]|K
coincide. Then

P(X|HK) = y = P([XH + (1−H)y]|K) =

= P(XH|K) + yP (Hc|K) = z + y(1− x) ,

from which it follows: z = xy, that is:

P(XH|K) = P(X|H)P (H|K) .

Notice that, by the previous formula, if K is false we
have X|HK = y and

XH|K + yHc|K = z + y(1− x) = y + z − xy = y .

Therefore, the conditional random quantities X|HK
and XH|K+yHc|K = (XH+yHc)|K coincide in all
cases.

4 General conditional random
quantities

Let be given two random quantities X and Y . In [17]
it is proposed the notion of general conditional ran-
dom quantity X|Y based on the following definition
for the prevision of X|Y , introduced in [16].

Definition 1. The conditional prevision for X given
Y , denoted P(X|Y ), is a number you specify with the
understanding that you accept to engage any transac-
tion yielding a random net gain G = sY [X−P(X|Y )].
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The following definition is given for the conditional
random quantity X|Y .
Definition 2. Having asserted your conditional pre-
vision P(X|Y ) = µ, the conditional random quantity
X|Y is defined as

X|Y = XY + (1− Y )µ = µ+ Y (X − µ) . (3)

Notice that, if Y assumes only the value 0, that is
Y ≡ 0, you can pay every real number µ = P(X|Y ),
as you always receive the same amount µ; in fact, the
net gain is always 0. To avoid this trivial case we will
assume that (Y = 0) 6= Ω.
We remark that such a general notion of conditional
random quantity reduces to the classical one X|H =
XH + (1 −H)µ when Y coincides with an event H.
Lad remarks that the direction of the net gain (or
loss) depends on the difference (X − µ), while the
scale depends on the numerical value of Y . Lad also
remarks that for Y = 0 (resp., Y = 1) the net gain is 0
(resp., s(X − µ)), i.e. the possible net gains obtained
when Y is an event. Then, by computing the prevision
on both sides of (3), Lad obtains

µ = µ+ P[Y (X − µ)] = µ+ P(XY )− µP(Y ) ,

so that P(XY ) = P(X|Y )P(Y ), which becomes∑
j pjyjP[X | (Y = yj)] = P(X|Y )

∑
j pjyj , where

pj = P (Y = yj). This condition, which we call
”generalized compound prevision theorem”, general-
izes the classical one P(XH) = P(X|H)P (H), where
H is an event. Then, when P(Y ) 6= 0 it imme-
diately follows P(X|Y ) = P(XY )

P(Y ) (actually, we will
see that the generalized compound prevision theo-
rem holds in a stronger sense). Several properties
are obtained by Lad, under the condition P(Y ) 6= 0.
We also notice that, when X and Y are uncorre-
lated, i.e. Cov(X,Y ) = 0, it is P(XY ) = P(X)P(Y );
then, under the hypothesis P(Y ) 6= 0, it follows
P(X|Y ) = P(X). We can say that, under the con-
dition P(Y ) 6= 0, X and Y are uncorrelated if and
only if the prevision of ’X given Y ’ coincides with the
prevision of X.
We examine below an example, in which Y is not an
event, to illustrate a critical aspect.
Example 1. We recall that by the formula P(XH) =
P (H)P(X|H), when P (H) > 0 it follows P(X|H) =
P(XH)
P (H) . Moreover, if P (H) = 0, then P(XH) = 0; in

this case, based on coherence principle ([15, 18]) and
assuming ∅ 6= H 6= Ω, it can be proved that the as-
sessment (0, 0, µ) on {H,XH,X|H} is coherent if and
only if: min X|H ≤ µ ≤ max X|H. But, replacing
H by a random quantity Y , we are in a very different
situation, as P(Y ) = 0 doesn’t imply P(XY ) = 0. To
illustrate this aspect, let us consider a random vector

(X,Y ) ∈ C = {(0,−1), (0, 1), (1,−1), (1, 1)} ,

with

p(0,−1) =
1
3
, p(0, 1) =

1
6
, p(1,−1) =

1
6
, p(1, 1) =

1
3
,

where p(x, y) = P (X = x, Y = y). We denote the
joint distribution of (X,Y ) by the vector ( 1

3 ,
1
6 ,

1
6 ,

1
3 ).

We have

Y ∈ CY = {−1, 1} , XY ∈ CXY = {−1, 0, 1} ,

with P (Y = −1) = P (Y = 1) = 1
2 , and with P (XY =

−1) = 1
6 , P (XY = 0) = 1

2 , P (XY = 1) = 1
3 , so that

P(Y ) = 0 and P(XY ) = 1
6 . In this case, it doesn’t ex-

ist any finite value P(X|Y ) which satisfies the equality
P(XY ) = P(X|Y )P(Y ). In fact, given any assessment
P(X|Y ) = µ, the values of Y (X − µ) associated with
that of (X,Y ) are, respectively, µ,−µ,−1 + µ, 1− µ;
then, assuming (for the sake of simplicity) s = 1, one
has

P(G) = P[Y (X − µ)] =

=
1
3
µ+

1
6

(−µ)+
1
6

(−1+µ)+
1
3

(1−µ) =
1
6
6= 0 , ∀µ .

Hence, by starting with a joint probability distribution
on (X,Y ), it may happen that the equation P(XY ) =
P(X|Y )P(Y ) has no finite solutions in the unknown
P(X|Y ).
If we assign the joint distribution ( 1

3 − ε, 1
6 + ε, 1

6 ,
1
3 )

on (X,Y ), with ε ∈ [− 1
6 , 0) ∪ (0, 1

3 ], we obtains

P (Y = −1) =
1
2
−ε , P (Y = 1) =

1
2

+ε , P(Y ) = 2ε ,

P (Y = −1) =
1
2
−ε , P (Y = 1) =

1
2

+ε , P(Y ) = 2ε ,

while the distribution of XY doesn’t change; more-
over,

P(G) = (
1
3
−ε)µ+(

1
6

+ε)(−µ)+
1
6

(−1+µ)+
1
3

(1−µ) =

=
1
6
− 2εµ = P(XY )− P(Y )P(X|Y ) ,

and imposing P(G) = 0, it follows

µ = P(X|Y ) =
1

12 ε
, ε ∈ [−1

6
, 0) ∪ (0,

1
3

] .

In particular, for ε ∈ [− 1
6 , 0) it is µ ∈ (−∞,− 1

2 ], while
for ε ∈ (0, 1

3 ] it is µ ∈ [ 14 ,+∞).
Finally, if we assign a uniform distribution on (X,Y ),
that is

p(0,−1) = p(0, 1) = p(1,−1) = p(1, 1) =
1
4
,

it follows P(Y ) = P(XY ) = 0; then, the equality
P(XY ) = P(Y )P(X|Y ) becomes 0 = 0 · P(X|Y ). In
this case, we need a direct assessment of P(X|Y ) and
the problem of coherence arises. This basic problem
will be addressed in the next section.
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5 Coherence of general conditional
prevision assessments

A crucial problem arises when P(Y ) = 0; what can be
said about coherence of a given assessment P(X|Y ) =
µ? We remark that this case has not been examined
in the book of Lad. We also observe that when Y
equals 0 Lad notices that the net gain is 0 without
further comments. But, concerning the classical case
of a conditional random quantity X|H, in order to
check the coherence of the assessment P(X|H) = µ,
as is well known the value 0 of the net gain associated
with the case H = 0 is discarded by the set of values
of the net gain G, i.e. coherence checking is based
on the values of G|H. Hence, in order to integrate
the analysis of Lad by properly managing the case
P(Y ) = 0, we propose:
(i) to give an explicit definition of coherence for a
given assessment P(X|Y ) = µ;
(ii) to discard, in the definition of coherence, the value
0 of the net gain associated with the case Y = 0.
Then, based on [15, 18], we give the following
Definition 3. Given two random quantities X,Y and
a conditional prevision assessment P(X|Y ) = µ, let
G = s(X|Y − µ) = sY (X − µ) be the net random
gain, where s is an arbitrary real quantity, with s 6=
0. Defining the event H = (Y 6= 0), the assessment
P(X|Y ) = µ is coherent if and only if: inf G|H ·
sup G|H ≤ 0, for every s.

In what follows, without loss of generality, we will set
s = 1.

5.1 A strong generalized compound
prevision theorem

Based on Definition 3, we will obtain a stronger ver-
sion of the generalized compound prevision theorem.
We recall that H is the event (Y 6= 0); then, we
make the following reasoning (where we assume that
µ,P(Y |H), and P(XY |H) are finite):
(i) by Definition 3, µ is the quantity to be payed, in
order to receive X|Y , under the hypothesis H true;
hence, operatively µ is the prevision of X|Y , condi-
tional on H; (ii) hence, a more appropriate represen-
tation of X|Y is given by: X|Y = [µ+ Y (X − µ)]|H;
(iii) then, by computing the prevision on both sides
of the previous equality, we have:

µ = P(X|Y ) = P[µ+Y (X−µ)|H] = µ+P[Y (X−µ)|H] ,

so that P[Y (X −µ)|H] = P[(XY −µY )|H] = 0; then,
by the linearity of prevision, it follows

P(XY |H) = P(X|Y )P(Y |H) . (4)

Notice that, if Y is a finite discrete random quantity,
with Y ≥ 0, or Y ≤ 0, surely it is P(Y |H) 6= 0; then,

by (4) it follows P(X|Y ) = P(XY |H)
P(Y |H) .

We recall that Hc is the event (Y = 0); moreover, we
observe that P(Y |Hc) = P(XY |Hc) = 0; hence,

P(Y ) = P(Y |H)P (H) + P(Y |Hc)P (Hc) =

= P(Y |H)P (H) = P(Y H) ,
(5)

P(XY ) = P(XY |H)P (H) + P(XY |Hc)P (Hc) =

= P(XY |H)P (H) = P(XYH) .
(6)

Then, by (4), (5), and (6), one has

P(XY |H)P (H) = P(X|Y )P(Y |H)P (H) ,

that is, the formula P(XY ) = P(X|Y )P(Y ), given
in [16] and [17], which we call weak generalized com-
pound prevision theorem.

5.2 Some examples and remarks

In the finite case, denoting respectively by CX , CY and
C the sets of possible values of X,Y and (X,Y ), with
each (xh, yk) ∈ C it is associated for the net gain G the
value ghk = yk(xh − µ). We set C0 = {(xh, yk) ∈ C :
yk 6= 0}; of course C0 ⊆ C. Then, by Definition 3, the
assessment µ is coherent if and only if: m ≤ 0 ≤ M ,
where

m = min
(xh,yk)∈C0

yk(xh−µ) , M = max
(xh,yk)∈C0

yk(xh−µ) .

We denote by Π the set of coherent assessments µ;
then, we remark that, assuming C0 6= ∅, the assess-
ment µ = xh is coherent, as it trivially satisfies the
condition of coherence (it is ghk = 0, ∀ (xh, yk) ∈ C0).
Hence, CX ⊆ Π.

Example 2. Given a random vector (X,Y ) ∈ C =
{(−1, 0), (1, 1)}, consider the assessment P(Y |X) = µ
on the conditional random quantity X|Y . We have
H = (Y 6= 0); hence C0 = {(1, 1)}. Moreover, one
has G = Y (X − µ) ∈ {0, 1 − µ}, with G|H = 1 − µ.
We observe that Y coincides with the indicator of H,
so that X|Y = X|H. Then, by Definition 3, µ is
coherent if and only if 1−µ = 0, that is µ = 1. Notice
that this result is consistent with the usual approach
to the notion of conditional prevision.

Remark 1. Notice that in Example 2, while the co-
herence condition inf G|H · sup G|H ≤ 0 is satisfied
uniquely with µ = 1, the condition inf G · sup G ≤
0 is satisfied for every µ. Then, if the condition
inf G|H · sup G|H ≤ 0 were replaced by inf G ·
sup G ≤ 0, it would follow that every assessment
P(X|Y ) = µ would be coherent, which is clearly un-
reasonable (however, as we will show by other exam-
ples, still applying the condition inf G|H · sup G|H ≤
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0, it may be Π = R). Example 2 confirms that, in or-
der to look at X|Y as X|H in the usual sense, when
checking coherence we must discard the value 0 of the
random gain G associated with the case Y = 0. In
this way, we can look at the family of conditional ran-
dom quantities like X|H, where H is an event, as a
sub-family of the family of general conditional random
quantities like X|Y , where Y is a random quantity.

We recall that, given any event H 6= ∅, if X is a con-
stant, say X = c, then P(X|H) = c. The following
example shows that, ifX = c and Y is a random quan-
tity, with min Y < 0 < max Y , then the assessment
P(X|Y ) = µ is coherent for every µ ∈ R.
Example 3. Given (X,Y ) ∈ C = {(c,−y1), (c, y2)},
with c ∈ R and y1, y2 > 0, consider the coherence of
any assessment P(X|Y ) = µ. We have C0 = C, so
that H = (Y 6= 0) = Ω and G|H = G = Y (c − µ).
The values of G|H are: −y1(c−µ), y2(c−µ), and the
coherence condition inf G|H · sup G|H ≤ 0 is satisfied
for every µ ∈ R. Moreover, given a joint distribution
on (X,Y ), say (p, 1− p), where

p = P (X = c, Y = −y1) , 1−p = P (X = c, Y = y2), ,

with 0 ≤ p ≤ 1, we have P(Y ) = y2 − p(y1 + y2) and

P(XY ) = cP(Y ) = c[y2 − p(y1 + y2)] .

Then, if p 6= y2
y1+y2

, one has P(Y ) 6= 0 and c is the
unique coherent value of µ associated with the dis-
tribution (p, 1 − p). Whereas, if p = y2

y1+y2
, then

P(Y ) = P(XY ) = 0, and the assessment P(X|Y ) = µ,
associated with the distribution ( y2

y1+y2
, y1

y1+y2
), is co-

herent for every µ ∈ R.
Example 4. We continue the study of Example
1, by examining the coherence of a given assess-
ment P(X|Y ) = µ. We recall that (X,Y ) ∈ C =
{(0,−1), (0, 1), (1,−1), (1, 1)}; moreover, we observe
that C0 = C, as H = (Y 6= 0) = Ω and hence
G|H = G = Y (X −µ). With the values of (X,Y ) are
associated respectively the following values of G|H:
µ,−µ,−1 + µ, 1 − µ; hence, the coherence condition
inf G|H · sup G|H ≤ 0 is satisfied for every µ.
Example 5. We assume that (X,Y ) ∈ C =
{(0,−1), (1, 1)}, by examining the coherence of a
given assessment P(X|Y ) = µ. We have C0 = C;
so that H = (Y 6= 0) = Ω and we have G|H =
G = Y (X − µ). The values of G|H are: µ, 1 − µ
and, as it can be verified, the coherence condition
inf G|H · sup G|H ≤ 0 is satisfied if and only if
µ /∈ (0, 1), that is µ is coherent if and only if µ ∈
(−∞, 0]∪[1,+∞). In this example with each coherent
assessment µ it is associated a unique joint distribu-
tion on (X,Y ), say (p, 1− p), where

p = P (X = 0, Y = −1) ,

1− p = P (X = 1, Y = 1) , 0 ≤ p ≤ 1 .

The parameter p is determined by requiring that the
prevision of the random gain be 0, that is

pµ+ (1− p)(1− µ) = 0 . (7)

As it can be verified, one has

p = f(µ) =
1− µ
1− 2µ

;

moreover, when µ ≤ 0 it is 1
2 < p ≤ 1; when µ ≥ 1 it

is 0 ≤ p ≤ 1
2 . Notice that

µ = f−1(p) =
1− p
1− 2p

;

that is: f−1 = f . This result depends on the symme-
try of the equation (7) with respect to p and µ.

As shown by Example 5, the set Π of the coherent as-
sessments µ may be not convex.
To better analyze this aspect, in what follows we ex-
amine separately two cases:
(i) Y ≥ 0 , or Y ≤ 0; (ii) min Y < 0 < max Y .

6 The case Y ≥ 0 , or Y ≤ 0.

We assume X ∈ CX = {x1, . . . , xn} and Y ∈ CY =
{y1, . . . , yr}, with yk ≥ 0 , ∀ k. Moreover, we denote
by X0 the subset of CX such that for each xh ∈ X0

there exists (xh, yk) ∈ C0. Then, we set

x0 = min X0 , x0 = max X0 . (8)

We first consider the case Y ≥ 0; we have

Theorem 1. Given two finite random quantities
X,Y , with Y ≥ 0, the prevision assessment P(X|Y ) =
µ is coherent if and only if x0 ≤ µ ≤ x0.

Proof. Given any µ, with each pair (xh, yk) ∈ C0 we
associate the inequality yk(xh − µ) ≥ 0. Under the
hypothesis Y 6= 0 it is yk > 0; then the inequality is
satisfied if and only if µ ≤ xh. We observe that, for
each xh ∈ X0, there exists (at least) a value yk > 0
such that (xh, yk) ∈ C0. Then, we distinguish three
cases: (i) µ < x0; (ii) µ > x0; (iii) x0 ≤ µ ≤ x0. In the
first case it is yk(xh − µ) > 0 for every (xh, yk) ∈ C0,
so that inf G|H · sup G|H > 0 and hence µ is not
coherent. In the second case it is yk(xh − µ) < 0
for every (xh, yk) ∈ C0, so that inf G|H · sup G|H >
0 and hence µ is not coherent. In the third case,
denoting by yk and ys two positive values of Y such
that (x0, yk) ∈ C0, (x0, ys) ∈ C0, it is yk(x0 − µ) ≤
0 , ys(x0−µ) ≥ 0, so that inf G|H ≤ 0 , sup G|H ≥ 0
and hence inf G|H · sup G|H ≤ 0. Therefore, for
every µ ∈ [x0, x

0], µ is coherent.
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We illustrate the previous result by the following
Example 6. Given a random vector (X,Y ) ∈ C =
{(0, 1), (1, 0), (1, 1), (2, 2)}, let us determine the set
Π of coherent prevision assessment P(X|Y ) = µ on
X|Y . We observe that X0 = X, so that x0 =
min CX = 0 , x0 = max CX = 2; moreover, it is
C0 = {(0, 1), (1, 1), (2, 2)} and the values of Y (X−µ),
under the restriction (X,Y ) ∈ C0 are, respectively,
−µ, 1−µ, 2(2−µ); such values are all positive (resp.,
all negative) when µ < 0 (resp., µ > 2); hence
each µ /∈ [0, 2] is not coherent. Finally, when µ ∈
[0, 2] one has −µ(2 − µ) ≤ 0, so that the condition
inf G|H · sup G|H ≤ 0 is satisfied. Hence, we have
Π = [x0, x

0] = [0, 2].

We now consider the case Y ≤ 0; we have
Theorem 2. Given two finite random quantities
X,Y , with Y ≤ 0, the conditional prevision assess-
ment P(X|Y ) = µ is coherent if and only if x0 ≤ µ ≤
x0.

Proof. We observe that, as −Y ≥ 0, by Theorem 1
the assessment P(X| − Y ) = µ is coherent if and only
if x0 ≤ µ ≤ x0. On the other hand, defining G′|H =
−Y (X − µ)|H, we have G|H = Y (X − µ) = −G′|H.
Then

inf G|H = − sup G′|H , sup G|H = − inf G′|H ,

and hence: inf G|H · sup G|H = inf G′|H · sup G′|H;
thus, the assessment P(X|H) = µ is coherent if and
only if x0 ≤ µ ≤ x0.

7 The case min Y < 0 < max Y .

We now examine the general case in which there exist
positive and negative values of Y . We set

X− = {xh ∈ CX : ∃(xh, yk) ∈ C0, yk < 0} ,

X+ = {xh ∈ CX : ∃(xh, yk) ∈ C0, yk > 0} ;

C− = {(xh, yk) ∈ C0 : yk < 0} ,
C+ = {(xh, yk) ∈ C0 : yk > 0} .

Of course, C− ∩ C+ = ∅ and C− ∪ C+ = C0. We have
Theorem 3. Let be given two random quantities
X,Y , with min Y < 0 < max Y . If X− ∩ X+ 6= ∅,
then the conditional prevision assessment P(X|Y ) =
µ is coherent, for every real number µ.

Proof. Let be given xh ∈ X− ∩X+, yk ∈ CY , yt ∈ CY
such that (xh, yk) ∈ C− and (xh, yt) ∈ C+; more-
over, let µ be any real number. It is ghkght =
yk(xh − µ) · yt(xh − µ) = ykyt(xh − µ)2 ≤ 0, so that
inf G|H · sup G|H ≤ 0. Therefore, for every µ ∈ <,
µ is coherent.

We illustrate the previous result by the following

Example 7. We determine the set Π of coherent
prevision assessment P(X|Y ) = µ on X|Y , where
(X,Y ) ∈ C = {(0, 1), (0,−1), (1,−1), (1, 1)}, as in
Example 1. We have X− = X+ = {0, 1}, so that
X− ∩X+ 6= ∅; hence, by Theorem 3, Π = <.

In what follows, we examine the cases

min X− = max X+ , max X− = min X+ ;

then, we study in depth the case X−∩X+ = ∅. Given
any (xh, ys) ∈ C− , (xk, yt) ∈ C+, we set

mhk = min {xh, xk} , Mhk = max {xh, xk} ;

moreover, we denote by Ihk the open interval
(mhk,Mhk). Then, we set

I =
⋂

xh∈X−, xk∈X+

Ihk . (9)

Notice that, defining

µ0 = maxxh∈X−, xk∈X+ mhk ,

µ0 = minxh∈X−, xk∈X+ Mhk ,
(10)

one has I 6= ∅ if and only if µ0 < µ0 and, in this case,
I = (µ0, µ

0). We have

Theorem 4. Let the quantities µ0, µ0 be defined
as in (10); then µ0 = min (max X−,max X+) and
µ0 = max (min X−,min X+).

Proof. We first prove that µ0 coincides with
min (max X−,max X+). Let be xk = max X+,
xh = max X−. Then xr ≤ xk,∀xr ∈ X+ and xt ≤
xh,∀xt ∈ X−. Let be min (max X−,max X+) = xh.
Then, there exists xr ∈ X+ such that xr ≥ xh,
i.e. there exist (xh, ys) ∈ C− and (xr, yt) ∈ C+,
such that mhr = xh. Suppose that µ0 6= xh,
i.e. µ0 6= min (maxX−,maxX+); then µ0 > xh

and, as xh = max X−, it must be µ0 = xt for
some xt ∈ X+. Then, there exist (xv, yr) ∈ C−,
(xt, ys) ∈ C+ such that xt ≤ xv. From xv ≤ xh, it is
xt ≤ xv ≤ xh, i.e. µ0 ≤ xh, which is absurd; hence
µ0 = min (max X−,max X+). The proof is similar if
min (max X−,max X+) = xk, where xk = max X+.
We now prove that µ0 = max (min X−,min X+).
Let be xk = min X+, xh = min X−. Then xr ≥
xk,∀xr ∈ X+ and xt ≥ xh,∀xt ∈ X−. Let be
max (min X−,min X+) = xh. Then, there exists
xr ∈ X+ such that xr ≤ xh, i.e. there exist (xh, ys) ∈
C− and (xr, yt) ∈ C+, such that Mhr = xh. Suppose
that µ0 6= xh, i.e. µ0 6= max (min X−,min X+); then
µ0 < xh and, as xh = min X−, it must be µ0 = xt

for some xt ∈ X+. Then, there exist (xv, yr) ∈ C−,
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(xt, ys) ∈ C+ such that xt ≥ xv. From xv ≥ xh, it is
xt ≥ xv ≥ xh, i.e. µ0 ≥ xh, which is absurd; hence
µ0 = max(min X−,min X+).
The proof is similar if max (min X−,min X+) = xk,
where xk = min X+.

Thus, if µ0 < µ0, it is I = (µ0, µ
0) =

(min (max X−,max X+) , max (min X−,min X+)).
We set X− < X+ (resp., X− > X+) if and only
if max X− < min X+ (resp., min X− > max X+),
otherwise we set X− � X+. We have

Theorem 5. I 6= ∅ if and only if X− < X+, or
X− > X+.

Proof. Obviously, I 6= ∅ if and only if µ0 < µ0. We
prove that µ0 ≥ µ0 if and only if X− � X+. Such a
situation happens if and only if µ0 ∈ X− and µ0 ∈ X−
or µ0 ∈ X+ and µ0 ∈ X+. Suppose that µ0 = xh ∈
X+ and µ0 = xk ∈ X+. It is µ0 = maxX+ and
µ0 = minX+. From µ0 = min(maxX−,maxX+),
there exists xs ∈ X− such that xs ≥ xh and, from
µ0 = max(minX−,minX+)], there exists xt ∈ X−

such that xt ≤ xk, that is X− � X+. Moreover, from
µ0 = maxX+, µ0 = minX+, it is µ0 ≥ µ0 and I = ∅.
If we suppose that µ0 = xh ∈ X− and µ0 = xk ∈ X−,
by a similar reasoning, we have that X− � X+ and
µ0 > µ0 so that I = ∅.
Suppose that I 6= ∅ that is µ0 < µ0. Thus, µ0 =
xk ∈ X+ and µ0 = xh ∈ X− or µ0 = xh ∈ X− and
µ0 = xk ∈ X+. In the first case it is X+ < X−, in
the other case it is X+ < X−. Conversely, if X+ <
X−, it is maxX+ < maxX− and µ0 = maxX+.
Moreover, it is minX+ < minX− and µ0 = minX−,
with µ0 < µ0. If, X+ > X− it is maxX+ > maxX−

and µ0 = maxX−. Moreover, it is minX+ > minX−

and µ0 = minX+, with µ0 < µ0.

Based on the previous result, we have the following
three cases

1. X+ < X− ⇔ I 6= ∅ and I = (µ0, µ
0), with µ0 =

max X+ , µ0 = min X−.

2. X+ > X− ⇔ I 6= ∅ and I = (µ0, µ
0), with µ0 =

max X− , µ0 = min X+.

3. X− � X+ ⇔ I = ∅.

We have

Theorem 6. Let be given two random quantities
X,Y , with min Y < 0 < max Y . If case 1, or case 2,
holds, then X− ∩X+ = ∅ and the conditional previ-
sion assessment P(X|Y ) = µ is coherent if and only if
µ /∈ I. In the case 3, the assessment P(X|Y ) = µ is
coherent for every real number µ.

Proof. Case 1. Suppose µ ≤ µ0. We prove that µ is
coherent. It is µ ≤ µ0 = max X+ < min X− = µ0.
Let xh ∈ X+, that is there exist (xh, ys) ∈ C+ and
ys > 0. It is xh − µ ≥ 0, then ghs = ys(xh − µ) ≥ 0.
Let xk ∈ X−, that is there exist (xk, yt) ∈ C− and
ys < 0. It is xk−µ > 0, then gkt = yt(xk−µ) < 0. It
follows inf G|H · sup G|H ≤ 0, that is µ is coherent.
By a similar reasoning, if µ ≥ µ0 it follows that µ is
coherent.
Conversely, we prove that, if µ0 = maxX+ < µ <
minX− = µ0, µ is not coherent. From X+ < X−, it
is xk ≤ µ0 < µ < µ0 ≤ xh for each xh ∈ X−,xk ∈ X+.
Hence, we have that for each (xh, ys) ∈ C− one has
ghs = ys(xh−µ) < 0, as ys < 0 and xh−µ ≥ µ0−µ >
0; moreover, for each (xk, yt) ∈ C+ one has gkt =
yt(xk − µ) < 0, as yt > 0 and xk − µ ≤ µ0 − µ < 0.
Hence, for every (xh, yk) ∈ C, it is ghk = yk(xh−µ) <
0. Then inf G|H · sup G|H > 0, that is µ is not
coherent.
Case 2. The proof is formally identical to the case 1.
Case 3. There exist (xh, yt) ∈ C−, (xk, ys) ∈ C+,
(xu, yr) ∈ C−, (xv, yz) ∈ C+, such that xh < xk

and xu > xv. Let µ be a real number. Suppose
that ght = yt(xh − µ) < 0. Then, (xh − µ) > 0
and (xk − µ) > 0, hence gks = ys(xh − µ) > 0 and µ
is coherent.
Suppose that ght = yt(xh−µ) > 0. Then, (xh−µ) <
0. Thus, suppose that (xk−µ) > 0. It is xh < µ < hk.
By absurd, suppose that gur = yr(xu − µ) > 0 and
gvz = yz(xv − µ) > 0. Thus, it is xu − µ < 0 and
xv − µ > 0, that is xu < µ < xv and xu < xv, which
is absurd, as xu > xv. Then, µ is coherent.

Remark 2. We observe that Theorem 3 is a par-
ticular case of Theorem 6, as X− ∩ X+ 6= ∅ implies
X− � X+.

We say that X+ ≤ X− if maxX+ = minX−, and
X+ ≥ X− if minX+ = maxX−.
From the previous results, we can summarize the case
min Y < 0 < max Y > 0 in the following way

• X+ < X− ⇔ µ0 = maxX+ < minX− = µ0.
Then µ is coherent if and only if µ ≤ µ0 or µ ≥
µ0.

• X+ > X− ⇔ µ0 = maxX− < minX+ = µ0.
Then µ is coherent if and only if µ ≤ µ0 or µ ≥
µ0.

• X− � X+. If X+ ≤ X− or X+ ≥ X−, then
µ0 = µ0, otherwise µ0 > µ0 and in all such cases
every real number µ is coherent.

We illustrate the previous result by the example be-
low.
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Example 8. We determine the set Π of coherent
prevision assessment P(X|Y ) = µ on X|Y , where
(X,Y ) ∈ C = {(0, 1), (0, 2), (1,−1), (1,−2)}. We have
X− = {1} , X+ = {0}, so that X− ∩ X+ = ∅; we
have to consider a unique case: xh = 1, xk = 0,
with the associated open interval Ihk = (0, 1). Then,
I = Ihk = (0, 1) and, by Theorem 6, Π = < \ (0, 1);
that is, µ is coherent if and only if µ /∈ (0, 1). The
same result follows directly, by observing that: (i)
C0 = C, so that G|H = G;
(ii) given any µ, the values of G are: −µ,−2µ,−1 +
µ,−2 + 2µ; (iii) if µ ∈ (0, 1), the values of G are all
negative; if µ /∈ (0, 1), it is: min G < 0 , max G > 0.

8 Linear transformations of Y .

In this section we examine the effect produced on the
set Π (of coherent conditional prevision assessments
on X|Y ) by a linear transformation on the condition-
ing random quantity Y . Given two random quantities
X,Y and two constants c, d, with (c, d) 6= (0, 0), we
set y0 = minY, y0 = maxY, Y ′ = cY + d and, if
c 6= 0, Y ∗ = Y + d

c , ; moreover, we denote by Π′

(resp., Π∗) the set of coherent prevision assessments
on X|Y ′ = X|(cY + d) (resp., X|Y ∗ = X|(Y + d

c )).
We show below, among other things, that: (a) for
d 6= 0 both cases Π∗ = Π, or Π∗ 6= Π, are possible;
(b) Π′ = Π∗.

Theorem 7. Given two finite random quantities
X,Y and two constants c, d, with (c, d) 6= (0, 0), we
have:
1. if c = 0, d 6= 0, then P(X|Y ′) = P(X|d) = P(X)
and Π′ = [minX,maxX];
2. if c 6= 0, d

c /∈ (−y0,−y0), then Π∗ = [x0, x
0], where

the values x0, x
0 are defined as in (8) with Y replaced

by Y ∗;
3. if c 6= 0, d

c ∈ (−y0,−y0), then Π∗ = R \ I, where
the (possibly empty) interval I is defined as in (9)
with Y replaced by Y ∗;
4. Π′ = Π∗.

Proof. In case 1 it is G = d(X − µ); then, un-
der coherence of P(X), from P(G) = 0 it follows
µ = P(X) ∈ [minX,maxX]. In case 2, it is Y ∗ ≥ 0,
when d

c ≥ −y0, and Y ∗ ≤ 0, when d
c ≤ −y0; then, by

Theorems 1 and 2, it follows Π∗ = [x0, x
0]. In case 3,

as −y0 ≤ d
c ≤ −y0, it is minY ∗ < 0 < maxY ∗; then,

by Theorem 6, one has Π∗ = R \ I, with the interval
I possibly empty.
In case 4 it is Y ′ = cY ∗ and, denoting by G′ (resp.,
G∗) the random gain associated with X|Y ′ (resp.,
X|Y ∗), we have G′ = cY ∗(X − µ) = cG∗. Then

inf G′|H · sup G′|H = c2 inf G∗|H · sup G∗|H ,

and, being c2 6= 0, the assessment P(X|Y ′) =
P(X|cY ∗) = µ is coherent if and only if P(X|Y ∗) = µ
is coherent; thus Π′ = Π∗.

We give below an example where Π∗ 6= Π.

Example 9. As in Example 6, we consider the ran-
dom vector (X,Y ) ∈ C = {(0, 1), (1, 0), (1, 1), (2, 2)}.
We recall that Π = [0, 2]. Given Y ′ = 2Y − 2 = 2Y ∗,
where Y ∗ = Y − 1, let us determine the set Π′ = Π∗.
It is

(X,Y ∗) ∈ C∗ = {(0, 0), (1,−1), (1, 0), (2, 1)}

X∗− = {1} , X∗+ = {2} , X∗− ∩X∗+ = ∅ .
Then: X∗− < X∗+, µ0 = 1, µ0 = 2, and we have
I = (1, 2); moreover

y0 = 0 , y0 = 2 ,
d

c
= −1 ∈ (−2, 0) = (−y0,−y0) .

Then, by Theorem 7, case 3, we obtain

Π′ = Π∗ = (−∞, 1) ∪ (2,+∞) = R \ (1, 2) 6= Π .

9 Conclusions

In this paper, recalling a general discussion on
iterated conditioning given by de Finetti in his
book, vol. 2, Appendix, section 13, we have given
a representation of a conditional random quantity
X|HK as (X|H)|K. In this way, we have obtained
the classical formula P(XH|K) = P(X|H)P (H|K),
by simply using linearity of prevision. Then, we have
considered the notion of general conditional prevision
P(X|Y ), where X and Y are two random quantities,
introduced in 1990 in a paper by Lad and Dickey, also
discussed by Lad in his book published in 1996. After
recalling the case where Y is an event, we have con-
sidered the case of discrete finite random quantities
and we made some critical comments and examples.
We have given a notion of coherence for such more
general conditional prevision assessments; then,
we have obtained a strong generalized compound
prevision theorem. We have studied the coherence of
a general conditional prevision assessment P(X|Y )
when Y has no negative values and when Y has no
positive values. We gave some results concerning
the set of coherent conditional prevision assessments
of X|Y ′, where Y ′ is a linear transformation of Y .
Finally, we have given some results on coherence of
P(X|Y ) when Y assumes both positive and negative
values. To better illustrate some critical points and
remarks we have also examined several examples.
Future research more in general should concern: (i)
the coherence of a conditional prevision assessment
A = (µ1, . . . , µn) on a family of n conditional
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random quantities F = {X1|Y1, . . . , Xn|Yn}; (ii)
the generalized coherence of imprecise conditional
prevision assessments, for instance an interval-valued
assessment A = ([l1, u1], . . . , [ln, un]), on F .
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Abstract 
The paper investigates outer approximations of coherent 
lower probabilities by 2-monotone measures. We charac-
terize the set of (Pareto)-optimal outer approximations 
and provide powerful iterative algorithms to calculate 
such measures.  
Keywords. Pareto optimal 2-monotone measure, addi-
tivity on lattices, simplex method, imprecision indices. 

1   Introduction 

Walley [21, p. 51] is often cited in saying that he does 
not “…know any ‘rationality’ argument for two-
monotonicity, beyond its computational convenience.” 
Of course, in particular in problems of larger scale, com-
putational convenience, and even computational tracta-
bility, is still an issue, and so the problem of finding a 
suitable approximation of a coherent lower probability 
by 2-monotone measures arises naturally in many appli-
cations of imprecise probabilities (see also Section 3).  
As analysis shows, the optimal choice of a 2-monotone 
measure can not be made uniquely, which may be under-
stood from the fact that the minimum of two 2-monotone 
measures is not again a 2-monotone measure in general, 
and so we will characterize and derive Pareto optimal 
solutions to that problem.  
The main idea of this paper consists of the following. 
For any coherent probability μ , we define a convex set 

2 monM μ− ≤  of 2-monotone measures that are dominated by 
μ . Then any possible optimal choice of a 2-monotone 
measure in 2 monM μ− ≤  is produced by finding extreme 
points of 2 monM μ− ≤ , which are not dominated by other 
measures in 2 monM μ− ≤ , and any optimal measure is repre-
sented as a linear convex combination of such points. 
After some technical preliminaries (section 2) and a 
slightly more detailed look at the convenience of 2-
monotonicity, we give in section 4 a necessary and suffi-
cient condition for a 2-monotone measure to be an ex-
treme point through lattices on which a 2-monotone 
measure is additive. In Section 5, we provide iterative 
algorithms for searching optimal extreme points, which 
then are illustrated by two examples. In the Appendix the 

reader can find some results on canonical sequences of 
monotone measures [5], which are used in the proofs. 

2. Technical preliminaries 

Let X  be a measurable space and A  be a σ -algebra of 
its subsets. A set function : [0,1]μ →A  is called a 
monotone measure [14] if 1) ( ) 0μ ∅ = , ( ) 1Xμ = ; and 
2) ,A B∈A , A B⊆  implies ( ) ( )A Bμ μ≤ . We write 

1 2μ μ≤  for monotone measures 1 2,μ μ  on A  if 

1 2( ) ( )A Aμ μ≤  for all A∈A . In this paper we consider 
the following families of monotone measures: 
1) monM  is the set of all monotone measures on A ; 

2) prM  is the set of all finite additive probability meas-
ures on A , i.e. pr monM M⊆  and additionally 

( ) ( ) ( )A B A Bμ μ μ∪ = +  for disjoint sets ,A B∈A ; 

3) lowM  is the set of all lower probabilities [22] on A , 
i.e. low monM M⊆  and for any lowMμ∈  there exists 

prP M∈  such that Pμ ≤ (, and so lowMμ∈  iff it satis-
fies the avoiding sure loss property [22]); 
4) cohM  is the set of all coherent lower probabilities [22] 
on A , i.e. for any cohMμ∈  and B∈A  there exists 

prP M∈  such that Pμ ≤  and ( ) ( )B P Bμ = ; 

5) 2 monM −  is the set of all 2-monotone measures [11] on 
A , i.e. 2 mon monM M− ⊆  and ( ) ( )A Bμ μ+ ≤  

( )A Bμ ∪ + ( )A Bμ ∩  for any ,A B∈A . 

6) chainM  is the set of all chain measures [14] on A , i.e. 
if chainMμ∈ , then there is a chain Γ ⊆ A  such that 
∅∈Γ , X ∈Γ  and, for all B, 

|
( ) sup ( )

A A B
B Aμ μ

∈Γ ⊆
= . 

3. On the convenience of 2-monotonicity 

As also discussed below, 2-monotone measures have 
some regular properties compared to coherent lower 
probabilities, which are very convenient from the com-
putational point of view. Of particular importance is the 
property recalled in Remark 1 below, ensuring that for 
any chain of events there is a single classical probability 
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in the core simultaneously attaining the lower probability 
for all elements of the chain. As a consequence, the 
enveloping lower and upper distribution functions define 
probabilities in the core, and so, for instance, a closed 
form for natural extension (calculating expectation of 
random variables) is available (repeated, e.g, in. [22, p. 
30ff], where also some direct applications are given). By 
similar arguments a convenient closed form for calculat-
ing lower and upper conditional probabilities (in 
Walley’s sense) can be derived (see, e.g., [22, p. 301, 
including the corresponding footnote]). Moreover, other 
common forms of conditioning, like Dempster’s rule of 
conditioning ([13]), also called maximum likelihood 
updating ([15]), are then guaranteed to lead to a coher-
ent, and indeed again 2-monotone, solution. 
Our main motivation for the present study, however, has 
been the case of hypothesis testing, where one has to 
distinguish between two hypotheses described by impre-
cise probabilities, and decide which one is more likely to 
have produced the data. Similarly as in the case of calcu-
lating the conditional distribution or the natural exten-
sion, the testing problem can be expressed in terms of a 
single linear optimization problem (see [1, chapter 4]), 
but, even with the considerable improvement along the 
lines developed for decision problems in [20, section 
3.2], the problem still increases exponentially in the 
sample size, and so still is, for the sample sizes usually 
common in statistics, simply computationally intractable.  
A powerful way out is offered by Huber-Strassen theory 
([18], and the work following it, see also [17, 3, 4] for 
reviews from different perspectives). The famous Huber-
Strassen theorem (in [18, cf. also the finally obtained 
extension in [9]) ensures that 2-monotonicity is suffi-
cient for the existence of a globally least favorable pair, 
i.e. a pair of classical probability distributions that 
i) allow to represent the whole testing problem in deter-
mining the optimal test and  
ii) can be calculated by considering sample size 1 only. 
While i) can be alleviated by a concept of local least 
favorability ([1, chapter 3), [2], [16]), property ii) can 
not be generalized appropriately (see the analysis of the 
proof in [1, p. 223ff.]). As a consequence, statistical 
models described by coherent, but not 2-monotone 
measures, often have to be approximated appropriately 
to be able to determine appropriate statistical testing 
procedures.  

4   Approximation by 2-monotone measures (finite 
case) 

In this case, we assume that X  is a finite set and A  is 
the power set of X , i.e. 2X=A . Let lowMμ∈ , then 

monMν ∈  is defined as a Pareto optimal approximation 
of μ  if ν μ≤  and ν ν μ′≤ ≤  for monMν ′∈  implies that 

ν ν′ = . For any lowMμ∈ , we denote 2 monM μ− ≤ =  

{ }2 |monMν ν μ−∈ ≤ .  

Lemma 1. Any Pareto optimal 2-monotone measure for 
a cohMμ∈  can be represented as a convex linear com-
bination of Pareto optimal extreme points of 2 monM μ− ≤ . 

Proof. It is clear that the set 2 monM μ− ≤  has a finite set of 

extreme points { }iμ , because it can be described by a 
finite number of inequalities. Therefore any 

2 monM μν − ≤∈  can be represented as a linear convex com-

bination of these points, i.e. i i
i

aν μ=∑ , where 0ia ≥ , 

1i
i

a =∑ . Assume that in the above representation there 

is an extreme point iμ ′  such that 0ia ′ >  and iμ ′  is not 
Pareto optimal, i.e. there is 2 monM μμ − ≤′∈  such that 

iμ μ′ ′<  (i.e., iμ μ′ ′≤  and iμ μ′ ′≠ ). Then we define 

|
i i

i i ì

aν μ
′≠

′ = ∑  ia μ′ ′+ . It is clear that 2 monM μν − ≤′∈  and 

ν ν ′< , therefore, ν  is not Pareto optimal, which means 
that the coefficient ia  has to be equal to zero if the cor-
responding extreme measure iμ  is not Pareto optimal. 
This fact proves the lemma.■ 
The previous lemma says that the full description of 
Pareto optimal 2-monotone measures for cohMμ∈  can 
be given by knowing only its Pareto optimal extreme 2-
monotone measures. Therefore, we have to answer the 
following question: what characteristics define extreme 
points uniquely? For this reason, we further involve 
some results concerning additivity properties of 2-
monotone measures. We will consider lattices of the 
algebra A . A lattice is a subset of A  closed with respect 
to intersection and union. We say that 2 monMμ −∈  is 
additive on a lattice ⊆L A  if ( ) ( )A Bμ μ+ =  

( ) ( )A B A Bμ μ∪ + ∩  for any ,A B∈L . Next straight-
forward result shows the way how we can describe addi-
tivity of 2-monotone measures. 
Lemma 2. Let S  be the set of all possible lattices in A , 
on which 2 monMμ −∈  is additive. Then S  is a covering1 
of A . 
Proof. Let { }1..., nX x x= . Consider maximal chains in 

2X=A  of the type { }0 1, ,..., nB B BΓ = , 0B∅ = ⊂  

1 ... nB B X⊂ ⊂ = , 1\ 1i iB B − = , 1,...,i n= . It is clear 
that such chains are lattices and every monotone measure 

                                                           
1 An arbitrary covering C  of A  is a family of non-
empty subsets of A  such that 

∈
=∪a C
a A . 
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is additive on them, i.e., we get the required covering 
that consists of all these lattices.■ 
We denote by μS  the covering of A  that consists of all 
maximal lattices, on which 2 monMμ −∈  is additive. For 
example, if μ  is a probability measure, then the cover-
ing is a singleton, which contains only one element A . 
If a 2 monMμ −∈  is such that ( ) ( ) ( )A B A Bμ μ μ+ < ∪ +  

( )A Bμ ∩  for any ,A B∈A  with A B⊆  and B A⊆  
then μS  obviously consists of all maximal chains in A . 
It is important to emphasize that any μΛ∈S  has to 
contain ∅  and X , since these sets are additive elements 
for any 2 monMμ −∈ . 
Another convenient characterization of 2-monotone 
measures is recalled in 
Remark 1. For any 2 monMμ −∈ , define the convex set 

( )core μ  of probability measures, defined by 

{ }( ) |prcore P M Pμ μ= ∈ ≥ . It is well-known that this 
set is non-empty and usually called the core of μ . 
Moreover, it is possible to describe all extreme points of 
this set [10]. To do this, we should consider all maximal 
chains of the algebra 2X  on { }1 2, ,..., nX x x x= . Then 
any extreme point Pγ  is generated by a maximal chain 

{ }0 1, ,..., nB B Bγ = , where 0 1 ... nB B B X∅ = ⊂ ⊂ ⊂ =  

and { }1
,...,

kk i iB x x= , 1,...,k n= , as { }( )ki
P xγ =  

( )1\k kP B Bγ − = ( ) ( )1k kB Bμ μ −− , i.e. Pγ  is chosen such 
that ( ) ( )P B Bγ μ=  for all B γ∈ .  

Lemma 3. Any lattice in μS  contains a maximal chain.  

Proof. Consider an arbitrary lattice 2XΛ ⊆ , on which 
μ  is additive. Let Γ  be a sequence of sets with the 
following properties: 1) a minimal algebra that contains 
Γ  coincides with 2X ; 2) first elements of Γ  are all 
elements of Λ . Then the limit measure2 μΓ , in the ca-
nonical sequence constructed by Γ  is a probability 
measure, and also ( ) ( )A Aμ μΓ =  for all A∈Λ . Since 
any such sequence Γ  is equivalent to some maximal 
chain 2Xγ ⊆ , we get ( ) ( )A Aμ μΓ =  for all A γ∈ . Con-
sider a lattice, on which μ  and μΓ  have the same val-
ues. It is clear that this lattice contains Λ  and γ , and 
also μ  is additive on it. It means that any lattice in μS  
contains a maximal chain. ■ 

                                                           
2 The explanation of terms: “limit measure”, “canonical 
sequence of monotone measures”, … are given in Ap-
pendix. 

Proposition 1. There is the one-to-one correspondence 
between maximal lattices in μS  and extreme points of 

( )core μ  for every ( )P core μ∈  defined by 

{ }| ( ) ( )A P A AμΛ = ∈ =A , where μΛ∈S . 

Proof. Because any lattice μΛ∈S  contains a maximal 
chain γ ⊆ Λ , we can define that Pγ  corresponds to Λ . 
Using canonical sequences of 2-monotone measures, it 
easy to prove that ( ) ( )P B Bγ μ=  for all B∈Λ . This 
proves that if Λ  contains two different maximal chains, 
then they generate the same probability measure, i.e. we 
show that such a construction generates the unique prob-
ability measure Pγ , where γ ⊆ Λ , with ( ) ( )P B Bγ μ=  
for all B∈Λ . We finish the proof of the proposition by 
showing that for any maximal chain γ  the set 

{ }2 | ( ) ( )XB P B Bγ μμ∈ = ∈S . It is easy to check that 

this set is a lattice. Let ( ) ( )P A Aγ μ=  and ( ) ( )P B Bγ μ=  

for some , 2XA B∈ . Then we have to prove that also 
( ) ( )P A B A Bγ μ∩ = ∩  and ( )P A Bγ ∪ =  ( )A Bμ ∪ . The 

above condition implies that 
( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ ≤ ∩ + ∪ ≤  

( ) ( ) ( ) ( ) ( ) ( )P A B P A B P A P B A Bγ γ γ γ μ μ∩ + ∪ = + = + , 

i.e. ( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ = ∩ + ∪ , ( )P A Bγ ∩ =  
( )A Bμ ∩  and ( ) ( )P A B A Bγ μ∪ = ∪ . Using again 

canonical sequences of 2-monotone measures, it is easy 
to prove that such a lattice is maximal, i.e. we have the 
one-to-one correspondence between maximal lattices in 

μS  and extreme points in ( )core μ .■ 

Proposition 2. Let cohMμ∈ , 2 monM μν − ≤∈ , 

{ }| ( ) ( )S A A Aν μ ν μ= = ∈ =A , { }0 | ( ) 0S A Aν ν= = ∈ =A . 
Then ν  is an extreme point of 2 monM μ− ≤  iff its values are 
defined by the sets Sν μ= , 0Sν = , νS  uniquely. 

Proof. A set function ν  is in 2 monM μ− ≤  iff it satisfies the 
following conditions:  
1) ( ) 0ν ∅ = , ( ) 1Xν = ; 
2) ( ) 0Aν ≥  for all A A∈ ; 
3) ( ) ( )A Bν ν≤  if A B⊆ ; 
4) ( ) ( ) ( ) ( )A B A B A Bν ν ν ν+ ≤ ∩ + ∪  for all ,A B A∈ ; 

5) ( ) ( )A Aν μ≤  for all 2XA∈ . 
These conditions can be considered as a system of linear 
inequalities on values ( )Aν , 2XA∈ . From the theory of 
linear inequalities, we know that any extreme point can 
be calculated by solving linear equalities, obtained by 
the subset of inequalities if we change “ ≤ ” to “ = ”. 
Show that we can confine ourselves to using equalities 
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that are generated by 2), 4), and 5). It is not necessary to 
use 1) because ( ) ( ) 0ν μ∅ = ∅ = , ( ) ( ) 1X Xν μ= = . We 
show further that any equality ( ) ( )C Dν ν=  for C D⊂  
( C D≠ ), generated by 3), can be derived from the addi-
tivity of ν . In this case, we take A C= , \B D C= . 
Then A B∩ =∅ , ( ) 0Bν = , ( ) ( ) ( )A B A Bν ν ν+ = ∩ +  

( )A Bν ∪ , and the last equality, ( ) 0Bν = , ( ) 0A Bν ∩ =  
implies that ( ) ( )C Dν ν= . Therefore, we conclude that 
the proposition is true. ■ 
Consider some corollaries from Propositions 1 and 2:  
Corollary 1. Let the notation of Proposition 2 be used. 
Then ν  is an extreme point of 2 monM μ− ≤  if for any 

νΛ∈S  a probability measure PΛ  with ( ) ( )P A AμΛ =  
for all A Sν μ=∈ ∩Λ  and ( ) 0P AΛ =  for all 0A Sν =∈ ∩Λ  
is defined uniquely. 
Proof. It is easy to see that Corollary 1 is a direct conse-
quence of Propositions 1 and 2. ■ 
Corollary 2. Let notations of Proposition 2 be used. 
Then ν  is an extreme point of 2 monM μ− ≤  if for any 

νΛ∈S  the set ( )0S Sν μ ν= =Λ∩ ∪  contains a maximal 

chain. In addition, Pγγ
ν = ∧ , where the minimum in the 

right side of the last formula is taken over all possible 
probability measures Pγ , defined for each maximal 
chain 0S Sν μ νγ = =⊆ ∪  by ( ) ( )P A Aγ μ=  for 
A Sν μγ =∈ ∩  and ( ) 0P Aγ =  for 0A Sνγ =∈ ∩ . More-

over, if 0 \S Sν ν μ= = = ∅ , then such a ν  is Pareto optimal. 

Proof. Because PΛ  is defined uniquely if 

( )0S Sν μ ν= =Λ∩ ∪  contains a maximal chain, we con-
clude that ν  is an extreme point by Corollary 1. The 
formula Pγγ

ν = ∧  is also true, since 2-monotonicity of ν  

implies that Pγ ν≥  for any 0S Sν μ νγ = =⊆ ∪ . Observe 
also that, for any 2 monM μν − ≤′∈  with S Sν μ ν μ′= ==  and 

0 0S Sν ν′= == , we have ν ν′ ≤ , i.e. ν  have the largest 
values for the fixed Sν μ=  and 0Sν = . Show that ν  is 
Pareto optimal if 0 \S Sν ν μ= = = ∅ . Suppose on the con-
trary that there is another 2 monM μν − ≤′∈  such that ν ν′ > . 
Then we should conclude that S Sν μ ν μ′= =⊆  and 
S Sν μ ν μ′= =≠ . We see that 

S S
P P

ν μ ν μ
γγ γ

ν ν
′= =⊆ ⊆

′ ≤ ∧ ≤ ∧ = , and 

such a ν ′  does not exist, i.e. the corollary is proved in 
the whole. ■ 
Pareto optimal extreme points, described in Corollary 2, 
have desirable properties. They are uniquely defined by 
a chosen set Sν μ=  and their values can be easily com-
puted using explicit formulas. Therefore, it is desirable 

to study the conditions of existence of these extreme 
points, and to construct the algorithm for finding such 
sets Sν μ= . 

We see from Proposition 1 that any extreme point of 
2 monM μ− ≤  is characterized by Sν μ= , 0Sν = , νS . But we 

know that an arbitrary extreme point is not necessarily 
Pareto optimal. To investigate this situation, introduce so 
called elementary lattices in 2X  of two types. An ele-
mentary lattice Λ of the first type is given by 

{ }, { }iA A xΛ = ∪ , where 2XA∈  and ix A∉ , and an 
elementary lattice of the second type by 

{ }, { }, { }, { } { }i j i jA A x A x A x xΛ = ∪ ∪ ∪ ∪ , where 

2XA∈  and ,i jx x A∉ . Using the above definition we 
can formulate the following necessary and sufficient 
feature of 2-monotonicity [7, 12]. 
Proposition 3. A set function : 2 [0,1]Xμ →  is a 2-
monotone measure iff 
1) ( ) 0μ ∅ = , ( ) 1Xμ = ; 

2) μ  is monotone on all possible lattices in 2X  of the 
first type; 
3) μ  is 2-monotone on all possible lattices in 2X  of the 
second type. 
Remark 2. Proposition 3 can be reformulated in the 
following simple way: 
A set function : 2 [0,1]Xμ →  is a 2-monotone measure 
iff  
1) ( ) 0μ ∅ = , ( ) 1Xμ = ; 

2) ( )( ) { }iA A xμ μ≤ ∪  for all possible 2XA∈  and 

ix A∉ ; 

3) ( ) ( ) ( ) ( ){ } { } { } { }i j i jA x A x A A x xμ μ μ μ∪ + ∪ ≤ + ∪ ∪  

for all possible 2XA∈  and ,i jx x A∉ . 

However, the consideration of elementary lattices is 
useful for characterizing Pareto optimal 2-monotone 
measures. 
Proposition 4. Let 2 monM μν − ≤∈ , 1L  be the set of all 
elementary lattices of the first type on which ν  is con-
stant, and 2L  be the set of all elementary lattices of the 
second type, on which ν  is additive. Then ν  is not 
Pareto optimal iff there is a non-identical zero, non-
negative set function : 2Xν +Δ → \  such that  

1) ( ) 0AνΔ =  if A Sν μ=∈ ; 

2) νΔ  is monotone on all lattices in 1L ; 

3) νΔ  is 2-monotone on all lattices in 2L . 
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Proof. Necessity. Let ν  be not Pareto optimal. Then 
there is a 2 monM μν − ≤′∈  such that ν ν′ > . It is easy to 
check that ν ν ν′Δ = −  obeys all required properties. 
Sufficiency. Let such a set function νΔ  exist. Consider 
the following positive numbers: 

( ) ( )( ){ }1 max 2Xh A A Aε μ ν= − ∈ , 

( )( ){ }2 max { } ( ) 2 ,X
i ih A x A A x Aε ν ν= ∪ − ∈ ∉ , 

( ){ }3 max , , 2 , ,X
i j i jw A x x A x x Aε = ∈ ∉ , 

where ( )h t t=  if 0t >  and 1t =  else; ( ), ,i jw A x x =  

( ) ( ) ( ) ( )( ){ } { } { } { }i j i jh A A x x A x A xν ν ν ν+ ∪ ∪ − ∪ − ∪

. Then choosing νΔ  such that 
{ }max ( ) | 2XA Aν εΔ ∈ ≤ , where { }1 2 3min , ,0.5 ,ε ε ε ε= , 

we get that the set function ν ν ν′ = + Δ  is in 2 monM μ− ≤  
and obviously ν ν′ > , i.e. ν  is not Pareto optimal. ■ 

5.  Algorithms for searching Pareto optimal 2-
monotone measures 
In this section we present two algorithms. The first one 
improves a given approximation (two-monotone prob-
ability) to a Pareto-optimal approximation, the second 
one places the choice of a certain Pareto-optimal ap-
proximation on a certain linear imprecision index as an 
objective function. 
Algorithm I 
Input data: coherent lower probability μ  on 2X . 

First step. Finding a 2-monotone measure 0ν  with 

0ν μ≤ . 
Second step. Finding a Pareto optimal 2-monotone 
measure ν  with 0ν ν μ≤ ≤ . 
The first step can be based on different approaches. For 
example, we can choose as 0ν  an arbitrary chain meas-
ure, generated by some maximal chain Γ  of algebra 2X . 
Then 0

|
( ) sup ( )

A A B
B Aν μ

∈Γ ⊆
=  for all 2XB∈ . However, it is 

clear that the realization of the second step of the algo-
rithm can be produced more effectively if the values 0ν  
are close to the values of μ . In this sense, the following 
procedure is better than the first one.  
1) Compute an auxiliary 2-monotone set function g  on 
2X  using the following formulas: 
  a) ( ) ( )g A Aμ=  for all 2XA∈  with 1A ≤ ; 

  b) Let us compute all values of g on sets with cardinal-
ity less or equal to k . Then values of g  on sets A  with 
cardinality that is equal to 1k +  are computed by  

{ }( ){ ,
( ) max ( ), max \

i j
ix x A

g A A g A xμ
∈

= +  

           { }( ) { }( )}\ \ ,j i jg A x g A x x− . 

Observe that in the last formula { }( )\ ig A x +  

{ }( )\ jg A x − { }( ) { }( )\ , \i j ig A x x g A x=  for i j= . 

Therefore, g  is 2-monotone by Proposition 3. It is easy 
to see that g μ≥  and g μ=  iff μ  is 2-monotone, and 
also it is not necessarily ( ) 1g X = . 

2) A 2-monotone measure 0 gν ϕ= D  is computed using 
a convex distortion function [ ]: 0, ( ) [0,1]g Xϕ →  that 
has to obey the following properties: 
(i) (0) 0ϕ = , ( ( )) 1g Xϕ = ; 

(ii) ( ( )) ( )g A Aϕ μ≤  for all 2XA∈ . 

According to, e.g., [14] 0ν  has to be also 2-monotone, 
i.e. 0 2 monMν μ−∈ ≤ . The search of the mapping ϕ  is 
also connected with solving the system of linear ine-
qualities. It is clear that it is sufficient to know the values 
of ϕ  only in the points in the set { }( ) | 2XY g A A= ∈ . 

Let { } 0

m
i i

Y y
=

= , where 0 10 ... ( )my y y g X= < < < = . 

Then the condition (ii) is transformed to ( ) ( )i iy yϕ ψ≤ , 

where ( )iyψ , 1,..., 1i m= − , are corresponding values 
of μ  in (ii), and convexity of ϕ  means that 

( ) ( )1i iy yϕ ϕ +≤ , 0,..., 1i m= − , and 

( ) ( )1

1

i i

i i

y y
y y

ϕ ϕ+

+

−
≤

−
( ) ( )1

1

i i

i i

y y
y y

ϕ ϕ −

−

−
−

, 1,...,i m= . 

Clearly the problem of searching ϕ  is simpler than the 
initial problem, and we should try to choose ϕ  with the 
largest values. 
The second step can be performed iteratively by using 
procedures that are similar to the usual simplex method. 
Consider an algorithm that seems to be easily realizable 
and computationally effective. Let 2k monM μν − ≤∈ , and the 
following values  

1 ( ) ( )kA Aμ νΔ = − , 

{ }( )( )2 \
min ( )
i

k i kx X A
A x Aν ν

∈
Δ = ∪ − , 

{ }( )(3 \ ,
min ( )

i j
k i kx X A x A

A x Aν ν
∈ ∈

Δ = ∪ − −  

{ }( ) { }( ) { }( ))\ \k j i k jA x x A xν ν∪ +  

are positive for a given 2XA∈ . Then, by Proposition 3, 
we can increase values of kν  on the set A  without any 
changes on other sets, and get a measure 1 2k monM μν + − ≤∈  
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by the rule 1( ) ( )k kB B dν ν+ = +  if B A=  and 

1( ) ( )k kB Bν ν+ =  otherwise, where { }1 2 3min , ,d = Δ Δ Δ . 
Thus, we can increase values by this rule until 0d =  for 
any 2XA∈ . It easy to show that this procedure con-
verges to a Pareto optimal 2-monotone measure after a 
finite number of iterations due to simplex method. Show 
that a measure kν  is Pareto optimal if 0d =  for any 

2XA∈ . In this case, we have to show that a convex set 
{ }2 |mon kM Mν ν ν μ−= ∈ ≤ ≤  is a singleton, i.e. 

{ }kM ν= . Observe that values of kν  can be considered 
as basic variables and the above condition ( 0d = for any 

2XA∈ ) means that we cannot change them, i.e. the 
convex set M contains the only one extreme point kν , 
i.e. kν  is Pareto optimal. Analogously, any iteration of 
the proposed procedure can be considered as an iterative 
step of the simplex method. This means that this proce-
dure converges by a finite number of iterations. 
Algorithm II. It is based on the usual application of 
simplex method. As a criterion a linear imprecision in-
dex can be used. By definition [8], a linear imprecision 
index f  is a non-negative functional on lowM  that satis-
fies the following properties:  
1) ( ) 0f P =  for any prP M∈ ; 

2) ( ) 1Xf η = , where Xη  describes the situation of 

complete ignorance, i.e. ( ) 1X Aη =  if A X= , 

( ) 0X Aη =  otherwise; 

3) ( ) ( )1 2f fν ν≤  for any 1 2, lowMν ν ∈  such that 

1 2ν ν≥ ; 

4) ( ) ( ) ( )1 2 1 2(1 ) (1 )f a a af a fν ν ν ν+ − = + −  for arbit-
rary [0,1]a∈  and 1 2, lowMν ν ∈ . 
The notable examples of such imprecision indices are the 
generalized Hartley measure [19] defined by 

2

1( ) ( ) ln
ln XA

GH m A A
X

ν
∈

= ∑ , 

where m  is the Möbius transform [10] of the given 
lowMν ∈ , and an index 

1Lf  based on 1L  distance defined 
by  

1
2

1( ) ( ) ( )
2 2 X

L X
A

f A Aν ν ν
∈

= −
−
∑ , 

where ν  is the dual of ν , i.e. ( ) 1 ( )cA Aν ν= − . Notice 
that linear imprecision indices are linear functions w.r.t. 
values of a given lowMν ∈ . In particular, since ν ν≥  
for any lowMν ∈ , we get  

( )
1

2

1( ) 1 ( ) ( )
2 2 X

c
L X

A

f A Aν ν ν
∈

= − − =
−
∑  

{ }
1

2 \ ,

11 ( )
2 1 X

X
A X

Aν
−

∈ ∅

−
−

∑ . 

Notice that we can use also as a linear functional the 1L  
distance between μ  and its approximation ν , i.e. in this 
case 

2

( ) ( ) ( )
XA

f A Aν μ ν
∈

= −∑ . 

Because ν μ≤ , we obtain 

{ } { }2 \ , 2 \ ,

( ) ( ) ( )
X XA X A X

f A Aν μ ν
∈ ∅ ∈ ∅

= −∑ ∑ , 

i.e. the criterion based on this metric is equivalent to the 
criterion 

1Lf . 

Therefore, the choice of Pareto optimal 2-monotone 
measure, based on a linear inclusion index, can be con-
ceived as a linear programming problem, where we have 
a system of inequalities that describe a convex set 

2 monM μ− ≤  and a linear criterion f .  

6.   Examples of the proposed algorithms working 

To illustrate our method, we use examples of coherent 
lower probabilities from [6]. 
Example 1. Let { }1 2 3 4, , ,X x x x x=  and let cohMμ∈  be 

defined on 2X  by { }1 2( ) min ( ), ( )A P A P Aμ = , where 

2XA∈  and 1 2, prP P M∈  are defined through their values 

on singletons by { }( )1 1 1/ 4P x = ; { }( )1 2 0P x = , 

{ }( )1 3 3/ 4P x = ; { }( )1 4 0P x = ; { }( )2 1 0P x = ; 

{ }( )2 1 1/ 2P x = , { }( )2 3 0P x = ; { }( )2 4 1/ 2P x = . The 
values of μ  are given in Table 1. It is clear that 

2 monMμ −∉ , because, for example, ( ) ( )A Bμ μ+ >  
( )A Bμ ∪  for { }1 2,A x x= , { }2 3,B x x= . Following the 

first step of Algorithm 1, we get an auxiliary 2-monotone 
set function g  on 2X  with values also shown in Table 
1. Then we need to find a convex distortion function ϕ , 
that is lower than function ψ  (see Fig. 1). The found 
distortion function is also shown in Fig. 1 and can be 
given by the formula 

0.5 , [0,0.5],
( )

0.75 0.125, (0.5,1.5].
x x

x
x x

ϕ
∈⎧

= ⎨ − ∈⎩
 

It easy to check that 0ν  is not Pareto optimal in this case, 
because, for example, 1/8d =  for the set 

{ }1 2 3, ,A x x x=  and according to Algorithm 1, we obtain 
the next approximation 1 2 monM μν − ≤∈  by the rule 
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1 0( ) ( )B B dν ν= +  if B A=  and 1 0( ) ( )B Bν ν=  other-
wise. Producing in such a way iterations for sets 
{ }1 3 4, ,x x x , { }2 3 4, ,x x x , { }2 3,x x , { }3 4,x x , we obtain a 
Pareto optimal measure 2 monM μν − ≤∈  with values given 
in Table 1.  

1x  2x  3x  4x  μ  g  
0ν  ν  

0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 1 0 0 1/4 1/4 1/8 1/8 
0 0 1 0 0 0 0 0 
1 0 1 0 0 0 0 0 
0 1 1 0 1/2 1/2 1/4 3/8 
1 1 1 0 1/2 3/4 7/16 ½ 
0 0 0 1 0 0 0 0 
1 0 0 1 1/4 1/4 1/8 1/8 
0 1 0 1 0 0 0 0 
1 1 0 1 1/4 1/2 1/4 ¼ 
0 0 1 1 1/2 1/2 1/4 3/8 
1 0 1 1 1/2 3/4 7/16 ½ 
0 1 1 1 3/4 1 5/8 ¾ 
1 1 1 1 1 3/2 1 1 

Table 1. Results for Example 1. 

0 0.5 1 1.5
0

0.5

1

 
Figure 1: The distortion function for Example 1: ϕ  - red 

line; ψ  - blue line. 

Example 2. Let { }1 2 3 4, , ,X x x x x=  and let cohMμ∈  
have the values given in Table 2. We see that 

2 monMμ −∉ , since ( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ > ∩ + ∪  
for { }1 4,A x x= , { }2 4,B x x= . Then, following the steps 
of Algorithm 1, we can get results that are shown in 

Table 2 and Fig. 2. The distortion function for this case 
can be defined by the formula 

0.5 , [0,2 / 3],
( )

1/ 3, (2 / 3,4 / 3].
x x

x
x x

ϕ
∈⎧

= ⎨ − ∈⎩
 

1x  2x  3x  4x  μ  g  
0ν  1ν  

0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 0 1 0 0 0 0 0 
0 1 1 0 0 0 0 0 
1 1 1 0 2/3 2/3 1/3 2/3 
0 0 0 1 0 0 0 0 
1 0 0 1 1/3 1/3 1/6 1/6 
0 1 0 1 1/3 1/3 1/6 1/6 
1 1 0 1 1/3 2/3 1/3 1/3 
0 0 1 1 1/3 1/3 1/6 1/6 
1 0 1 1 1/3 2/3 1/3 1/3 
0 1 1 1 1/3 2/3 1/3 1/3 
1 1 1 1 1 4/3 1 1 

Table 2. Results for Example 2. 

0 0.5 1 1.5
0

0.5

1

 
Figure 2: The distortion function for Example 2: ϕ  - red 

line; ψ  - blue line. 

It is easy to check that 0ν  is not Pareto optimal in this 
case, because 1/ 3d =  for set { }1 2 3, ,A x x x= , and ac-
cording to Algorithm 1, we obtain a Pareto optimal 
measure 1 2 monM μν − ≤∈  by the rule 1 0( ) ( )B B dν ν= +  if 
B A=  and 1 0( ) ( )B Bν ν=  otherwise. 
Notice that we can indeed apply the proposed algorithms 
to any monotone measure, i.e. μ  need not be a coherent 
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lower probability. This case is considered in the next 
example. 
Example 3. Let { }1 2 3 4, , ,X x x x x=  and let monMμ∈  be 

defined by ( ) 1Aμ =  if 1A ≥  and ( ) 0Aμ = . In this 
case the set of all Pareto optimal 2-monotone measures 
coincides with the set of all probability measures on 2X , 
and, by Algorithm 1, we obtain a probability measure 

0ν ν=  defined by { }( ) 1/ 4ixν = , where 1,..., 4i = .  

7.   Concluding remarks 

We have characterized and computed Pareto optimal 
outer approximations of coherent lower probabilities by 
2-monotone measures. Further research includes obvi-
ously the study of the sensitivity of the results with re-
spect to the choice of the approximation.  
Also a closer investigation of some modifications of the 
algorithms is certainly rewarding, in particular in the 
following directions.  
Because in principle the solution of the optimization 
problem is computationally very hard for large n X= , 

it is possible to solve it for some subalgebra 2X⊆B . 
Let ν  be Pareto optimal onB  for some μ  on 2X , then 
its inner extension ν  on 2X  defined by 

|
( ) sup ( )

A A B
B Aν ν

∈ ⊆
=

B

, 2XB∈ , is 2-monotone [14], and 

can be considered as an approximation of a Pareto opti-
mal measure. The same approach can be used for a gen-
eral infinite algebra A .  
In light of the intended application to statistical hypothe-
ses testing, it will also be interesting to replace the linear 
imprecision index in the objective function by the Kull-
back-Leibler distance, which has some close relation to 
the likelihood ratio underlying optimal hypotheses test-
ing.   
Notice that a Pareto optimal measure is not uniquely 
defined even in a case when we use a linear imprecision 
index in the linear programming problem. To get 
uniqueness, it seems to be possible to use the following 
approach: Let 2X=A , where X n= , we have a linear 
order on A  defined by indexing its elements, i.e. 

{ }2

1

n

i i
B

=
=A  and iB  is more preferable than jB  if i j< . 

Then we say that 1 2 monM μν − ≤∈  is more preferable than 

2 2 monM μν − ≤∈  if there is an index k  such that ( )1 iBν =   

( )2 iBν  for 1,..., 1i k= − , and ( ) ( )1 2k kB Bν ν> . 

Another rewarding issue has been raised by one of the 
referees, looking at the so-to-say inverse problem: can 
every Pareto-optimal solution be obtained from a certain 
imprecision index? Irrespective of whether the answer is 
affirmative or not, in any way that would give a vivid 

natural characterization and classification of the Pareto 
optimal solutions.  

Appendix: Canonical sequences of monotone 
measures: main results 
Here we give a brief overview on results concerning 
canonical sequence of monotone measures. The detailed 
description with proofs can be found in [5].  

Let 0μ  be a monotone measure on A , { } 1k k
B ∞

=
Γ =  a 

sequence of sets in A . Then a sequence of monotone 
measures { } 0k k

μ ∞

=
, defined as 

1 1 1( ) ( ) ( ) ( )k k k k k k kA A B B A Bμ μ μ μ− − −= ∪ − + ∩ , 
is called a canonical sequence of monotone measures, 
generated by Γ . It is easy to see that if 0μ  is 2-

monotone, then the sequence { } 0k k
μ ∞

=
 is increasing, i.e. 

0 1 ...μ μ≤ ≤ , and there is a limit ( ) lim ( )kk
A Aμ μΓ →∞

=  for 

all A∈A , and 2 monMμΓ −∈ . If 0μ  is 2-alternating 

(submodular), the sequence { } 0k k
μ ∞

=
 is decreasing, i.e. 

0 1 ...μ μ≥ ≥ , and the limit measure ( ) lim ( )kk
A Aμ μΓ →∞

= , 

A∈A , is also 2-alternating. For our purpose, it is suffi-
cient to consider the finite case where 2X=A , 

{ } 1

m
k k

B
=

Γ = , and mμ μΓ = . 

Two sequences { }1 1

n
k k

B
=

Γ =  and { }2 1

m
k k

C
=

Γ =  in A  are 
called to be equivalent ( 1 2~Γ Γ ) iff 

1 2
μ μΓ Γ=  for any 

generating monotone measure 0μ . 

Theorem 1. Let { } 1

n
A k k

A
=

Γ = ⊆ A . Then there is a in-

creasing sequence of sets { } 1

m
B k k

B
=

Γ = ⊆ A , 

1 2 ... mB B B⊆ ⊆ ⊆ , such that ~A BΓ Γ . Minimal alge-
bras AA  and BA , generated by AΓ  and BΓ  respec-
tively, coincide,  i.e. A B=A A . 

Let monMμ∈  be a monotone measure on A . We call a 
set B∈A  an additive element w.r.t. μ  iff 

( ) ( ) ( ) ( )A A B B A Bμ μ μ μ= ∪ − + ∩  for all A∈A . It is 
easy to check that , X∅  are additive elements w.r.t. any 

monMμ∈  and the set of all additive elements w.r.t. a 
monotone measure μ  is an algebra. 

Theorem 2. Let { } 0n n
μ ∞

=
 be a canonical sequence of 

monotone measures, generated by { } 1n n
B ∞

=
⊆ A . Denote 

by nM  the algebra, consisting of all additive elements 
w.r.t. nμ . Then 

1) 0 1 ... ....n⊆ ⊆ ⊆ ⊆M M M ; 

2) nμ  is additive on nM ; 
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3) if nC∈M , then ( ) ( )n kC Cμ μ=  for k n≥ ; 

4) 1 2{ , ,.., }n nB B B ⊆M . 
Notice that the above results imply several important 
consequences, which are used in this paper. In particular, 
let { }1,..., nX x x= . 2X=A , 0 2 monMμ −∈ . Consider a 
canonical sequence of 2-monotone measures, generated 
by { } 1

m
A k k

A
=

Γ = ⊆ A , assuming that the minimal algebra 
containing AΓ  coincides with A . Then, by Theorem 2, 
μ μΓ ≥ , μΓ  is additive on A , i.e. μΓ  is a probability 
measure, and by Theorem 1, there is a maximal chain 

{ } 0

n
B k k

B
=

Γ = ⊆ A  such that 0 1 ... nB B B X∅ = ⊂ ⊂ ⊂ = , 

1\ 1k kB B − = , 1,..,k n= ; μΓ  is uniquely defined by 

( ) ( )0k kB Bμ μΓ = , 1,..,k n= . 
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Abstract

We give a preliminary study of a new procedure to
correct incoherent imprecise conditional probability
assessments. The procedure is based on parametric
optimization problems which have as objective func-
tion a new discrepancy measure. We show through
simple examples how the procedure of correcting in-
coherent assessments can be properly extended to ag-
gregate conflicting opinions, and can be generalized
to embed importance weights of each assessment.

Keywords. Imprecise conditional probabilities, in-
consistency handling, aggregation opinions, diver-
gence measures.

1 Introduction

In this paper we illustrate a preliminary study for the
adoption of a new procedure to correct inconsistent
imprecise conditional probability assessments. The
procedure is based on parametric optimization prob-
lems the objective function of which is a discrepancy
measure recently introduced in [4] for a similar pur-
pose with respect to precise assessments. Such dis-
crepancy originates from a peculiar choice of a scoring
rule, and it behaves like ordinary divergences among
probability distributions.

Care must be taken for the notion of incoherence.
In fact, for imprecise conditional probability assess-
ments, different coherence requirements are possi-
ble (see e.g. the comparison among them done in
[20, 21]). We choose to proceed along the line of
de Finetti [12, 13], adopting the most stringent gen-
eralization of his coherence notion for precise as-
sessments to imprecise ones, as proposed by Co-
letti and Scozzafava (see e.g. [7]).

Assessments inconsistency can naturally arise when-
ever there is the need to merge different sources of
uncertainty information. The extension of our correc-
tion procedure to aggregation of opinions comes quite

naturally. It is in fact sufficient to formally dupli-
cate the elements in common among the assessments
to have a joint one, and treat it as generated by a
unique source.

Aggregation of different opinions is actually a sub-
ject which has been studied in depth, both in pre-
cise (see e.g. [10, 14, 22, 25]) and imprecise (see e.g.
[11, 16, 19, 23, 24]) evaluation frameworks. Some ag-
gregation rules are based solely on the assessed values,
others rely on auxiliary over structures, like for exam-
ple second order assessments or risk neutral probabil-
ities. Our choice lies in between: once a specific scor-
ing rule is chosen, the aggregation proceeds “alone”
by working only on the assessed values.

The procedure we propose reveals its efficacy espe-
cially whenever opinions are given on different do-
mains and the envelope of opinions union turns out
to be incoherent “per se”.

While theoretical details will be the object of a future
contribution, we present here some simple examples to
show peculiarities and potentialities of our procedure.

The paper continues with Section 2, where the nota-
tion and basic notions are introduced. In particular,
the discrepancy mentioned above is described and its
justification and properties are reported. After that,
in Section 3 we illustrate how to use such discrep-
ancy as objective function of parametric optimization
problems, so that, by an iteration, it is possible to se-
lect a set of coherent precise assessments whose lower-
upper envelopes induce the correction of an initially
incoherent assessment. In Section 4 we extend the
procedure to the aim of aggregating different opin-
ions. This generalization comes quite naturally by a
simple rewriting of the joint assessment. After that
we generalize the discrepancy measure by introducing
a weighted version. In fact, it is possible to differenti-
ate the importance of the single opinions, and inside
them of the single assessed values. Finally, we end by
Section 6, where a short conclusion is reported.
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2 Basic notions

We formalize the domain of the evaluation through
a finite family of conditional events of the type E =
[E1|H1, . . . , En|Hn].

Events Ei-s usually represent the situations under
consideration, while the Hi-s usually represent the dif-
ferent contexts, or scenarios, under which the Ei-s are
evaluated.

The basic events E1, . . . , En,H1, . . . ,Hn can be en-
dowed with logical constraints, that represent depen-
dencies among particular configurations of them (e.g.
incompatibilities, implications, partial or total coinci-
dences, etc.).

In the following EiHi will denote the logical connec-
tion “Ei and Hi”, ¬Ei will indicate “not Ei” and the
event H0 =

∨n
i=1 Hi will represent the whole set of

contexts considered.

By the basic events E1, . . . , En,H1, . . . , Hn it is pos-
sible to span a sample space Ω = {ω1, . . . , ωk}, where
ωj represents generic atoms, in some context named
“possible worlds ”. Note that the sample space Ω and
H0 are not part of the assessment but only auxiliary
tools.

The numerical part of the assessment is elicited
through interval values

lub = ([lb1, ub1], . . . , [lbn, ubn]) (1)

thought as honest ranges for the probabilities pi =
P (Ei|Hi), i = 1, . . . , n. Of course, some of the in-
tervals [lbi, ubi]-s could degenerate to precise values
pi-s.

For assessments like (E , lub), although defined on fi-
nite spaces, there could be different kinds of consis-
tency requirements (for a detailed exposition, among
others, refer to [20]). In this paper we focus on the
most stringent one: (strong) coherence. By adopting
a Bayesian sensitivity analysis interpretation, coher-
ent lower-upper conditional probability assessments
(E , lub) are those the numerical part lub of which
can be obtained as lower-upper envelopes of sets of
coherent precise, i.e. linear, conditional probability
assessments on E ; coherence for precise assessments is
thought in the most general sense of restrictions on E
of full finitely additive conditional probability distri-
butions. For a complete and rigorous description see
the exhaustive treatise [9].

It follows that to have a coherent assessment on E ,
there should exist a set of probability distributions
over Ω such that, on one hand it induces probabilities
for the Ei|Hi-s inside the ranges [lbi, ubi], and on the
other hand it is such that each lower (lbis) and upper

(ubis) bound of the ranges is attained through at least
one distribution in the set.

We denote by M such set of coherent precise condi-
tional assessments compatible with (E , lub)

M := {P coherent |lbi ≤ P (Ei|Hi) ≤ ubi,

i = 1, . . . , n}. (2)

We shall focus on the situations with an empty
M that characterize incoherent assessments (E , lub).
Such kind of incoherence is usually denoted as “incur-
ring in uniform loss” (see [27]) or as “not g-coherent”
(see [1]).

In literature it is commonly faced an other kind of
incoherence: M is not empty but there exist at least
one index i ∈ {1, . . . , n} such that

lbi < inf
P∈M

P (Ei|Hi) or sup
P∈M

P (Ei|Hi) < ubi .

(3)
In this cases (E , lub) is said to “avoid uniform loss but
not strong coherent” (see [26, 28]), or simply “incoher-
ent” (see [7]). This second kind of incoherence can be
directly solved by computing the “natural extension”
of (E , lub) (see again [1, 21, 27], among others).

Actually, there is a third type of incoherence: when
the assessment is not “weak coherent” (see again [26]).
For finite domains, this subtle “weak incoherence” de-
rives, as well illustrated in [20, 21], by the exclusion
of conditioning on events with zero probability. Since,
on the contrary, we believe that it is important to in-
clude such assessments in M (see e.g. [8]), we do not
tackle this further type of inconsistency.

Whenever (E , lub) incurs in a uniform loss, there is no
unique way to adjust it. In this paper we propose to
find out the “closest” correction, with a specific choice
for the “distance” notion. In [4] we already did this
for precise assessments taking advantage of the afore-
mentioned discrepancy measure. We propose now to
extend such method to imprecise assessments by gen-
eralizing the discrepancy among sets of assessments.

Before introducing the discrepancy measure, we need
some further auxiliary notions.

Every probability distribution α : P (Ω) → R cor-
responds to a non-negative vector α = [α1, . . . , αk],
with αj = α(ωj); then for every event E it will be
α(E) =

∑
ωj⊆E αj . We will refer to a nested hierarchy

of probability distributions over Ω. This to properly
separate inner from boundary situations:

• let A := {α = [α1, . . . , αk] | ∑k
1 αi = 1, αj ≥ 0,

j = 1, . . . , k} represents the whole set of proba-
bility distributions on Ω;
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• let A0 :=
{
α ∈ A|α(H0) = α(

∨
Hi) = 1

}
be the

subset of probability distributions on Ω that con-
centrate all the probability mass on the contem-
plated scenarios1;

• let A1 := {α ∈ A0|α(Hi) =
∑

ωj∈Hi
αj > 0,

i = 1, . . . , n} be the subset of probability dis-
tributions on Ω that give positive probability to
every scenario;

• let A2 = {α ∈ A1|0 <

∑

j: ωj⊂EiHi

αj

∑

j: ωj⊂Hi

αj

< 1,

i = 1, . . . , n} be the subset of probability dis-
tributions that avoid boundary values {0, 1} for
the conditional probabilities.

Any α ∈ A1 induces a coherent precise conditional
assessment on E

qα := [qi =

∑

j: ωj⊂EiHi

αj

∑

j: ωj⊂Hi

αj

, i = 1, . . . , n]. (4)

Associated to any (coherent or not) precise as-
sessment p = [p1, . . . , pn] ∈ (0, 1)n over E =
[E1|H1, . . . , En|Hn] we can introduce a scoring rule

S(p) :=
n∑

i=1

|EiHi| ln pi +
n∑

i=1

|¬EiHi| ln(1− pi) (5)

with | · | indicator function of unconditional events.

Note that such scoring rule is not defined for boundary
values 0 or 1 of the assessed probabilities. This is of
course a limitation of our approach, but all the same
we believe it is significant. In fact if the assessor had
so strong a belief in assessing such extreme values,
it could mean that the component did not want to
be the object of a settlement. Hence if any of the
lbis or of the ubis turn out to be 0 or 1, they are
maintained fixed in their values, if this of course will
not induce any evident contradiction, otherwise they
must be treated outside our procedure.

This score S(p) is an “adaptation” of the “proper
scoring rule” for probability distributions proposed by
Lad in [18](pag. 355). We have extended it to partial
and conditional probability assessments.

Such a score is motivated by a conditional event Ei|Hi

being a three-valued logical entity, partitioning Ω in
1This is commonly done in conditional frameworks to avoid

unpleasant consequences. See Walley[26] about Avoiding Uni-
form Loss assessments or Holzer[17] about the Principle of Con-
ditional Coherence

three parts (omnia Gallia divisa est in partes tres):
the atoms satisfying EiHi and therefore verifying the
conditional, those satisfying ¬EiHi, thus falsifying
the conditional, and those not fulfilling the context
Hi, to which the conditional may not be applied at
all. Hence the assessor of p “loses less” the higher are
the probabilities assessed for events that are verified,
and at the same time, the lower are the probabilities
assessed for those that are not verified. The values
assessed on events that turn out to be undetermined
do not influence the score. In fact the realization of
the random value S(p) when the atom ωj occurs is

Sj(p) =
∑

i: EiHi⊃ωj

ln pi +
∑

i:¬EiHi⊃ωj

ln(1− pi). (6)

The simultaneous involvement in this score of events
that turn out to be true and of those that turn out
to be false modifies the peculiar property of the usual
logarithmic scoring rule to depend only on the true
ones.

We now have all the elements to introduce the “dis-
crepancy” between a precise assessment p over E and
a distribution α ∈ A2, with respect to its induced
conditional coherent assessment qα, as

∆(p, α) := Eα(S(qα)− S(p)) (7)

=
k∑

j=1

αj [Sj(qα)− Sj(p)] . (8)

The distributions α are restricted to be in A2 because
only there the scoring rule S(qα) is properly defined.
It is however possible to extend by continuity the pre-
vious definition of ∆(p,α) to any distribution α in A0

through the expression

∆(p, α) =
n∑

i=1

ln(
qi

pi
)α(EiHi) + ln(

1− qi

1− pi
)α(¬EiHi)

(9)

=
n∑

i=1

α(Hi)
(

qi ln(
qi

pi
) + (1− qi) ln(

1− qi

1− pi
)
)

. (10)

This discrepancy ∆(p, α) behaves in a way that is
analogous to other usual Bregman divergences2 (see
[2]). In fact in[5] we formally proved that the following
properties hold:

• ∆(p, α) ≥ 0 ∀α ∈ A;

• ∆(p, α) = 0 iff p ≡ qα;

• ∆(p, ·) is convex on A2;

• ∆(p, ·) always admits a minimum on A0;
2Actually ∆(p, α) turns out to be a generalization of the

sum of two different “Bregman divergences”.
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• If ∆(p, ·) attains its minimum value on A1; then
there is a unique coherent assessment qα on E
such that ∆(p, α) is minimum;

• If ∆(p, ·) attains its minimum value on
A0 \ A1, then any distribution α ∈ A0 that
minimizes ∆(p, ·) induces the same significant
conditional probabilities (qα)j on the conditional
events Ej |Hj such that α(Hj) > 0.

The last two items are the crucial ones: for precise
numerical evaluations p, they always guarantee the
existence of a coherent assessment (E ,qα̃) “close as
much as possible” to (E ,p). And this also with respect
to the most general notion of conditional coherence
that contemplates the hierarchy of the so called “zero
layers” (see again [9] for details about this delicate
and crucial notion).

3 Correcting incoherent assessments

Let us see how the properties of ∆(p,α) could help
us in the correction of an incoherent assessment.

The starting point is that incoherence of (E , lub) is
equivalent to the incoherence of any precise assess-
ment v = (v1, . . . , vn) with lbi ≤ vi ≤ ubi. On the
other hand, the assessor elicitates the bounds lbi-s
and ubi-s as effectively attainable. For this reason,
we iteratively fix a specific bound lbf (or ubf ) and
we find the precise coherent assessment q̃ that is the
closest to the subset of precise assessments v-s that
reach lbf (or ubf ), while remaining inside the ranges
[lbi, ubi]-s for the others elements.

More precisely, by fixing an index f ∈ {1, . . . , n}, we
can find two coherent assessments q

f
and qf on E ,

induced respectively, by the solutions of the following
two parametric optimization problems, with parame-
ter v:

minimize ∆(v,α) (11)
under the constraints

vf = lbf or vf = ubf (12)
∀i 6= f lbi ≤ vi ≤ ubi , i ∈ {1, . . . , n} (13)∑

j: ωj⊂EkHk

αj = qk

∑

j: ωj⊂Hk

αj , k = 1, . . . , n (14)

α ∈ A0 . (15)

The choice in (12) of whether to fix the lower or upper
bound distinguishes one problem from the other.

The n − 1 constraints (13) reflect the compatibility
of v with the other intervals in lub, while the n con-
straints (14) impose the coherence of the assessment
qα induced by a solution α.

Note that if any optimal solution α̃ of (11) is in
A0 \ A1, the associated conditional assessment qα̃
is properly defined only for those conditional events
Ek|Hk with α̃(Hk) > 0, some component of q

f
(or

of qf ) remaining unspecified. Hence, in these cases,
we need to explore other “zero layers”. This can be
simply done by reiterating the optimization problem
over the part of E with probability of the condition-
ing events induced by α̃ equal to 0. The new optimal
solutions are distributions defined on sample spaces
spanned by the sub-domain, so that they significantly
induce some of the unspecified component of q

f
(or

qf ). Since for each iteration there will be at least one
conditioning event Hk with strictly positive induced
probability, at worst in n−1 steps the assessments q

f

(or qf ) are fully determined.

By letting the index f vary over the full range 1, . . . , n
we obtain a set of 2n coherent assessments

Q = {q
f
,qf , f = 1, . . . , n}. (16)

By definition, the imprecise assessment on E

luc = ([lc1, uc1], . . . , [lcn, ucn]), (17)

which is bounded by the lower and upper envelope of
Q, i.e.

lci := min
q̃∈Q

q̃(Ei|Hi) uci := max
q̃∈Q

q̃(Ei|Hi), (18)

is coherent and can be adopted as correction of lub.

Note moreover that we have no guarantees about the
uniqueness of q

f
, or of qf , because the set of optimal

solutions

Of = {α̃ ∈ A0|α̃ optimal solution of (11− 15)}
(19)

could induce different coherent precise assessments
over E . At the moment, numerical experiments sup-
port uniqueness, but further theoretical investigations
are needed. In any case, if there were different assess-
ments induced by (19), we could take the whole set
of them instead of the single q

f
(or qf ) to determine

the envelope (18).

Let us see how our correction procedure works with a
simple example.

Example 1 By borrowing the framework from [15],
we consider the domain E = [C|A,C|B,C|A ∨ B]
built by three basic unconditional logically independent
events A,B, C. Hence the whole sample space would
be of 8 atoms, but only 6 are inside H0 ≡ A∨B. The
set of coherent assessments on E is made by the triples
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[q1, q2, q3] ∈ [0, 1]3, with the last component forced to
be in the range

q3 ∈
[

q1 q2

q1 + q2 − q1 q2
,
q1 + q2 − 2q1 q2

1− q1 q2

]
(20)

(see Fig.1). Note the evident non-convexity of this
coherent set.

Figure 1: Lower and upper bounds for coherent as-
sessments on E = [C|A,C|B, C|A ∨B]

Let us firstly consider an assessments lub that incurs
in a uniform loss

E C|A C|B C|A ∨B

lbi .1 .2 .6
ubi .3 .4 .8

. (21)

Incoherence can be highlighted by taking as good the
first two components of lub, so that the coherent (nat-
ural) extension to C|A∨B should be, by (20), the in-
terval [.0714, .5227], that does not overlap the assessed
range [.6, .8]. Hence we have that the set M of precise
assessments compatible with lub is empty.
By performing 3 the 6 optimization problems of type
(11), we obtain the following coherent precise assess-
ments:

E C|A C|B C|A ∨B

q
1

.1196 .4797 .5140
q1 .3263 .4344 .5560
q

2
.3830 .2558 .4910

q2 .3263 .4344 .5560
q

3
.3263 .4344 .5560

q3 .4078 .5440 .6530

, (22)

whose lower-upper envelope results the following co-
herent imprecise assessment:

E C|A C|B C|A ∨B

lci .1196 .2558 .4910
uci .4078 .5440 .6530

. (23)

3Numerical results obtained with the nonlinear optimization
software CONOPT of the GAMS package [3]

4 Aggregating conflicting opinions

The merging, or aggregation, of different opinions
has a considerable importance for both theoretical
and practical aspects. This subject has been widely
treated in several scientific fields, and even restrict-
ing attention to probabilistic models, there is a great
number of proposals. An interesting feature occurs
when the different opinions are in conflict, i.e. the
whole assessment results incoherent (see e.g. [6, 25]
for precise assessments and [16, 19] for imprecise
ones).

In our approach, conflict among opinions can be ex-
pressed through disjoint intervals associated to the
same conditional events, and/or through incoherence
of the joint assessment.

Here we propose to adopt the previous procedure,
which we have seen to correct incoherent imprecise
assessments, also for aggregation purposes.

First of all, if we have evaluations assessed on Es =
[E1.s|H1.s, . . . , En.s|Hn.s], with the index s ∈ S ex-
pressing the different sources, we denote the joint do-
main by E =

∨
s∈S Es.

Secondly, we can replace the possible multiple ranges
assigned to single elements of E duplicating such ele-
ments and adding coincidence constraints in list of the
logical relationships. For example, if we have two dif-
ferent ranges [lb′i, ub′i] and [lb′′i , ub′′i ] associated to the
same Ei|Hi ∈ E , we can actually associate the second
interval [lb′′i , ub′′i ] to a new conditional event E′′

i |H ′′
i

added to E , and increase the logical relationships with
the constraints

EiHi ≡ E′′
i H ′′

i ; (24)
Hi ≡ H ′′

i . (25)

In this way, we will have the different opinions joined
in a single imprecise (and incoherent) assessment of
the type (E , lub), so that its correction (E , luc) will
represent an aggregation result. Of course, since luc
is a coherent imprecise assessment, equal intervals
([lc′i, uc′i] = [lc′′i , uc′′i ]) will be associated to coincident
elements of E (Ei|Hi and E′′

i |H ′′
i ).

Let us see how this works with an example.

Example 2 Let us consider again the framework of
the previous Example 1, but now with two differ-
ent opinions given on separate, but overlapping, sub-
domains:

C|A C|B C|A ∨B

lub′ [.1, .3] [.2, .4] −
lub′′ − [.5, .7] [.6, .8]

, (26)
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by duplicating C|B, we obtain a unique whole assess-
ment:

E C|A C|B C ′′|B′′ C|A ∨B

lub [.1, .3] [.2, .4] [.5, .7] [.6, .8]
(27)

with the logical constraints

C ′′B′′ ≡ CB , B′′ ≡ B. (28)

The 8 iterations of the optimization problem of type
(11) give the following set Q of coherent precise as-
sessments:

E C|A C|B C ′′|B′′ C|A ∨B

q
1

.1193 .4872 .4872 .5205
q1 .3196 .4612 .4612 .5700
q

2
.4053 .3678 .3678 .4855

q2 .3196 .4612 .4612 .5700
q

3
.3196 .4612 .4612 .5700

q3 .3547 .5749 .5749 .5380
q

4
.3196 .4612 .4612 .5700

q4 .4078 .5440 .5440 .6530

(29)

lower-upper envelope of which gives us the coherent
aggregation

E C|A C|B C|A ∨B

luc [.1193, .4078] [.3678, .5749] [.4855, .6530]
.

(30)

Of course, the approach doesn’t change if more than
two assessments are given to the same conditional
event Ei|Hi. We simply have as many coincidence
constraints (24,25) as assessed intervals for Ei|Hi.

Note that the aggregation (30) we obtained in the pre-
vious example deforms all the original opinions (26).
This is because the two assessments are strongly in
conflict. In fact, apart from the obvious inconsistence
due to the two disjoint intervals given on C|B, the
range [.6, .8], in lub′′ associated to C|A∨B, does not
overlap the natural extension of lub′

[lb′C|A∨B , ub′C|A∨B ] = [.0714, .5227] . (31)

But there are cases in which our procedure gives an
aggregation result that reconciles, without misshap-
ing, the original assessments. We can see this in the
next example.

Example 3 If we modify the two separate opinions
(26) of the previous example to

C|A C|B C|A ∨B

lub′ [.1, .3] [.35, .6] −
lub′′ − [.3, .55] [.1, .6]

, (32)

our procedure (we skip here the detailed computations
of Q) gives as lower-upper envelope the assessment

E C|A C|B C|A ∨B

luc [.1, .3] [.3, .6] [.1, .6] (33)

that coincide with the least commitment aggregation
of (32), that is the lower-upper envelope of the union
of the single intervals.

More generally, we can emphasize that our aggrega-
tion procedure is particularly significant when join-
ing the different opinions gives an incoherent result,
so that each assessed interval influences the result of
the merging. On the other hand, note that if all the
original opinions are coherent and given on the same
domain E , our aggregation result coincides with the
least commitment aggregation mentioned above, also
named ”unanimity rule”. Although a “weak” result,
this coincidence allows us to compare the behavior of
our procedure with many properties for aggregation
rules suggested by various authors (see for example
[10, 14, 19, 24] among others). In fact, in such situa-
tions we trivially have that

• Unanimity Preservation: if all the experts agree
and give the same assessments for the same
events, then the aggregate agrees with all the ex-
perts;

• Symmetry : for any permutation in the set of the
experts, we have the same aggregate;

• Invariance with respect to noninformative opin-
ion: the aggregated assessment of N experts
yields the same result as the aggregation of the
N opinions with a further noninformative opin-
ion, i.e. with one already implied by the natural
extension of the aggregation of the first N;

• Generalized External Bayesianity : the aggrega-
tion of the original assessments, followed by the
coherent extension to a new event, gives the same
result as the aggregation of the coherent exten-
sions of the initial assessments.

Moreover, we leave to a future investigation some fur-
ther basic properties, like for example those proposed
by Moral and del Sagrado [23].

5 Weighted aggregation

It is possible to associate different weights to the el-
ements of the joined assessment (E , lub), as we have
already done for precise assessments, reflecting either
possible repetitions of the values or different trust on
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the various sources of information. If we denote by
w = [w1, . . . , wn] such weights, we can adjust the ex-
pression of ∆(v,α) in the optimization problems (11)
as

∆w(v, α) :=
n∑

i=1

wiα(Hi)
(

qi ln(
qi

vi
)+ (34)

(1− qi) ln(
(1− qi)
(1− vi)

)
)

.

We can see directly the effects of this adjustment by
a slight modification of Example 2

Example 4 Let us modify the two original assess-
ments (26) by adding exact overlapping to the previ-
ously missing intervals:

C|A C|B C|A ∨B

lub′ [.1, .3] [.2, .4] [.6, .8]
lub′′ [.1, .3] [.5, .7] [.6, .8]

. (35)

We can now avoid duplicating identical conditional
events with identical intervals in the joint assessment
lub, and yet maintain the information of their multi-
plicity by using the following frequencies weights:

E C|A C|B C ′′|B′′ C|A ∨B

lub [.1, .3] [.2, .4] [.5, .7] [.6, .8]
w 2 1 1 2

. (36)

Performing the 8 optimizations with the new objective
function (34) under the same constraints (12-15), we
obtain as lower-upper envelope of Q

E C|A C|B C|A ∨B

luc [.1139, .3747] [.3750, .6242] [.5355, .6933] .

(37)
Note how the highest weights have “attracted” the ag-
gregation ranges to the corresponding initial assess-
ments.

Weights wi could be given in an “imprecise” fashion
through intervals [wi, wi], especially when they repre-
sent trust levels on the sources of information. This
does not change the method, but increases the pro-
cedure complexity. In fact, in such cases, we can
think of the wi in (34) as further variables in the
optimization problems (11-15), with additional con-
straints wi ≤ wi ≤ wi. This will affect the numerical
expression of the elements inside Q in (16), but all
other considerations will remain the same.

6 Conclusion

The core of our proposal is in the parametric op-
timization problems (11), based on the discrepancy

measure ∆(·, α). Such discrepancy was originally pro-
posed in [4] by a generalization of the logarithmic
scoring rule to partial conditional assessments, and
has been used to adjust precise evaluations. In [6]
we have extended its use to merge different sources of
information, and now to correct incoherent imprecise
conditional probability assessments.

We have seen through examples (1-4) that the proce-
dure to correct incoherent assessments can be prop-
erly extended to aggregate different opinions and gen-
eralized to embed importance weights of each assess-
ment. Effectiveness changes if the joint assessment
has a coherent least commitment aggregation or not.
In fact, if the lower-upper envelope of the union of
the opinions turned out to be coherent, our procedure
weakens its peculiarity and reduces to the so called
“unanimity rule”. Anyhow, our proposal is meaning-
ful in the situations when most of the known rules do
not apply. In fact, our procedure applies also when
the domains of the opinions do not coincide and the
numerical parts are strongly inconsistent, so that the
aggregation turns out to be a reasonable compromise
between the elicited values and the consistency re-
quirement.

This paper reflects just a preliminary study, because,
as already mentioned, theoretical aspects will have to
be fixed. To begin with, we need to investigate the
presumed uniqueness of the assessments induced by
the optimal solutions of the parametric optimization
problems (11). In fact, the same method applies also
when the solution is not unique, but some operational
troubles could appear.

Another open problem is about complexity. The
check of coherence is already a NP-complete prob-
lem “per se”. As a consequence, our parametric non-
linear optimization problems (11 - 15) are even harder.
Modern optimization tools like GAMS make medium-
size problems treatable with some tens of events. One
would need heuristic procedures for larger domain
problems.

Yet another important further investigation would
be to study the relationships with other aggregation
rules, in particular comparing properties, and charac-
terizing possible coincidences.
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[22] S. Rässler, Statistical Matching: a frequen-
tist theory, practical applications and alternative
Bayesian applications, Springer, 2002.

[23] S. Moral, J. del Sagrado. Aggregation of im-
precise probabilities. In: Bouchon-Meunier, Ag-
gregation and Fusion of Imperfect Information,
Physica-Verlag, New York, 162–188, 1998.

[24] M.C.M. Troffaes Generalizing the Conjunction
Rule for aggregating Conflict Expert Opinions
International Journal of Intelligent Systems, 21:
361–380, 2006.

[25] B. Vantaggi. Statistical matching of multiple
sources: A look through coherence, International
Journal of Approximate Reasoning, 49(3):701–
711, 2008.

[26] P. Walley. Statistical reasoning with Imprecise
Probabilities, Chapman and Hall, London, 1991.

[27] Walley P. Pelessoni R., Vicig P.: Direct Al-
gorithms for Checking Coherence and Making
Inferences from Conditional Probability Assess-
ments, Journal of Statistical Planning and Infer-
ence, 126 (1), 119–151, 2004.

[28] P.M. Williams: Note on conditional previsions.
School of Mathematical and Physical Sciences,
The University of Sussex, working paper, 1975.

78 Andrea Capotorti, Giuliana Regoli, Francesca Vattari



6th International Symposium on Imprecise Probability: Theories and Applications, Durham, United Kingdom, 2009

A Generalization of Credal Networks

Marco E. G. V. Cattaneo
Department of Statistics, LMU Munich
cattaneo@stat.uni-muenchen.de

Abstract

The likelihood approach to statistics can be inter-
preted as a theory of fuzzy probability. This paper
presents a generalization of credal networks obtained
by generalizing imprecise probabilities to fuzzy prob-
abilities; that is, by additionally considering the rela-
tive plausibility of different values in the probability
intervals.

Keywords. Bayesian networks, credal networks,
graphical models, d-separation, imprecise probabili-
ties, updating, likelihood function, hierarchical model,
fuzzy probabilities.

1 Introduction

A common interpretation of membership functions of
fuzzy sets is as statistical likelihood functions. With
this interpretation, the well-established likelihood ap-
proach to statistics appears as a theory of fuzzy prob-
abilities. These generalize imprecise probabilities by
additionally considering the relative plausibility of
different values in the probability or expectation in-
tervals. Besides the increased expressive power, the
fundamental advantage of the likelihood-based fuzzy
probabilities with respect to imprecise probabilities is
the ability of using all the information provided by the
data. In fact, the resulting hierarchical model exploits
the outstanding statistical properties of the likelihood
function, which makes it an ideal basis for inference
and decision making (see Cattaneo, 2005, 2007).

In the present paper, the hierarchical model is used
in the framework of belief networks, to describe the
uncertain knowledge about the values of the involved
variables. This leads to a generalization of Bayesian
networks and credal networks, combining the possibil-
ity of imprecision in the probability values with the
ability of using all the information provided by the
data.

In Section 2 the hierarchical model is briefly intro-

duced (see Cattaneo, 2008a, for a more detailed de-
scription), while in Section 3 some aspects of the
model of great practical importance are presented.
Finally, in Section 4 the hierarchical networks are de-
fined and compared with credal networks.

2 Hierarchical Model

In most theories of imprecise probability, the model
corresponds to a set P of probability measures on a
measurable space (Ω,A). The set P is often assumed
to be convex, and when an event A ∈ A is observed,
P is usually updated to

P ′ = {P (· |A) : P ∈ P, P (A) > 0} (1)

(that is, each P ∈ P is conditioned on A). The con-
ditional probability measure P (· |A) is obtained by
normalizing the “restricted” measure P (· ∩ A), but
the normalization step deletes the information about
the value P (A). The values P1(A), P2(A) describe the
relative ability of the probability measures P1, P2 ∈ P
to forecast the observed event A (before observing it):
the larger the probability value, the better the fore-
cast. These values are combined in the likelihood func-
tion lik′ on P ′ defined (up to a positive multiplicative
constant) by

lik′(P ′) ∝ sup
P∈P : P (· |A)=P ′

lik(P ) P (A) (2)

for all P ′ ∈ P ′, where lik was the likelihood func-
tion on P before observing A. The likelihood func-
tion is a central concept in statistical inference: it
is usually interpreted as a measure of the relative
plausibility of the probability measures as models of
the reality under consideration (proportional likeli-
hood functions are considered equivalent). When A is
the first observed event, the prior likelihood function
lik : P → (0,∞) can be interpreted as a (subjective)
measure of the relative plausibility of the elements of
P according to the prior information (see also Dahl,
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2005). In particular, prior ignorance is described by
a constant prior likelihood function lik; in this case,
(2) corresponds to the usual definition of statistical
likelihood function induced by the observation of the
event A (apart from the fact that lik′ is defined on P ′
instead of P). In general, the prior likelihood function
is interpreted and used as if it were the statistical like-
lihood function induced by (hypothetical) past data.

In the likelihood approach to statistics (see for exam-
ple Pawitan, 2001), the likelihood of a set of probabil-
ity measures is usually defined as the supremum of the
likelihood of its elements (this idea is used also in (2),
if there are several P ∈ P such that P (· |A) = P ′).
When lik is a likelihood function on P, the set func-
tion LR on 2P defined by

LR(H) =
supP∈H lik(P )
supP∈P lik(P )

for all H ⊆ P (in this paper, sup ∅ = 0) is a normal-
ized possibility measure with possibility distribution
proportional to lik. A possibility distribution can also
be considered as the membership function of a fuzzy
set (see Zadeh, 1978). In the present paper, possi-
bility distributions and membership functions are in-
terpreted as proportional to likelihood functions: this
is a common interpretation (see in particular Hisdal,
1988, and Dubois, 2006). Hence, it suffices to con-
sider normalized fuzzy sets and normalized possibil-
ity measures, but grades of membership and degrees
of possibility have only a relative meaning.

The set P of probability measures and the likelihood
function lik on P can be considered as the two lev-
els of a hierarchical model: these two levels describe
different kinds of uncertainty (probabilistic and pos-
sibilistic, respectively). When an event A ∈ A is ob-
served, the two levels P and lik of the hierarchical
model are updated to P ′ and lik′ according to (1)
and (2), respectively. The uncertain knowledge about
the value g(P ) of a function g : P → G is described
by the induced possibility measure LR ◦ g−1 on G (in
this paper, g−1 denotes the set function associating
to each subset of G its inverse image under g); that is,
by the normalized fuzzy subset of G with membership
function proportional to the profile likelihood func-
tion likg on G defined (up to a positive multiplicative
constant) by

likg(γ) ∝ sup
P∈P : g(P )=γ

lik(P )

for all γ ∈ G. In particular, if g associates to each
probability measure P ∈ P the expectation g(P ) =
EP (X) of a random variable X, or the probability
g(P ) = P (B) of an event B ∈ A, then the normalized
fuzzy subset of R with membership function propor-

tional to likg can be interpreted as the fuzzy expecta-
tion of X, or the fuzzy probability of B, respectively.
In this sense, the likelihood approach to statistics can
be interpreted as a theory of fuzzy probability. The
discussion on how to evaluate by one or more real
numbers the normalized fuzzy subset of R with mem-
bership function proportional to likg goes beyond the
scope of the present paper (but see Cattaneo, 2007,
for some interesting results): only the α-cut

{
x ∈ R : likg(x) ≥ α supy∈R likg(y)

}

with α ∈ (0, 1) will be considered here. This is a like-
lihood-based confidence region for g(P ), whose cover-
age probability can often be approximated thanks to
the result of Wilks (1938): in particular, 95% coverage
probability corresponds to α = 0.1465.

Example 1 Consider an urn containing 3 balls: one
ball is white, another is black, while the third one could
be white or black. We have no idea about the color
(white or black) of the third ball, but we can perform
a sequence of random draws with replacement from
the urn, and observe the colors of the balls drawn.
Conditional on the composition of the urn, these ob-
servations can be described as a sequence of indepen-
dent Bernoulli trials with constant probability 1

3 or 2
3

of observing a black ball (depending on the color of
the third ball: white or black, respectively). We shall
never be able to determine with absolute certainty the
composition of the urn, but if in a long sequence of
draws the proportion of black balls is approximately
2
3 , then it is much more plausible that the color of the
third ball is black than it is white.

Let P be the (convex) set of probability measures re-
sulting from the only imprecise prior probability mea-
sure about the composition of the urn (that is, about
the color of the third ball) such that the probability
of observing a black ball in the first draw is described
by the interval [ 13 , 2

3 ]. This is the vacuous imprecise
prior, and therefore, if P is updated according to (1),
then the (posterior) imprecise probability of observing
a black ball in the next draw remains [ 13 , 2

3 ], indepen-
dently of the number and colors of the balls drawn.
By contrast, the (posterior) fuzzy probability of ob-
serving a black ball in the next draw (resulting from
the hierarchical model with constant prior likelihood
function on P) evolves as expected: it tends to con-
centrate on the value 2

3 , when in a sequence of draws
of increasing length the proportion of black balls re-
mains approximately 2

3 . Figure 1 shows the graphs of
the membership functions of the fuzzy probability p of
observing a black ball in the next draw: prior to any
draw (dotted line), after drawing 2 white balls and 5
black balls (dashed line), and after drawing 8 white
balls and 15 black balls (solid line); in particular, the
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Figure 1: Membership functions of the fuzzy proba-
bility p of observing a black ball in the next draw (in
the situation of Example 1): prior to any draw (dot-
ted line), after drawing 2 white balls and 5 black balls
(dashed line), and after drawing 8 white balls and 15
black balls (solid line).

corresponding α-cuts with α = 0.1465 are the intervals
[0.333, 0.667], [0.389, 0.667], and [0.651, 0.667], respec-
tively.

These membership functions can be easily obtained by
applying the results of Section 3; the detailed calcula-
tions will be presented in Example 4.

The hierarchical model with levels P and lik gener-
alizes the imprecise probability model P, since the
probabilistic level is updated in the same way (1) as
the imprecise probability model, while the possibilis-
tic level carries additional information. In particular,
the fuzzy expectation of a random variable X is a
fuzzy subset of the imprecise expectation

[E(X), E(X)] = [infP∈P EP (X), supP∈P EP (X)] ,

and the fuzzy probability of an event B ∈ A is a fuzzy
subset of the imprecise probability

[P (B), P (B)] = [infP∈P P (B), supP∈P P (B)] ,

since their membership functions are constant equal
to 0 outside these intervals (for example, the fuzzy
probabilities of Figure 1 are fuzzy subsets of the im-
precise probability [ 13 , 2

3 ]). That is, fuzzy probabilities
generalize imprecise probabilities by additionally con-
sidering the relative plausibility of different values in
the probability intervals (imprecise probabilities cor-
respond to the crisp case of fuzzy probabilities). This
additional information allows us in particular to get
out of the state of complete ignorance; that is, to
reach nontrivial conclusions also when starting with
the vacuous prior, as in Example 1. Alternative up-
dating rules for the imprecise probability model P,
making use of some information contained in the pos-
sibilistic level lik, have been proposed in particular by
Moral (1992), Wilson (2001), and Held et al. (2008):

these updating rules discard some of the less plausi-
ble probability measures in P, but this can lead to
important problems, since any discarded probability
measure can become the most plausible one in the
light of new data. To avoid these problems, it is nec-
essary to store more information than it is possible
in an imprecise probability model: the hierarchical
model provides a simple solution.

When the probabilistic level of the hierarchical model
is a singleton P = {P}, the possibilistic level con-
tains no information, since the likelihood function
is defined only up to a positive multiplicative con-
stant. In this case, the membership function of the
fuzzy expectation of a random variable X, or of the
fuzzy probability of an event B ∈ A, is the indica-
tor function of {EP (X)}, or of {P (B)}, respectively;
and when an event A ∈ A is observed, the proba-
bilistic level is updated according to (1) by condition-
ing P on A. Hence, the purely probabilistic descrip-
tion of uncertain knowledge about ω ∈ Ω (that is,
the Bayesian model) is a special case of the hierar-
chical model. The same is true also for the purely
possibilistic description of uncertain knowledge about
ω ∈ Ω: a normalized possibility measure Π on Ω with
possibility distribution π can be described by the hi-
erarchical model with as probabilistic level the set
P = {δω : ω ∈ Ω, π(ω) > 0} (where δω is the Dirac
measure on Ω concentrated on ω), and as possibilistic
level the likelihood function lik on P defined (up to
a positive multiplicative constant) by lik(δω) ∝ π(ω)
for all δω ∈ P. In this case, Π = LR ◦ t−1 is the pos-
sibility measure on Ω induced by the identification of
each Dirac measure δω ∈ P with the corresponding
ω ∈ Ω, described by the function t : P → Ω with
t(δω) = ω for all δω ∈ P. The fuzzy expectation of a
random variable X corresponds then to the possibil-
ity measure Π ◦ X−1 on R induced by X : Ω → R;
and when an event A ∈ A is observed, the hierar-
chical model is updated according to (1) and (2) to
the hierarchical model with levels P ′ = t−1(A) and
lik′ = lik|P′ (the restriction of lik to P ′). That is,
when A is observed, Π is updated to the normalized
possibility measure Π′ on Ω with possibility distribu-
tion proportional to the pointwise product of π and
the indicator function of A.

The hierarchical model offers a unified approach to
the combination of probabilistic and possibilistic un-
certainty (for instance, fuzzy data can be used with-
out problem). Since membership functions and pos-
sibility distributions are interpreted as proportional
to likelihood functions, the rules for manipulating
fuzzy probabilities are implied by the well-established
theories of probability and likelihood. It is impor-
tant to underline that other interpretations of mem-
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bership functions and possibility distributions would
lead to other rules for manipulating fuzzy probabil-
ities; in particular, the updating rule would be dif-
ferent. For example, Walley (1997) and De Cooman
(2005) interpret possibility measures as upper proba-
bility measures: the resulting fuzzy probability model
is a special case of the imprecise probability model (at
least from the mathematical standpoint); in particu-
lar, constant possibility distributions remain constant
independently of the data observed (that is, we can-
not get out of the state of complete ignorance).

3 Convex Hierarchical Models

Let M0 be the set of all finite measures µ on the
measurable space (Ω,A), and let P0 ⊂ M0 be the
set of all probability measures P on (Ω,A). Hence,
M0 and P0 are subsets of the real vector space of all
finite signed measures on (Ω,A). Let µ0 ∈ M0 \ P0

be the measure on (Ω,A) with µ0(Ω) = 0 (that is,
µ0 has constant value 0). The normalization function
n : M0 \ {µ0} → P0 is defined by n(µ) = [µ(Ω)]−1 µ
for all µ ∈ M0 \ {µ0}, where the multiplication of
µ with the normalization constant [µ(Ω)]−1 is to be
interpreted pointwise. The restriction n|P0 of n to P0

is the identity function on P0, since P (Ω) = 1 for all
P ∈ P0. A set M ⊂ M0 is said to be bounded if
supµ∈M µ(Ω) is finite.

Each bounded set M ⊂ M0 such that M \ {µ0} is
not empty describes a hierarchical model: the proba-
bilistic level

P = {n(µ) : µ ∈M \ {µ0}}

is the image of M\{µ0} under n, and the possibilistic
level is the likelihood function lik on P defined (up to
a positive multiplicative constant) by

lik(P ) ∝ sup
µ∈M\{µ0} :

n(µ)=P

µ(Ω)

for all P ∈ P. Each hierarchical model can be de-
scribed in this way by a subset of M0: for example
the hierarchical model with levels P and lik is de-
scribed by

M = {lik(P ) P : P ∈ P}

(where the multiplication of P with the constant
lik(P ) is to be interpreted pointwise), but such a de-
scription is not unique: for instance the sets M∪{µ0}
and M\ {µ0} describe the same hierarchical model.
The advantage of the description by a subset of M0

is that the updating is particularly simple: when an
event A ∈ A is observed, the set M is updated to

M′ = {µ(· ∩A) : µ ∈M}. (3)

That is, the updated description M′ is the image of
M under rA, where rA is the function on M0 de-
fined by rA(µ) = µ(· ∩ A). It can be easily proved
that the update of M according to (3) corresponds
to the update of the hierarchical model according to
(1) and (2), because if n(µ) = P and P (A) > 0,
then (n ◦ rA)(µ) = P (· |A). In particular, when
applied to the probability measures P ∈ P0 with
P (A) > 0, the function n ◦ rA describes the condi-
tioning on A; hence, the updating (3) of the set M
of measures corresponds to the updating (1) of the
imprecise probability model, but without the normal-
ization step (which deletes the information about the
relative ability of the probability measures to forecast
the observed event A). For the hierarchical model
described by M, the uncertain knowledge about the
value g(P ) of a function g : P → G is described by the
normalized fuzzy subset of G with membership func-
tion proportional to the profile likelihood function likg

on G, which satisfies

likg(γ) ∝ sup
µ∈M\{µ0} :
(g◦n)(µ)=γ

µ(Ω)

for all γ ∈ G.

The imprecise probability model P corresponds to the
hierarchical model with as probabilistic level the set
P, and as possibilistic level a constant likelihood func-
tion lik on P; this hierarchical model is described by
the set M = P ⊂ M0. The imprecise probability
model P is often assumed to be convex; it can be eas-
ily proved that a set M′ can be obtained by updating
a convex set M = P according to (3) if and only if
M′ is convex. A hierarchical model is said to be con-
vex if it can be described by a convex subset of M0.
Hence, the convex hierarchical models are the hier-
archical models that can be interpreted as the result
of updating (with real or hypothetical data) a convex
imprecise probability model; that is, the convex hier-
archical models are the direct generalizations of the
convex imprecise probability models.

Let L1,L2 be real vector spaces, and let C ⊆ L1 be
convex. A function f : C → L2 is said to maintain
segments if for all x, y ∈ C, the image of the set

{λ x + (1− λ) y : λ ∈ [0, 1]}

under f is the set

{λ f(x) + (1− λ) f(y) : λ ∈ [0, 1]} .

The convex hull of a set S ⊆ L1 is denoted by ch(S).
The following result can be easily proved.

Theorem 2 Let L1,L2 be real vector spaces, and let
C ⊆ L1 be convex. If the function f : C → L2 main-
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tains segments, and S ⊆ C, then the image of the con-
vex hull of S under f is the convex hull of the image
of S under f ; that is,

{f(x) : x ∈ ch(S)} = ch ({f(y) : y ∈ S}) .

The convexification of a hierarchical model described
by the set M⊂M0 is the convex hierarchical model
described by the set ch(M) ⊂ M0. The function rA

on M0 maintains segments, since it is the restriction
to M0 of a linear map; hence, Theorem 2 implies
that if M is updated to M′ according to (3), then
ch(M) is updated to ch(M′) according to (3). This
result is particularly useful for updating the convex-
ification of a hierarchical model described by a finite
set M⊂M0 (such models are very important in the
framework of belief networks, studied in Section 4).
Since the normalization function n on M0 \ {µ0}
maintains segments, Theorem 2 can be used to prove
also the well-known result that if a set P of probabil-
ity measures is updated to P ′ according to (1), then
ch(P) is updated to ch(P ′) according to (1).

Let ρ : [0,∞] → [0,∞] be the function defined by
ρ(0) = ∞, ρ(∞) = 0, and ρ(x) = 1

x for all x ∈ (0,∞).
The function ρ is an involution; that is, ρ ◦ ρ is the
identity function on [0,∞]. The convex hull of a
function φ : C → [0,∞] is denoted by ch(φ); that
is, ch(φ) is the (pointwise) largest convex function
γ : C → [0,∞] such that γ(x) ≤ φ(x) for all x ∈ C.
The following theorem is useful because for exam-
ple the functions g associating to each probability
measure P ∈ P0 the expectation g(P ) = EP (X)
of a bounded random variable X, or the probability
g(P ) = P (B) of an event B ∈ A, are the restrictions
to P0 of linear maps. It is a consequence of Theo-
rem 2, since if g : P0 → G is the restriction to P0 of a
linear map, then the function f : M0 \ {µ0} → G ×R
defined by

f(µ) =
(
(g ◦ n)(µ), [µ(Ω)]−1

)

for all µ ∈M0 \ {µ0} maintains segments.

Theorem 3 Let G be a real vector space, and let
g : P0 → G be the restriction to P0 of a linear map.
If π and πch are the membership functions of the nor-
malized fuzzy subsets of G describing the uncertain
knowledge about the value g(P ) of g for a hierarchical
model and its convexification, respectively, then

πch = ρ ◦ ch(ρ ◦ π).

Theorem 3 implies in particular that for a convex hi-
erarchical model, the membership function π of the
fuzzy expectation of X, or of the fuzzy probability of
B, is “reciprocally convex”, in the sense that ρ ◦ π is

convex (since π = πch). Moreover, Theorem 3 implies
that for the convexification of a hierarchical model
described by a finite set M ⊂ M0 (such models are
very important in the framework of belief networks,
studied in Section 4), the membership function πch of
the fuzzy expectation of X, or of the fuzzy probability
of B, is piecewise hyperbolic, in the sense that ρ ◦ πch

is piecewise linear; in this case, the construction of
πch is particularly simple, as shown in the following
example.

Example 4 Consider the situation of Example 1.
Conditional on the composition of the urn (that is,
conditional on the color of the third ball: white
or black), the observations about the colors of the
balls drawn are modeled as a sequence of indepen-
dent Bernoulli trials with constant probability 1

3 or
2
3 of observing a black ball, described by the prob-
ability measures P 1

3
and P 2

3
, respectively. The im-

precise probability model P resulting from the vacu-
ous imprecise prior about the composition of the urn
(that is, about the color of the third ball) is the con-
vex hull of the finite set PB = {P 1

3
, P 2

3
} of probabil-

ity measures. The hierarchical model with constant
prior likelihood function on P is described by the set
P = ch(PB) ⊂ M0; hence, it is the convexification
of the hierarchical model described by the finite set
M = PB ⊂M0.

When the colors of the balls drawn are observed, the
updating to M′ according to (3) of the hierarchical
model described by the finite set M = PB is very sim-
ple. In fact, the updating (1) of the probabilistic level
PB = {P 1

3
, P 2

3
} is unimportant for the probability of

observing a black ball in the next draw, because the
Bernoulli trials are independent under both probabil-
ity measures P 1

3
and P 2

3
. The constant prior likelihood

function lik on PB is updated to lik′ according to (2):
since PB = {P 1

3
, P 2

3
} has only two elements, lik′ is

determined (up to a positive multiplicative constant)
by the likelihood ratio

lik′(P 2
3
)

lik′(P 1
3
)

=
( 1
3 )w ( 2

3 )b

( 2
3 )w ( 1

3 )b
= 2b−w

of P 2
3

and P 1
3
, where w and b are the numbers of

white and black balls observed, respectively. Assume
that b ≥ w: the hierarchical model described by the
finite set M′ simply tells us that the probability of
observing a black ball in the next draw is either 1

3
or 2

3 , with a likelihood ratio of 2b−w in favor of the
second value. This uncertain knowledge is described
by the fuzzy probability p of observing a black ball in
the next draw, whose membership function π on [0, 1]
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satisfies

π(p) =





( 1
2 )b−w if p = 1

3 ,
0 if p ∈ [0, 1]\{ 1

3 , 2
3},

1 if p = 2
3 .

Theorem 3 allows us to easily obtain the membership
function πch of the fuzzy probability of observing a
black ball in the next draw for the convexification of
the hierarchical model described by M = PB; that is,
for the hierarchical model with constant prior likeli-
hood function on P, which was considered in Exam-
ple 1. Since the function ρ ◦ π on [0, 1] satisfies

(ρ ◦ π)(p) =





2b−w if p = 1
3 ,

∞ if p ∈ [0, 1]\{ 1
3 , 2

3},
1 if p = 2

3 ,

its convex hull ch(ρ◦π) is the piecewise linear function
on [0, 1], whose values in ( 1

3 , 2
3 ) are obtained by linear

interpolation of the values of ρ◦π in 1
3 and 2

3 ; that is,

(ch(ρ◦π))(p) =
{

2b−w−3 (2b−w−1) (p− 1
3 ) if p∈[ 13 , 2

3 ],
∞ if p∈[0,1]\[ 13 , 2

3 ].

Hence, for the hierarchical model with constant prior
likelihood function on P (which was considered in Ex-
ample 1), the fuzzy probability p of observing a black
ball in the next draw, after having observed w white
balls and b black balls (with b ≥ w), has membership
function πch on [0, 1] satisfying

πch(p) =
{

[2b−w−3 (2b−w−1) (p− 1
3 )]−1 if p∈[ 13 , 2

3 ],
0 if p∈[0,1]\[ 13 , 2

3 ].

Figure 1 shows the graphs of the piecewise hyperbolic
function πch when b− w = 0 (dotted line), b− w = 3
(dashed line), and b− w = 7 (solid line).

4 Hierarchical Networks

Let X1, . . . , Xk be some variables taking value in the
finite sets X1, . . . ,Xk, respectively. An elegant and
useful way of constructing a probability measure P
on Ω = X1 × · · · × Xk (that is, a purely probabilistic
description of uncertain knowledge about the values of
the variables X1, . . . , Xk) is through a Bayesian net-
work (see for example Pearl, 1988, or Jensen, 2001).
This consists of a directed acyclic graph with nodes
X1, . . . , Xk, such that to each node Xi is associated
a stochastic kernel Pi from PAi to Xi, where PAi

is the image of Ω under PAi, and PAi is the func-
tion on Ω assigning to each ω = (x1, . . . , xk) ∈ Ω
the vector (xj1 , . . . , xjl

) of the values of the parents
Xj1 , . . . , Xjl

of Xi (that is, the nodes from which start
the edges pointing to Xi). The stochastic kernel Pi

associates to each vector pai ∈ PAi a probability mea-
sure Pi (· | pai) on Xi; in particular, if Xi is a root (that
is, it has no parents), then PAi assigns the “empty
vector” () to all ω ∈ Ω, and therefore PAi = {()}
is a singleton and the stochastic kernel Pi reduces to
a probability measure Pi (· | ()) on Xi. The probabil-
ity measure PP1,...,Pk

on Ω associated to the Bayesian
network is defined by

PP1,...,Pk
{ω} =

k∏

i=1

Pi ({xi} |PAi(ω))

for all ω = (x1, . . . , xk) ∈ Ω. A key property of
Bayesian networks is that the graph encodes condi-
tional independences between the variables X1, . . . ,
Xk: these conditional independences can be deter-
mined by the graphical criterion of d-separation.

Bayesian networks can be generalized to credal net-
works by associating to each node Xi a set Pi of
stochastic kernels Pi from PAi to Xi, instead of a sin-
gle stochastic kernel (see for example Cozman, 2005,
or Antonucci and Zaffalon, 2008). The set Pi asso-
ciated to a node Xi is said to be separately specified
if for each pai ∈ PAi we can specify a set Pi,pai

of
probability measures on Xi, and obtain Pi as the set
of all stochastic kernels Pi from PAi to Xi such that
Pi (· | pai) ∈ Pi,pai for each pai ∈ PAi (that is, Pi

can be identified with the Cartesian product of the
sets Pi,pai

). The imprecise probability model usually
associated to the credal network (called strong exten-
sion of the credal network) is the convex hull of the
set

PP1,...,Pk
= {PP1,...,Pk

: P1 ∈ P1, . . . , Pk ∈ Pk}.

In practical applications of credal networks the sets
Pi of stochastic kernels are often finite, and thus the
set PP1,...,Pk

of probability measures is finite too.

Credal networks can be generalized to hierarchical
networks by associating to each node Xi also a (prior)
likelihood function liki on the set Pi of stochastic ker-
nels associated to Xi. When the set Pi associated to
a node Xi is separately specified by the sets Pi,pai

of
probability measures on Xi (where pai ∈ PAi), the
likelihood function liki on Pi associated to Xi is said
to be separately specified if for each pai ∈ PAi we can
specify a likelihood function liki,pai

on Pi,pai
, and ob-

tain liki as the function on Pi defined by

liki(Pi) =
∏

pai∈PAi

liki,pai
(Pi (· | pai))

for all Pi ∈ Pi (that is, liki can be interpreted as the
independent combination of the marginals liki,pai

).
A node Xi is said to be Bayesian if the set Pi of
stochastic kernels associated to Xi is a singleton;
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Figure 2: Directed acyclic graph of the hierarchical
network of Example 5.

that is, the uncertain knowledge about the value of
a Bayesian node conditional on the values of its par-
ents is purely probabilistic. A node Xi is said to be
fuzzy if Pi (· | pai) is a Dirac measure on Xi for all
pai ∈ PAi and all stochastic kernels Pi in the set
Pi associated to Xi; that is, the uncertain knowledge
about the value of a fuzzy node conditional on the
values of its parents is purely possibilistic. The hier-
archical model associated to the hierarchical network
has as probabilistic level the set PP1,...,Pk

, and as pos-
sibilistic level the likelihood function lik on PP1,...,Pk

defined (up to a positive multiplicative constant) by

lik(P ) ∝ sup
P1∈P1,...,Pk∈Pk :

PP1,...,Pk
=P

k∏

i=1

liki(Pi)

for all P ∈ PP1,...,Pk
. Hence, the hierarchical model

associated to the hierarchical network is described by
the set M⊂M0 consisting of all measures µP1,...,Pk

on Ω with P1 ∈ P1, . . . , Pk ∈ Pk, where

µP1,...,Pk
{ω} =

k∏

i=1

[liki(Pi) Pi ({xi} |PAi(ω))]

for all ω = (x1, . . . , xk) ∈ Ω. If only convexifications
of hierarchical models are considered, then credal net-
works correspond to the hierarchical networks with
constant likelihood functions liki, and it often suffices
to use finite sets Pi of stochastic kernels, so that the
set M of measures is finite and the results of Section 3
can be exploited, as in the following examples.

Example 5 Consider a hierarchical network about
the value of the binary variables X1, . . . , Xk ∈ {0, 1}.
The directed acyclic graph is plotted in Figure 2. The
root X1 is Bayesian with uniform probability; that is,
P1 = {P1} with P1({0} | ()) = P1({1} | ()) = 1

2 . For
each i ≥ 2 the set Pi associated to the node Xi con-
sists of all stochastic kernels Pi from PAi = {0, 1}
to Xi = {0, 1} such that Pi({x} | (x)) ≥ 0.9 for both
x ∈ {0, 1}. All (prior) likelihood functions liki on the
sets Pi are constant. Hence, the hierarchical network
corresponds to a credal network with separately speci-
fied sets Pi. It can be interpreted as follows: X1 is the
unobservable variable of interest, and for each i ≥ 2

the variable Xi describes the observation returned by
a sensor with a probability of being correct of at least
90%. We want to describe the uncertain knowledge
about the value of X1 that we gain from the observa-
tions returned by the k−1 sensors, which are assumed
to be independent conditional on X1.

The case with k = 3 (interpreted as a credal network)
was studied by Antonucci et al. (2007, Example 1):
they showed that if the observations x2, x3 returned
by the two sensors are equal, then the posterior impre-
cise probability that X1 has value x2 = x3 is [0.988, 1],
while if the observations x2, x3 are different, then the
posterior imprecise probability about the value of X1

is vacuous. This can be reasonable, but the problem is
that the model behaves in the same way in the cases
with k > 3: it suffices that one of the observations
x2, . . . , xk returned by the k − 1 sensors is different
from the others, in order for the posterior imprecise
probability about the value of X1 to be vacuous, in-
dependently of the number of sensors. The reason is
that for each i ≥ 2 it is considered possible that the
sensor returning the observation Xi is perfect (that is,
always correct) while all others are not (that is, they
can be wrong), and in this case the posterior prob-
ability that X1 has value xi is 1, even when all ob-
servations returned by the other sensors are different
from xi. However, even if the sensor returning the ob-
servation Xi is always correct while all others can be
wrong, it is extremely improbable that all others are
wrong at the same time. Hence, when the observa-
tion returned by a sensor is different from all others,
it is extremely implausible that this sensor is perfect.
This information about plausibility is described by the
likelihood function, and in fact the problem disappears
when the network is interpreted as a hierarchical net-
work instead of a credal network.

The convexification of the hierarchical model associ-
ated to the hierarchical network can be easily updated
thanks to the results of Section 3: for instance, in the
case with k = 5, when 3 of the observations x2, . . . , x5

returned by the 4 sensors are equal x and one is differ-
ent from x, the membership function of the posterior
fuzzy probability p that X1 has value x is plotted in
Figure 3; in particular, the α-cut with α = 0.1465 is
the interval [0.932, 1]. As expected, this fuzzy proba-
bility is very high, although no probability value in the
interval [0, 1] is completely excluded.

To solve the above problem in the framework of credal
networks, we should exclude the possibility of perfect
sensors by bounding from above the probability that
sensors are correct. That is, we should choose a small
ε > 0, and for each i ≥ 2 replace the set Pi by the
set of all stochastic kernels Pi from PAi = {0, 1}
to Xi = {0, 1} such that Pi({x} | (x)) ∈ [0.9, 1 − ε]
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Figure 3: Membership function of the posterior fuzzy
probability p that X1 has value x, when 3 of the obser-
vations x2, . . . , x5 returned by the 4 sensors are equal
x and one is different from x (for the hierarchical net-
work of Example 5 with k = 5).

for both x ∈ {0, 1}. However, the resulting poste-
rior imprecise probabilities can depend strongly on the
choice of ε: for instance, in the case with k = 5,
when 3 of the observations x2, . . . , x5 returned by the
4 sensors are equal x and one is different from x,
the posterior imprecise probability that X1 has value
x is [0.422, 1.000] when ε = 0.001, [0.786, 1.000] when
ε = 0.005, and [0.880, 1.000] when ε = 0.01. By
contrast, in these cases the membership functions of
the posterior fuzzy probability that X1 has value x are
(almost) equal to the pointwise product of the indica-
tor function of the corresponding posterior imprecise
probability and the membership function for the case
with ε = 0 (plotted in Figure 3). Hence, this fuzzy
probability does not change much when ε is varied,
since only rather implausible probability values are ex-
cluded; in particular, the α-cuts with α = 0.1465 for
the cases with ε = 0.001, ε = 0.005, or ε = 0.01 are
practically equal to the α-cut [0.932, 1] for the case
with ε = 0.

The possibilistic level of the hierarchical model as-
sociated to the hierarchical network of Example 5
contains no information before the updating, because
the (prior) likelihood functions liki on the sets Pi

of stochastic kernels associated to the nodes Xi are
constant. But also hierarchical networks such that
the possibilistic levels of the associated hierarchical
models contain some prior information (that is, some
of the likelihood functions liki are not constant) can
be useful. In particular, when the stochastic kernels
of the network are learned from training data, it is
not necessary to reduce the likelihood function to the
maximum likelihood estimates (and thus discard the
information about the uncertainty of these estimates):
the whole likelihood function induced by the training
data can be maintained as the possibilistic level of
the hierarchical model associated to the hierarchical

network. This is a very interesting topic, but goes
beyond the scope of the present paper.

Another useful application of hierarchical networks
with nonconstant (prior) likelihood functions liki is
the contamination of a Bayesian (or credal) network:
for each node Xi we can give high relative plausibil-
ity to the original stochastic kernels Pi associated to
Xi, and low relative plausibility to all (or a subset
of) other stochastic kernels Pi from PAi to Xi. A
similar contamination would be possible also in the
framework of credal networks (by considering neigh-
borhoods of the original stochastic kernels), but we
could not include all possible stochastic kernels (since
otherwise the resulting imprecise probability model
would be useless), and the final considerations of Ex-
ample 5 suggest that the resulting posterior imprecise
probabilities would be much more sensitive than the
posterior fuzzy probabilities to the exact choice of the
contamination. In a certain sense, in the framework
of hierarchical networks the contamination can be at
the possibilistic level, while in the framework of credal
networks it must be at the probabilistic level, and this
can lead to instability.

Example 6 Consider the Bayesian network obtained
from the hierarchical network of Example 5 by select-
ing, for each i ≥ 2, the stochastic kernel Pi from
PAi = {0, 1} to Xi = {0, 1} such that Pi({x} | (x)) =
0.95 for both x ∈ {0, 1}. We can contaminate this
Bayesian network by choosing a small γ > 0 and as-
sociating to each node Xi the (separately specified) set
Pi of all stochastic kernels Pi from PAi = {0, 1} to
Xi = {0, 1} and the (prior) likelihood function liki

on Pi separately specified by the likelihood functions
liki,(x) on the set of all probability measures on {0, 1}
such that liki,(x)(Pi(· | (x))) = 1 if Pi(· | (x)) is the
corresponding conditional probability in the Bayesian
network, and liki,(x)(Pi(· | (x))) = γ otherwise, for
both x ∈ {0, 1}. The resulting hierarchical network
describes the situation in which there is some un-
certainty about the conditional probabilities of the
Bayesian network; it is useful because it tells us how
robust against modifications of the conditional proba-
bilities are the conclusions of the Bayesian network.

The convexification of the hierarchical model asso-
ciated to the hierarchical network can be easily up-
dated thanks to the results of Section 3: for instance,
Figure 4 shows the graphs of the membership func-
tions of the fuzzy probability p of X1 = 1 in the
case with k = 3 and γ = 0.05: prior to any obser-
vation (dashed line), after observing X2 = X3 = 0
(solid line with maximum near 0), after observing
X2 = 1 and X3 = 0 or vice versa (dotted line),
and after observing X2 = X3 = 1 (solid line with
maximum near 1); in particular, the corresponding α-
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Figure 4: Membership functions of the fuzzy probabil-
ity p of X1 = 1 (for the hierarchical network of Exam-
ple 6 with k = 3 and γ = 0.05): prior to any observa-
tion (dashed line), after observing X2 = X3 = 0 (solid
line with maximum near 0), after observing X2 = 1
and X3 = 0 or vice versa (dotted line), and after ob-
serving X2 = X3 = 1 (solid line with maximum near
1).

cuts with α = 0.1465 are the intervals [0.347, 0.653],
[0.001, 0.019], [0.035, 0.965], and [0.981, 0.999], respec-
tively. Hence, the conclusions of the Bayesian net-
work are pretty robust when the two sensors agree
(the uncertainty about the probability of X1 = 1 de-
creases), while they are not robust at all when the two
sensors disagree (the uncertainty about the probability
of X1 = 1 increases).

When X, Y, Z ⊆ {X1, . . . , Xk} are three disjoint sets
of variables, Y is said to be irrelevant to X given Z
(with respect to a hierarchical model on Ω) if the fuzzy
probability distribution for the variables in X condi-
tional on any realization of the variables in Z does not
change when also something about the variables in Y
is observed. This definition of conditional irrelevance
is stronger than the corresponding one for imprecise
probability models, since the invariance of both levels
of the hierarchical model is required. However, when
the hierarchical model is constructed through a hi-
erarchical network, the following fundamental result
holds (for a sketch of the proof see Cattaneo, 2008b,
Subsection 3.1).

Theorem 7 Let X, Y, Z ⊆ {X1, . . . , Xk} be three dis-
joint sets of variables. If X and Y are d-separated by
Z in the directed acyclic graph of a hierarchical net-
work, then Y is irrelevant to X given Z, with respect
to the hierarchical model associated to the hierarchical
network.

Theorem 7 is of crucial importance for the meaning
and usefulness of hierarchical networks: conditional
irrelevances between the variables X1, . . . , Xk are en-
coded in the graph and can be determined by the

graphical criterion of d-separation. Together with the
results of Section 3, Theorem 7 allows the calculation
of exact inferences in simple hierarchical networks.

Any probability measure on Ω can be constructed
through a Bayesian network with nodes X1, . . . , Xk.
By contrast, not all hierarchical models on Ω can be
constructed through hierarchical networks with nodes
X1, . . . , Xk. However, any hierarchical model describ-
ing the uncertain knowledge about the values of the
variables X1, . . . , Xk can be constructed through a hi-
erarchical network with nodes X1, . . . , Xk+1: it suf-
fices to add a root Xk+1, which in general is a parent
of all other nodes, and which indexes the probability
measures in the probabilistic level P of the hierarchi-
cal model. Hence, the variable Xk+1 takes values in
the set P, which can be infinite, but this is unim-
portant, since the root Xk+1 is fuzzy (with likelihood
function likk+1 corresponding to the possibilistic level
lik of the hierarchical model); by contrast, the nodes
X1, . . . , Xk are Bayesian.

More generally, we can easily transform any hierar-
chical network with nodes X1, . . . , Xk into a larger
hierarchical network which describes the same un-
certain knowledge about the values of the variables
X1, . . . , Xk, but such that each node is either Bayesian
or fuzzy (and we can also require that only roots can
be fuzzy). In fact, when a node Xi is neither Bayesian
nor fuzzy (or it is fuzzy but not a root), we can simply
add a root which is a parent of Xi only, and which in-
dexes the set Pi of stochastic kernels associated to Xi.
This additional root is fuzzy (with likelihood function
corresponding to the likelihood function liki on Pi as-
sociated to Xi), while the node Xi becomes Bayesian.
In particular, we can always obtain a hierarchical net-
work such that each node Xi is either Bayesian or
fuzzy and both the set Pi of stochastic kernels and
the likelihood function liki on Pi associated to Xi are
separately specified (since this is always the case for
roots and Bayesian nodes).

From the above considerations it follows easily the re-
sult (showed by Antonucci and Zaffalon, 2008) that
we can transform any credal network with nodes
X1, . . . , Xk into a larger credal network which de-
scribes the same uncertain knowledge about the val-
ues of the variables X1, . . . , Xk, but such that each
node Xi is either Bayesian or the set Pi of stochastic
kernels associated to Xi is separately specified by vac-
uous imprecise probability models. More specifically,
we can always obtain a credal network such that each
node Xi is either Bayesian or it is a root and the set Pi

of probability measures on Xi is the vacuous imprecise
probability model. The difference between the hierar-
chical model and the imprecise probability model is in
the way in which such roots Xi are updated when data
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are observed (since the Bayesian nodes are updated in
the same way in both models): in the framework of
credal networks we remain in the state of complete
ignorance about the value of Xi (apart from when
we get deterministic information about it), while in
the framework of hierarchical networks the possibilis-
tic level allows us to get out of the state of complete
ignorance about the value of Xi.

This shows in particular that hierarchical networks
cannot be described by possibly larger credal networks
(for instance by interpreting possibility measures as
upper probability measures), because these could not
display the same behavior when data are observed,
not even with an alternative updating rule.

5 Conclusion

In the present paper, the use of fuzzy probabilities
to describe the uncertain knowledge about the val-
ues of the nodes of belief networks has been studied.
The increased expressive power, the ability of using
all the information provided by the data, and the in-
creased robustness of the conclusions are important
advantages over credal networks. The possibility of
using the whole likelihood function induced by train-
ing data (and not only the maximum likelihood es-
timates) seems very promising and deserves further
study. The description of convex hierarchical models
by finite sets of measures and the validity of the cri-
terion of d-separation allow the calculation of the de-
sired inferences in simple hierarchical networks. How-
ever, approximation algorithms are necessary for the
calculation of inferences in more complex networks:
some algorithm for credal networks can probably be
adapted to hierarchical networks, thanks to the strong
similarity between the descriptions of the hierarchical
model and of the imprecise probability model as con-
vex sets of measures.
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Abstract
In this paper we present TANC, i.e., a tree-augmented
naive credal classifier based on imprecise probabilities;
it models prior near-ignorance via the Extreme Imprecise
Dirichlet Model (EDM) [1] and deals conservatively with
missing data in the training set, without assuming them to
be missing-at-random. The EDM is an approximation of
the global Imprecise Dirichlet Model (IDM), which con-
siderably simplifies the computation of upper and lower
probabilities; yet, having been only recently introduced,
the quality of the provided approximation needs still to
be verified. As first contribution, we extensively com-
pare the output of the naive credal classifier (one of the
few cases in which the global IDM can be exactly im-
plemented) when learned with the EDM and the global
IDM; the output of the classifier appears to be identical
in the vast majority of cases, thus supporting the adoption
of the EDM in real classification problems. Then, by ex-
periments we show that TANC is more reliable than the
precise TAN (learned with uniform prior), and also that it
provides better performance compared to a previous [13]
TAN model based on imprecise probabilities. TANC treats
missing data by considering all possible completions of
the training set, but avoiding an exponential increase of
the computational times; eventually, we present some pre-
liminary results with missing data.

Keywords. Imprecise Dirichlet Model, Extreme Impre-
cise Dirichlet Model, Classification, TANC, Naive Credal
Classifier.

1 Introduction

Classifiers based on imprecise probabilities are progres-
sively becoming known and appreciated also outside the
area of imprecise probabilities [2]; typically, they are
based on the Imprecise Dirichlet Model (IDM) to model
a condition of prior near-ignorance. When faced with an
instance whose classification is prior-dependent, they pre-
serve reliability by returning a set of classes (indetermi-
nate classifications) instead of a single class. Thanks to

the IDM, credal classifiers robustly deal with cases where
the evidence arising from the data is not strong enough to
smooth the effect of the prior choice.

Two IDM variants have been adopted in credal classifiers:
the global IDM or the local IDM; the local lacks some con-
straints present in the global. The global IDM can make
it very difficult to solve the optimization problem to de-
termine lower and upper probabilities. So far, the naive
credal classifier (NCC) of [10] is the only case in which
it has been possible to develop a credal classifier based on
the global IDM. On the contrary, the local IDM allows for
an easier solution of the optimization problem; yet, it can
return probability intervals that can be unnecessarily wide,
compared to the global IDM.

Recently, the EDM (Extreme Dirichlet Model) [1] has
been introduced; it restricts the credal set of the global
IDM only to its extreme distributions. The intervals re-
turned by the EDM are hence included in the intervals re-
turned by the global IDM; however, the EDM can consid-
erably simplify the solution of the optimization problem.
So far, the EDM has been used only in very preliminary
experiments; as recognized also in [1], it is still necessary
to test the EDM in real classification problems and to study
the difference with the global IDM. A first contribution of
this paper is that we have implemented NCC with EDM
and we have compared it (using 23 data sets) against NCC
with global IDM; results show that the two models returns
the same set of classes in the large majority of cases.

However, besides prior-ignorance, there is another kind
of ignorance involved in the process of learning from
data, i.e., ignorance about the missingness process. Usu-
ally, classifiers ignore missing data; this entails the idea
that the missingness process (MP) is non-selective in pro-
ducing missing data, i.e., it is MAR (missing at random
[6]). However, assuming MAR cannot be regarded as
an objective-minded approach, if one is ignorant about
the MP. According to the Conservative Updating Rule
[11, 12], in order to deal conservatively with nonMAR1

1The term nonMAR is used to indicate that MAR is not assumed.
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missing data in the training set, it is necessary to compute
a likelihood for each possible completion of the data set.
The naive credal classifier of [10] implements such an ap-
proach for data that are missing in the training set.

However, naive classifiers can become inadequate on cer-
tain data sets, as they assume the statistical independence
of the features given the class. Tree augmented naive
classifiers [5] have been shown to often outperform naive
Bayes, as they can model more realistically complex data
sets. An attempt to extend TAN to imprecise probabilities
has been proposed in [13]; in the following, this algorithm
is referred to as TANC*. TANC* is based on the local
IDM, to keep the computation affordable; yet, this choice
is likely to make TANC* much more indeterminate than if
the global IDM was used. In fact, TANC* returns a con-
siderable number of indeterminate classifications [13]. A
further characteristic of TANC* is that it assumes missing
data to be MAR, which also contributes for its efficiency.

In this paper we present TANC, i.e., a tree-augmented
naive credal classifier based on imprecise probabilities,
which (a) models prior near-ignorance via the EDM and
(b) treats missing data in the training set2 without assum-
ing MAR, thus computing a set of likelihoods. Although
the number of possible likelihoods is in principle exponen-
tial with respect to the number of missing values, we show
that the computational complexity of TANC does not nec-
essarily increase exponentially with the total number of
missing data in the training set.

We thoroughly evaluate TANC by experiments. Firstly,
we evaluate TANC against the precise TAN (i.e., learned
with uniform prior) on several data sets; we show that
TANC is effective at detecting hard-to-classify instances,
over which TAN becomes unreliable; instead, TANC pre-
serve its reliability thanks to indeterminate classifications.
In a second series of experiments, we compare TANC and
TANC*; we show that TANC is less indeterminate than
TANC*; the results suggest moreover that TANC returns
determinate and correct answers on instances over which
TANC* is unnecessarily indeterminate. Since the differ-
ence between TAN, TANC and TANC* lies in the model
of prior ignorance, the differences between them decreases
with the size of the data set: large amount of data reduce
the role of prior densities.

Eventually, we present some preliminary results with non-
MAR missing data, comparing TANC against the naive
credal classifier (which is also able to treat missing data as
nonMAR). Under this setting, TANC appears to be much
more indeterminate than the naive credal classifier, be-
cause of the more complex graph.

The paper is structured as follows: Section 2 introduces
the notation and the basic definitions; Section 3 describes

2The extension to nonMAR missing data in the testing set is left for
future development.

the Imprecise Dirichlet Model in its local, global and ex-
treme specifications; in Section 5 we experimentally show
that using the naive credal classifier with global IDM or
with the EDM leads to equivalent classifications in most
cases. Section 6 presents the TANC algorithm and proves
its correctness; Section 7 shows the experimental results,
including the comparison against TAN, TANC* and some
preliminary results with missing data. Finally, Section 8
contains the conclusions.

2 Notation and Basic Definitions

This section presents the notation used later in the paper,
the definition of a credal network and the specification of
the data that is employed for learning the parameters of
the network. To simplify, we use a definition of credal
network were the factorization is enforced in a set of joint
probability distributions.

Definition 1 A credal network is a triple (G,X ,K), where
G is a directed acyclic graph with nodes associated to dis-
crete random variables X = {X1, . . . , Xm} and K is a
set of multinomial probability distributions on X such that
each p ∈ K factorizes as p(X ) =

∏
i p(Xi|Πi) (which

can be read as every variable is conditionally independent
of its non-descendants given its parents), where Πi denotes
the parents of Xi in G (when Πi = ∅, p(Xi|Πi) is in fact
the marginal p(Xi)).

The state space of a variable Xi is denoted by ΩXi , and
the joint space on a set of variables Y by ΩY = ×X∈YΩX .
Lowercase letters are used to specify assignments to vari-
ables: xi ∈ ΩXi is a category of Xi, and πi ∈ ΩΠi is an
assignment to all parents of Xi. Parents and children of
variables are denoted always with respect to the graph G
of the network. A variable Xi with Πi = ∅ is called a root
variable. We further denote by Λi the set of children of
Xi.

We assume the training data set D to contain n instances
of type x = {x1, . . . , xm}. With reference to the subset of
variables Y ⊆ X , we define ny as the number of instances
for which the set of variables Y is set to y.

We allow the training data set to contain missing values,
that is, for each instance x some of its elements may be
absent. A completion of x is an assignment to the missing
values such that x becomes complete. A completion of
the data set is a completion for all its instances. We denote
by dY a possible realization of the training data set (i.e.,
the observed values plus a possible realization for missing
data, if any) restricted to the variables Y ⊆ X .
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3 Variants of the Imprecise Dirichlet Model

The Imprecise Dirichlet Model(IDM) [8] is a tool for infer-
ence from categorical data, based on a set of prior Dirich-
let densities. In the following, we illustrate the different
variants of the IDM, considering as an example the simple
credal network X1 → X2.

As for the marginal distribution p(X1), the Dirichlet den-
sity is proportional to

∏
x1∈ΩX1

θ
αx1−1
x1 , where αx1 > 0

and
∑
x1∈ΩX1

αx1 = s, where s represents the equiva-
lent sample size (or hidden instances), which determines
the weight of the prior compared to the total number of in-
stances in the training set. By letting the hyper-parameters
αx1 take all the possible values in their domain of defini-
tion, the IDM produces an interval posterior estimate of
the chance, which for each x1 ∈ ΩX1 is:

[
nx1

n+ s
,
nx1 + s

n+ s

]
. (1)

When we move to the estimation of p(x2|x1), the IDM
can be applied locally or globally. By the local IDM, we
repeat the estimation of formula (1), thus obtaining:

[
nx1x2

nx1 + s
,
nx1x2 + s

nx1 + s

]
. (2)

In other terms, the hyper-parameters αx1x2 can vary be-
tween 0 and s (0 < αx1x2 < s). In this way, we obtain a
local credal set for each variable and each assignment of
its parents; the global credal set is eventually obtained by
the multiplication of the local credal sets.

Alternatively, one can use the global IDM; in this case the
hyper-parameter αx1x2 is constrained by

∑
x2
αx1x2 =

αx1 , where αx1 is the hyper-parameter of the marginal
distribution of the parent. The intervals computed by the
global IDM are:

[
nx1x2

nx1 + αx1

,
nx1x2 + αx1

nx1 + αx1

]
. (3)

The global IDM estimates narrower posterior intervals
than the local IDM because of these additional constraints.
In fact, the intervals computed by the local IDM can be
very wide when we analyze the corresponding set of joint
distributions. On the other hand, under the global IDM, it
is usually hard to solve inferences, because the parameters
of the network become all correlated in some way. One of
the few cases in which this computation is tractable is the
naive credal classifier [10].

The EDM is a modification of the global IDM which re-
stricts the IDM to its extreme distributions. Let us consider
X1 again; the EDM allows αx1 to assume two values: 0 or
s; hence, it does not consider all the Dirichlet distributions
defined by the constraint

∑
x1∈ΩX1

αx1 = s, which are

infinite. Analogously, αx1x2 can assume only two values:
0 or s, but still depends on αx1 . In fact, the EDM treats
the s hidden instances as s rows of missing data; the rows
are assumed to be identical, but there is ignorance about
the value assumed by each variable; such an ignorance de-
termines the credal set.

When applied to a single variable, EDM returns the same
interval of the global IDM; however, when applied to a
credal network, it returns intervals that are included (or at
most equivalent) in the intervals computed by the global
IDM [1].

4 Credal Classification

We denote the class variable as C, assuming values in ΩC ;
while the set of remaining variables Y = X \C are called
features. The goal of classification is to build a classifier
on a training set, and then to predict the unknown class of
new instances, given the values y of the features.

According to [7], the optimality criterion for classifica-
tion based on imprecise probabilities is to return the non-
dominated classes. In particular, given the values y of the
features, class c’ dominates (or credal-dominates) class c”
if and only if:

min
p∈K

(p(c′|y)− p(c′′|y)) > 0

The set of non-dominated classes can be detected by per-
forming repeated pairwise comparisons, as shown in Fig-
ure 1.

IDENTIFICATION OF NON-DOMINATED CLASSES

1. set NonDominatedClasses := ΩC ;

2. for class c′ ∈ ΩC

• for class c′′ ∈ ΩC , c′′ 6= c′

– if c′′ is dominated by c′, drop c′′ from
NonDominatedClasses and break the inter-
nal loop;

3. return NonDominatedClasses.

Figure 1: Identification of non-dominated classes via pair-
wise comparisons.

A key point is that there can be several non-dominated
classes and that these classes are incomparable; in this
case, the classifier returns an indeterminate (or set-valued)
classification. Classifiers that issue set-valued classifica-
tions are called credal classifiers . Intuitively, credal clas-
sifiers will return determinate classifications (i.e., a single
class) on easy-to-classify instances, and more classes on
hard-to-classify instances.
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5 IDM vs. EDM: empirical comparison on
Naive Credal Classifier

Before describing TANC, we experimentally evaluate
the naive credal classifier with adoption of the EDM
(NCC-EDM) against the traditional naive credal classifier
based on the global IDM (NCC). When checking credal-
dominance between c′ and c′′, NCC searches the minimum
of p(c′)/p(c′′) over (0, s), while NCC-EDM evaluates the
ratio p(c′)/p(c′′) only in 0 and s. We have implemented
NCC with EDM by reworking the code of JNCC2 3, an
open source implementation of NCC.

The answers returned by NCC and NCC-EDM might be
different: when checking whether c′ credal-dominates c′′,
it can happen that NCC-EDM detects credal-dominance
while NCC, using a larger credal set (which by the way
contains the former), does not detect credal-dominance (in
other terms: NCC can find a lower minimum, implying
non-dominance, than NCC-EDM).

Some of this different dominance tests do not affect the
final set of non-dominated classes, because several pair-
wise comparisons are run, but some do. Therefore, NCC
and NCC-EDM may return distinct sets of non-dominated
classes.

To empirically evaluate the difference between NCC and
NCC-EDM we have worked on 23 data sets from the UCI
repository 4. Each data set has been used as training and
then as testing set; in fact, the goal here is to compare
the answers of the two classifiers and not to provide an
assessment of their accuracy.

On 22 data sets out of 23, the percentage of credal-
dominance tests which receive a different answer from
NCC-EDM and NCC is far smaller than 1%; the percent-
age of instances over which the two models return a differ-
ent set of dominated classes is very low: 0.01% on aver-
age. The number of performed pairwise comparison over-
all is in the order of 106, while the total number of in-
stances classified by NCC and NCC-EDM is around 105.

There is however a single data set over which NCC and
NCC-EDM lead to different results: the audiology. It has
226 instances, 24 classes and 69 features. Remarkably,
most binary features have very skewed distributions, such
as 224 versus 2, or 225 versus 1. Because of the many
classes and of the unevenly distributed features, the differ-
ences on the model of prior ignorance can lead to a differ-
ent set of non-dominated classes. This happens on 51/226
instances, i.e., about 22% of the instances.

We conclude that NCC and NCC-EDM are practically
equivalent on most cases; however, differences between
the two models can arise on data sets with many classes

3http://www.idsia.ch/˜giorgio/jncc2.html
4http://archive.ics.uci.edu/ml/

and unevenly distributed features. Still, such indications
support the introduction of EDM in classification.

6 Tree Augmented Naive Credal Classifier

The Tree-Augmented Naive (TAN) structure has the char-
acteristic that each feature has at least C as parent and
at most one other parent constituted by another feature.
By Tree Augmented Naive Credal Classifier (TANC), we
mean a credal network over a TAN graph.

As described in Section 4, TANC performs pairwise com-
parison to detect credal-dominance; for every comparison
between two classes, the minimization is performed over
(a) all possible completions of the training data (because
missing data of the training set are nonMAR) and (b) over
the prior densities belonging to the EDM. The credal dom-
inance condition can be rewritten as:

min
dX ,α

(p(c′|y)− p(c′′|y)) > 0,

because the distributions p ∈ K are completely defined by
dX and α.

We assume further that there is no missing values in the
class and that the hyper-parameters αC are fixed (we may
solve at each time a given extreme configuration of αC).
Hence, the credal dominance problem is equivalent to

min
dX ,α

(p(y|c′)p(c′)− p(y|c′′)p(c′′)) > 0

because p(y) is positive and so does not affect the sign of
the formula. Then we can separately solve each optimiza-
tion as follows:

p(c′) · min
dX ,α\αC

p(y|c′)− p(c′′) · max
dX ,α\αC

p(y|c′′) (4)

because p(y|c′) only depends on αc′ and on the data of
instances with C = c′, while p(y|c′′) depends on αc′′ and
counts from instances with C = c′′ (data with C = c′ and
C = c′′ are obviously disjoint).

Because we take the Extreme IDM as model for the pri-
ors, α only assumes extreme values. Hence, it is possible
to tackle the problem by introducing s new instances to
the training set that are completely missing. As this new
fake instance of missing values has also missing classes,
it could introduce a dependence between the minimiza-
tion and the maximization of Equation (4). However, it is
possible to solve the optimization for every possible com-
pletion of the missing data of the class in this additional
instance (which are just two extremes). Thus we have

p(c′) ·min
dX

p(y|c′)− p(c′′) ·max
dX

p(y|c′′), (5)

which is solved for every possible completion of the data
(including the fake instance).
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Figure 2: Part of the computation tree of the TANC algo-
rithm.

The idea of the algorithm to evaluate Equation (5) is to
combine the computations that are performed separately in
the children of each variable and then to propagate the best
possible solution to their sole parent. We ignore the arcs
from C because we look for p(y|c′) = mindX p(y|c′) and
p(y|c′′) = maxdX p(y|c′′), that is, the actual root vari-
able C is observed. The computation starts on the leaves
and follows in a bottom-up idea. At each variable Xi, the
goal is to obtain the joint probability p(yΛi

|yi, c) of its
children conditional on yi5 (c equals c′ or c′′ depending
whether it is the minimization or the maximization). This
evaluation is done for all possible completions dXi and it is
optimized over the completions of the children. The result
is stored in a cache φi(dxi). Figure 2 shows part of a net-
work. At Xj1 , the joint probabilities p(yΛik

|yik , c) of ev-
ery child Xik ∈ Λj1 (for every possible completion of that
sub-tree) are already computed. So, they are combined
to obtain p(yi1 , . . . , yiu |yj1 , c), for every possible comple-
tion of Xj1 . These new probabilities p(yΛj1

|yj1 , c) are
then made available to the parent Xπ , where the compu-
tations are analogous but using the information obtained
from Xj1 and its siblings. The process goes through the
tree structure until reaching the root.

Denote by yσ(i) the assignment for all the variables in the
sub-tree rooted at Xi, that is, yσ(i) ∈ ΩXσ(i) is the queried
assignment over Xσ(i) ⊆ X , the set of variables in the
sub-tree rooted at Xi. Suppose that the root variables (if
C is not considered) are X1, . . . , Xr. So,

p(y|c′) =
r∏

j=1

p(yσ(j)|c′)

=
r∏

j=1

p(yj |c′) ·
∏

Xi∈Λj

p(yσ(i)|yj , c′),

and, in general, mindX p(yσ(j)|πyj , c′) =

= min
dX


p(yj |πyj , c′) ·

∏

Xi∈Λj

p(yσ(i)|yj , c′)


 ,

5yi ∈ ΩXi is used as the notation for the queried state of Xi.

where πyj ∈ ΩΠj is the assignment of Πj that is being
queried. (the maximization is analogous). Now, when you
complete the variable Xj , the children Λj have separable
computations. They are separable because the counts n
that appear in the children of Xj are independent of each
other as they concern disjoint subsets of variables (the
structure is a tree, so Xσ(i)∩Xσ(i′) = ∅ forXi, Xi′ ∈ Λj ,
with i 6= i′ and Xj = Πi = Πi′ .). The only dependent
value is nyj , as it appears in the denominators of distinct
children of Xj . However, nyj is fixed as the problem is
solved for every possible completion of Xj . Besides that,
note that the terms α are not present because we treat them
using the fake missing instance. Hence, the overall com-
putation can be decomposed as

= min
dXj


p(yj |πyj , c′) ·

∏

Xi∈Λj

min
dXσ(i)

p(yσ(i)|yj , c′)


 .

To prove that this idea is correct, we rewrite it as a function
of completions: ∀dXσ(j) , we have

φj(dXσ(j)) =
∏

Xi∈Λj

min
dXσ(i)

(
nyiyj
nyj

φi(dXσ(i))
)
, (6)

where the product is assumed to be 1 when Λj is empty.
The maximization version is analogous. We prove by in-
duction on the tree the following property:

φj(dXσ(j)) =
{

1, if Xj is a leaf,
p(yσ(j) \ {yj}|yj , c′), otherwise.

(7)
The base of induction holds by definition. Now assume
that Equation (7) holds for every Xi ∈ Λj . By applying
this hypothesis on Equation (6), we have

φj(dXσ(j)) =
∏

Xi∈Λj

min
dXσ(i)

(
nyiyj
nyj

p(yσ(i) \ {yi}|yi, c′)
)
,

(8)
where nyj is fixed and nyiyj depends on the completion
dXi , which belongs to dXσ(i) . Thus, it is possible to min-
imize the factor of each child separately and we obtain
φj(dXσ(j)) = p(yσ(j) \ {yj}|yj , c′).

The derivation so far requires exponential time over all
missing values. Nevertheless, an important fact in Equa-
tion (6) is that φi(dXσ(i)) = φi(dXi), for dXi compatible
with dXσ(i) , that is, it is enough to keep the best possible
solution for every completion of a variable without hav-
ing to record all the completions of its descendants. This
is valid because nyiyj is known when the completion dXi
is given, so completions of variables in Xσ(i) \ {Xi} are
irrelevant for the minimization in Equation (6), and it is
enough to have the best possible solution for each dXi .
This leads us only to compute:

∀dXj φj(dXj ) =
∏

Xi∈Λj

min
dXi

(
nyiyj
nyj

φi(dXi)
)
, (9)
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and equivalently in the maximization case. Now the al-
gorithm can be implemented in a bottom-up manner so as
the φ’s of children are available when a given variable is
treated, which reduces the complexity of the method to be
exponential in the number of missing values of only two
variables (a variable and its parent) instead of all missing
values.

The described formulation obtains p(y \ {yi}|c′′) and
p(y\{yi}|c′), for each root variableXi, i ≤ r. Those val-
ues still need to be multiplied by the corresponding p(yi|c)
(using the proper c). We leave this last step intentionally
apart to show how to deal with the forest of trees. The
probability of the variables that have only C as parent are
multiplied all together, just as if we had computed φC(·)
according to Equation (9):

p(y|c′) = φC(·) =
∏

Xi∈ΛC

min
dXi

(
nyic′

nc′
φi(dXi)

)
, (10)

and similarly for the maximization. In case r = 1 (single
root), the outer product of Equation (10) disappears. This
final step returns the desired values p(y|c′′) and p(y|c′),
which are later multiplied by p(c′′) and p(c′), respectively,
to evaluate Equation (5).

We point out that, if the data set is complete, the only
missing data that must be processed by the algorithm are
those introduced by the fake instance (for the treatment of
the EDM). In such case, the complexity of the method is
clearly linear in the input size, as there is a constant num-
ber of computations by variable (there are only two ways
of completing the data by variable and the algorithm is lo-
cally exponential). In fact there are other ideas that might
be employed to solve the problem of selecting the hyper-
parameters α of the EDM, but we use the idea of fake
instance because it fits straightforward into the framework
of the proposed algorithm. In the presence of missing data,
the idea spends exponential time in the number of missing
data of two linked variables, which is already much bet-
ter than an overall exponential but still slow for data sets
with many missing values. Using dynamic programming,
it might be possible to further reduce this complexity to
exponential in the missing of a single variable.

7 Experiments on TAN

We have performed experiments on several data sets re-
trieved from the UCI repository. The data sets cover a wide
spectrum in terms of number of instances (min: 101; max:
12960) and classes (min: 2; max: 11). On each data set,
we have performed 10-folds cross-validation to the per-
formance of the classifiers. Numerical features have been
discretized using supervised discretization [4]; the features
discretized into a single bin have been removed from the
computation. TANC requires the features to be discrete;
however, supervised discretization of the features is a good

practice in general, as it has been shown to improve the ac-
curacy of several classifiers [3].

The instances over which TANC return a single class are
referred to as determinately classified, while those over
which TANC returns more classes are referred to as in-
determinately classified.

For some data sets, we report results before and after hav-
ing performed feature selection. To perform feature selec-
tion, we have cross-checked the suggestions of two feature
selectors implemented in WEKA [9]: correlation-based
and wrapper. Both approaches are multivariate, i.e., they
are designed to identify an optimal subset of feature, by
also considering interaction between features.

7.1 TANC vs TAN

In this section, we compare TANC against TAN on com-
plete data sets, i.e., with no missing data. On each cross-
validation run, we first learn the structure of the graph us-
ing WEKA [9]; later, we run TAN and TANC, using the
same network structure for both.

We adopt a set of indicators already known in literature
[10] for comparing a credal and a Bayesian classifier; in
particular:

• determinacy (D%): the percentage of instances clas-
sified determinately by TANC;

• TAN-D and TAN-I: the accuracy of TAN on the in-
stances which are classified determinately and inde-
terminately by TANC. As TANC is designed to sep-
arate hard-to-classify instances (that are prior depen-
dent, and hence indeterminately classified) and easy-
to-classify instances (those determinately classified),
we shall observe TAN-D>TAN-I, because TAN-D
is in fact the accuracy achieved both by TAN and
TANC on the determinately classified instances. Ac-
tually, if TANC is determinate, TAN and TANC re-
turn the same classification (although the uniform
prior adopted for TAN is not included in the credal
set of the EDM, it empirically appears that if both the
extreme priors of the EDM indicate the same class
as the most probable one, TAN will lead to the same
conclusion too).

• set-accuracy (S-acc%): the ratio of the number in-
determinate classifications which contain the actual
class to the total number of indeterminate classifica-
tions;

• indeterminate output size (ind. sz.): the average num-
ber of classes returned on the instances indetermi-
nately classified.

Note that set-accuracy and indeterminate output size are
meaningful only if the data set has more than two classes.
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data set #inst. #cl. D TAN-D TAN-I S-acc Ind. Sz.
zoo 101 7 77% 100% 84% 100% 5.9/7
iris 150 3 93% 97% 44% 92% 2.8/3

diabetes 767 2 98% 80% 9% - -
segment 810 7 17% 99% 93% 98% 4.1/7
vehicle 846 7 67% 82% 60% 88% 2.4/7
vowel 990 11 66% 98% 77% 99% 7.6/11
credit 1000 2 87% 78% 55% - -
splice 3190 3 90% 97% 79% 99% 2.1/3
kr-kp 3196 2 99% 92% 40% - -

waveform 5000 3 88% 85% 73% 100% 2.1/3
nursery 12960 5 90% 97% 79% 99% 3.5/5
average 79% 91% 63% 97% 72%

Table 1: The data sets (sorted according to the number of instances) and the indicators. The meaning of the header is
as follows: #inst denotes the number of instances of the data set and #cl the number of classes; D is the determinacy of
TANC; TAN-D and TAN-I the accuracy achieved by TAN on the instances classified determinately and indeterminately
by TANC; S-acc is the set-accuracy of TANC while Ind. Sz. is the average number of instances returned by TANC on the
instances indeterminately classified.

The results of Table 1 show that the determinacy of TANC
is quite high: 79% on average, and often above 90%. In
general, the determinacy of TANC increases with the num-
ber of instances in the data set (as large the data set as
reduced the importance of the prior) and decreases, for
similarly-sized data sets, with the number of classes. The
major exception to this is segment (17 features, 7 classes,
810 instances); however, in this case feature selection can
be helpful. It turns out that 10 out of the 17 features in seg-
ment are irrelevant; removing them from the data set and
re-running the experiment increases the determinacy from
17% to 57%, with only a minor drop of accuracy on the
instances determinately classified (TAN-D decreases from
99% on 17% of instances to 95% on 57% of instances).

Most importantly, TANC is quite effective in separating
hard-to-classify from easy-to-classify instances. There is
a sharp drop of accuracy of TAN when we move from de-
terminate to indeterminate instances; on the average, the
drop is about 28 percentage points. On data sets with two
classes, the accuracy of TAN on the instances indetermi-
nately classified is comparable to random guessing or even
worse (diabetes: 9%; credit: 55%, kr-kp: 40%); how-
ever, as the number of classes increases, TAN performs
better on the instances indeterminately classified (see for
instance segment and zoo: TAN-I is 84% and 93% respec-
tively). This might show that as the number of classes
increases, TANC becomes indeterminate also on some in-
stances that could be successfully classified. However,
studies suggest that even this kind of problem can be sig-
nificantly mitigated by feature selection [2]. As an exam-
ple, let us consider the zoo data set, which has 15 features.
By running feature selection, we find that there are 4 irrel-
evant features out of 15. Re-running the experiment on the
pruned data, determinacy rises from 77% to 79%, TAN-D

remains close to 100%, while TAN-I drops from 84% to
72%. Hence, in some particular data sets, feature selec-
tion can be helpful to improve the determinacy and/or the
detection of hard-to-classify instances.

On the hard-to-classify instances, TANC preserves its re-
liability thanks to indeterminate classifications, providing
set-accuracy close to 100%, while returning on the aver-
age about 70% of the total classes. All these findings are
in good agreement with previous comparisons of Bayesian
classifiers against their imprecise probability counterparts
[2, 13].

7.2 TANC vs. TANC*

Two main differences exist between TANC and TANC*
regarding the model of prior ignorance (TANC adopts the
EDM, while TANC* adopts the local IDM) and the treat-
ment of missing data in the training set (TANC* assumes
MAR, while TANC does not). In this section, we focus
on the impact of the models of prior ignorance on the two
classifiers; in order to remove the effect of the treatment of
missing data, we consider complete data sets. We did not
implement TANC* in our code; rather, we have compared
our results with those published in [13]. For this reason,
the analysis tries to draw general conclusions rather than
punctual ones. We consider here all the 6 complete data
sets analyzed in [13].

On the basis of previous explanation, we can expect TANC
to be more determinate that TANC*. However we have
also to verify that it becomes determinate on instances that
can be safely classified with a single class.

The comparison between the determinacy of TANC and
TANC* is shown in the upper plot of Figure 3. On the
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Figure 3: Comparison between TANC and TANC*.

average, TANC is 11 percentage points higher than that of
TANC (89% vs. 78%). However, the determinacy of the
two classifiers is almost equivalent on both splice and kr-
kp; this might be due to the large size of the two data sets
(around 3200 instances each), which reduces the role of
the prior distributions.

In order to compare the ability of isolating hard-to-
classify instances, we introduce the indicator Delta =
(TAN-D−TAN-I), which evaluates the difference in accu-
racy achieved by TAN between the instances classified de-
terminately and indeterminately by TANC [resp. TANC*].
The results are displayed in the lower plot of Figure 3; they
suggests that the increased determinacy of TANC corre-
sponds also to a better ability in isolating hard-to-classify
instances, thus supporting the hypothesis that TANC is
returning determinate answers on instances over which
TANC* is unnecessarily indeterminate. However, these
results should be taken with some cautiousness, as it has
not been possible to actually run side-by-side the two clas-
sifiers.

7.3 Preliminary results with missing data

In this section we focus on comparing the determinacy of
the classifier in the presence of missing data. The effect of
the treatment of missing data is also important so as to ver-
ify the consequences of nonMAR in terms of accuracy, but
a deeper analysis is left for future work. We note that the
term nonMAR is employed to indicate the ignorance about
the MP, that is, MAR is not assumed. In particular, we
consider the crx data set, which has 16 features; the struc-
ture of the network has 14 links among features (besides
those which connect the class to all the features). We con-
sider the complete data set and then artificially generate
30 missing values, distributed among 6 different features.
Even such a small quantity of missing data decreases the
determinacy from 87% to 77%. On the very same data

sets, we run the naive credal classifier 2 [2] which can be
seen as NCC enabled for NonMAR treatment of missing
data; the determinacy of NCC2 (assuming NonMAR) re-
mains stable around 95% on both cases. Hence, it seems
that the TAN structure can lead to much larger indetermi-
nacy than the naive one, if MAR is not assumed. This
result is somehow expected, as TAN introduces the possi-
bility of having linked features with missing values, while
a naive structure does not.

8 Conclusions

TANC is a new credal classifier based on a Tree-
Augmented Naive structure; it treats missing data con-
servatively by considering all possible completions of the
training set, but avoiding an exponential increase of the
computational time. TANC adopt the EDM as a model of
prior ignorance; we have shown that EDM is a reliable and
computationally affordable model of prior near-ignorance
for credal classifiers. We have shown that TANC is more
reliable than precise TAN (learned with uniform prior)
and that it obtains better performance compared to a pre-
vious TAN model based on imprecise probabilities, but
learned with a local IDM approach; the adoption of EDM
overcomes the problem of the unnecessary imprecision in-
duced by the local IDM, while keeping the computation
affordable.

The TANC classifier has room for many improvements.
The treatment of MAR and nonMAR missing data all to-
gether, appearing both in the training and the testing set
are the main topics for future work. In order to make
TANC less indeterminate on incomplete data sets, a solu-
tion could be to allow for mixed configurations, in which
some features are treated as MAR and some others are not.
This would allow both for a decrease of indeterminacy and
for a finer-grained tuning of the way that missing data are
dealt with. Besides that, the computational performance
of TANC can also be further improved, for example, with
the use of dynamic programming. Extensions beyond trees
are also of interest, but they fall into the need of fast and
accurate inference methods for general credal networks.
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Abstract

Sets of desirable gambles were proposed by Walley [7]
as a general theory of imprecise probability. The main
reasons for this are: it is a very general model, includ-
ing as particular cases most of the existing theories
for imprecise probability; it has a deep and simple
axiomatic justification; and mathematical definitions
are natural and intuitive. However, there is still a lot
of work to be done until the theory of desirable gam-
bles is operative for its use in general reasoning tasks.
This paper gives an overview of some of the fundamen-
tal concepts expressed in terms of desirable gambles
in the finite case, gives a characterization of regular
extension, and studies the nature of maximally coher-
ent sets of gambles.

Keywords. Desirable gambles, regular extension,
zero probabilities, sets of probability measures.

1 Introduction

Sets of desirable gambles are a powerful and simple
model for representing and reasoning with imprecise
probabilities. For these reasons, they were proposed
by Walley [7] as a general model for imprecise proba-
bility after studying the limitations of other models.

The axioms for desirable gambles were introduced by
Williams [9] and Walley studied them in Appendix F
of his book [6]. They were also considered in [5] as
a basic for a logical approach to probability. They
are mathematically equivalent to partial probability
orderings [1, 3], but they are simpler [7]. Because of
this, desirable gambles are a more suitable theory of
uncertainty. Even though, their use in the literature is
very scarce. In many cases, it is possible to find papers
based on other representations, as for example lower
and upper previsions, in which the rules for inference
are deduced making arguments which are based on
desirability. This makes desirability a more primitive
notion.

Moral [4] recently studied the concept of epistemic ir-
relevance in terms of desirable gambles which resulted
in a very natural approach to this notion, as it was
possible to show a number of properties in a simple
form.

In this paper, we give an overview of some of the
main concepts of desirable gambles in the finite case,
showing the difference between desirable gambles and
almost desirable gambles (Section 2). Then, we study
the concept of conditioning, showing how the rules of
conditioning for lower previsions can be obtained from
the simple definition of conditioning for sets of desir-
able gambles and giving an axiomatic justification of
regular extension (Section 3). One of the problems
associated to the use of desirable gambles is the lack
of effective methods of representing information and
algorithms to make inference from available informa-
tion. Section 4 discusses this issue and shows that
there are algorithms in the literature which can be
directly applied in this theory. Finally Section 5 stud-
ies the case of maximally coherent sets of desirable
gambles. These sets have always an associated precise
probability measure. But, as sets of desirable gambles
contain more information than probability measures,
we prove that we can associate a more complex struc-
ture to the maximal coherent sets: a sequence of prob-
ability measures, each one of them defined in the set
in which the previous measure in the sequence assigns
a zero probability, similar to the sequences defined in
[2]. We also show that a general coherent set can be
expressed in terms of maximal (precise) coherent sets.

2 Sets of Desirable Gambles

Let Ω = {ω1, . . . , ωn} denote the (finite) set of out-
comes. We assume that there is an unkown true value
belonging to Ω. A gamble on Ω is a bounded mapping
from Ω to R, i.e., X : Ω → R. Gambles are used to
represent an agent’s beliefs and information. If an
agent accept a gamble X , then the value X(ω) rep-
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resents the reward she would obtain if ω is the true
unknown value (this value can be negative and then
it represents a loss).

Let L denote the set of all gambles defined on Ω. For
X, Y ∈ L, let X ≥ Y mean that X(ω) ≥ Y (ω) for
all ω ∈ Ω, and let X > Y mean that X ≥ Y and
X(ω) > Y (ω) for some ω ∈ Ω.

A subset D of L is said to be a coherent set of desirable
gambles relative to L [7] when it satisfies the following
four axioms:

D1. 0 6∈ D,

D2. if X ∈ L and X > 0 then X ∈ D,

D3. if X ∈ D and c ∈ R+ then cX ∈ D,

D4. if X ∈ D and Y ∈ D then X + Y ∈ D.

In what follows, D is assumed to be a coherent set of
gambles. We assume that information is represented
by means of a coherent set of gambles. These rules
represent the consistency conditions for the gambles
that are considered desirable. For example, Axiom D4
says that if we consider as desirable X and Y , then we
should consider as desirable the gamble resulting from
adding the rewards of both gambles. Axiom D2 says
that a positive gamble (we can win but never lose) is
always desirable.

The null gamble is neutral and then it is not included
in the set of really desirable gambles, but this is not
an important fact. In some cases, as in [4, 6], the
null gamble has been considered desirable. The real
important condition for coherence is that if X < 0,
then X 6∈ D (avoiding partial loss). In our approach,
this condition is a consequence of D1 and the other
axioms (D2 and D4). But both options are completely
equivalent, in the sense that the only difference is the
inclusion of the null gamble in the set of desirable gam-
bles and this does not have any difference in practice.
The only consequence of taking one of the two possible
options is that some mathematical definitions have to
be changed (for example, conditioning is different if
we accept the null gamble). Walley first considered
the null gamble desirable in [6], but then he changed
to consider it non desirable in [4]. In this moment, we
also consider that this last option is simpler and more
intuitive.

The lower prevision induced by D is the function P :
L → R defined as follows: P (X) = sup{c : X − c ∈
D}.
The upper prevision induced by D is the function P :
L → R defined as follows: P (X) = inf{c : c −X ∈
D}.

The set of linear previsions induced by D is defined
as:

PD = {P : P (X) ≥ 0 for all X ∈ D}.

PD is always a credal set (a closed and convex set of
probability measures). P and P are dual and they
respectively coincide with the pointwise infimum and
the pointwise supremum of P ∈ PD. There can be two
different sets of desirable gambles D 6= D′ inducing
the same class of linear previsions PD = PD′ .

Conversely, given a set of linear previsions P , define

DP = {X ∈ L : P (X) > 0, ∀P ∈ P}∪{X : X > 0}.

DP is called the set of strictly desirable gambles asso-
ciated to P [6].

DP is coherent and, if P has been induced by a set
of desirable gambles D, then DP is a subset of it. In
other words, the following inclusion holds:

DPD ⊆ D

DP is the smallest set of gambles associated to a credal
set P .

P can be recovered from DP by

P = PDP . (1)

Another possible set of desirable gambles associated
to P , but with more gambles in it is:

D′
P = {X ∈ L : P (X) ≥ 0, ∀P ∈ P and

∃P ∈ P , with P (X) > 0} ∪ {X : X > 0}

A coherent set D of almost desirable gambles is a set
of gambles which satisfies axioms D2, D3, and D4 and
the following two axioms (the first one is a modifica-
tion of the corresponding axiom for desirable gambles.
The new version is called avoiding sure loss):

D1’. −1 6∈ D,

D5. if X + ǫ ∈ D, ∀ǫ > 0, then X ∈ D

A set of almost desirable gambles D can define a lower
prevision, an upper prevision, and a credal set, by
means of expressions completely analogous to the case
of desirable gambles. But now, from a credal set P ,
the associated set of almost desirable gambles D is
given by:

D∗
P = {X ∈ L : P (X) ≥ 0, ∀P ∈ P} (2)
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Intuitively, the set of desirable gambles contains all
the gambles that are really desirable, i.e. the agent
has reasons to accept them as desirable. The set of
almost desirable gambles also includes all the gambles
that are limit of desirable gambles, though some of
them as the null gamble is not really desirable. DP ,
the set of striclty desirable gambles associated to P
is the interior of D∗

P in the supremum norm topology
[6].

If D is a coherent set of desirable gambles, then D∗

will be the coherent set of almost desirable gambles
obtained by adding to it the gambles resulting of the
application of Axiom D5 (closure). Both D and D∗

always define the same credal set. If the credal set
is P , then DP ⊆ D ⊆ D∗. DP contains the strictly
desirable gambles. If a gamble X is in DP , then there
is a δ > 0 such that X − δ ∈ DP , i.e. even paying a
quantity δ, the gamble continues being desirable. D∗

contains more gambles, all the gambles such that for
any ǫ > 0, X + ǫ is desirable, i.e., if we receive any
positive quantity, this is enough to make the gamble
desirable (but the gamble alone may not be desirable).
D is the set of gambles that are considered desirable
by an agent without any additional consideration in
the limit.

Coherent sets of almost desirable gambles and credal
sets are equivalent, in the sense that there is a one-
to-one correspondence between these two families. If
D is a set of almost desirable gambles: D∗

PD = D. A
credal set is a convex and closed set of probabilities
and an almost desirable gamble can be interpreted as
a linear restriction on the credal set by means of ex-
pression P (X) ≥ 0. The difference between desirable
and almost desirable gambles is that a set of almost
desirable gambles is always closed, and a set of de-
sirable gambles is never closed (the null is the limit
of desirable gambles and is never desirable) but not
necessarily open either. The set of strictly desirable
gambles is always open. Axioms can be also defined
for strict desirable gambles [6] and it is possible to
show the equivalence between sets of strict desirable
gambles and credal sets.

Example 1 Consider the credal set P represented in
Figure 2 for a frame with three elements {ω1, ω2, ω3},
where each point is a probability mass function with
values determined by the distances to the triangle
edges. Imagine that D and D∗ are a set of desirable
gambles and the set of almost desirable gambles asso-
ciated to it. A gamble can be associated to a linear
restriction about the probabilities through the inequal-
ity P (X) ≥ 0. If this inequality is not trivial in the
set of probabilities (X is trivial if X ≥ 0 ), then in
the triangle we will see the inequality as a segment
dividing the triangle in two parts and a direction de-

X1

X2

X3

Figure 1: Desirable and almost desirable gambles

termining in which of the two parts the inequality is
verified. So, a non trivial gamble X can be associated
with a segment and a direction. A gamble is almost
desirable if all the probabilities in the credal set verify
the restriction. In the figure, X1 and X3 are almost
desirable and X2 is not as there is a probability in P
not verifying the inequality associated to X2. X1 is
also strictly desirable. For desirability we have a nec-
essary condition: if X is desirable then P (X) ≥ 0 for
any P ∈ P. So, as X2 does not verify it, it can not
be desirable. We also have a sufficient condition: if
P (X) > 0, for any P , then X has to be strictly de-
sirable and desirable. So X1 is desirable and strictly
desirable. The difference is in those gambles X, for
which P (X) ≥ 0 for any P , but P (X) = 0 for some P .
This gamble is almost desirable and can not be strictly
desirable, but it can be desirable or not desirable. So,
it is not determined whether gamble X3 (touching the
border of the credal set) is or is not desirable. These
gambles in the border determine the difference between
desirability, almost desirability, and strict desirability.
They have behabioural consequences, in particular af-
ter conditioning to events of probability 0.

If G is an arbitrary set of gambles, then the set of
all gambles obtained by applying axioms D2, D3, and
D4 is called the set of gambles generated by G and it
is denoted by G. If this set is coherent (0 6∈ G) then
it will be called its natural extension (the minimum
coherent set containing G). If 0 ∈ G we will say that
G is incoherent. If X < 0 and X ∈ G we will say that
G does not avoid partial loss.

It is an immediate result that

G = {
n∑

i=1

λi Xi : λi > 0, [Xi ∈ G or Xi > 0]

i ≤ n ∈ N, n ≥ 1}.

Walley [6] considers the gambles that dominate (are
greater or equal) than the positive linear combination
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of gambles in G. Our expression with equality is equiv-
alent as we allow to combine positive gambles, except
that we avoid to add the 0 gamble.

3 Conditioning

Let us consider a set of desirable gambles D on Ω. Let
B denote (the indicator function of) an arbitrary sub-
set of Ω. The set of B-desirable gambles ([6], Section
6.1.6) can be defined as follows:

DB = {X ∈ L : BX ∈ D} ∪ {X : X > 0}.

This set will be also called the set of conditional de-
sirable gambles given B. This set is determined by
those gambles Y that are desirable and that outside
of B are null, i.e. nothing happens if B does not oc-
cur. A gamble X belongs to DB if BX is equal to one
of these gambles or is positive.

The following results relate this definition with the
usual concept in the associated credal set, consisting
in computing the conditional probability given B of
all the probability measures in the credal set (when
P (B) > 0 for all the probabilities). In all of them,
D∗ is the set of almost desirable gambles associated
to the set of desirable gambles D.

Lemma 1 Let D ⊂ L be a coherent set of desirable
gambles and B a subset of Ω such that P (B) > 0.
Then:

X ∈ D∗ ⇒ X + ǫ B ∈ D, ∀ ǫ > 0.

Proof: According to the above hypotheses, P (B) > 0
and thus, there exists some c > 0 such that B−c ∈ D.
Furthermore, the gamble X + ǫc is assumed to belong
to D, for all ǫ > 0. By the coherence of D, the gambles
ǫ(B− c) = ǫB− ǫc and X + ǫ B = (X + ǫc)+(ǫB− ǫc)
belong to it, for each ǫ > 0, and thus the thesis of the
lemma is checked. �

Lemma 2 Let D ⊂ L be a coherent set of desirable
gambles satisfying the condition:

X ∈ D∗ and −X 6∈ D∗ ⇒ X ∈ D. (3)

Then, for any B subset of Ω such that P (B) > 0., the
following condition is also verified:

X ∈ D∗ ⇒ X + ǫ B ∈ D, ∀ ǫ > 0.

Proof: Let us assume that X + ǫ ∈ D, ∀ ǫ > 0. Then,
by the coherence of D, (X + ǫB) + ǫ′ = (X + ǫ′) +
ǫ B ∈ D, ∀ ǫ, ǫ′ > 0. So X + ǫB ∈ D∗. To prove that
this gamble is also in D, we only have to prove that

−X−ǫB 6∈ D∗, i.e., there exists some ǫ′′ > 0 such that
−(X + ǫB)+ ǫ′′ 6∈ D. Let us check it by contradiction.
Let us suppose that ǫ′′−(X+ǫB) ∈ D, ∀ ǫ′′ > 0. Then
the gamble ǫ′′′+ ǫ′′− ǫB = (X + ǫ′′′)+(ǫ′′− (X + ǫB))
belongs to D, for all ǫ′′, ǫ′′′ > 0 by the coherence of
D. But the last assertion contradicts the assumption
P (B) > 0. �

Theorem 3 Let D ⊂ L be a coherent set of desirable
gambles and let B be a subset of the universe Ω. Let
us assume that the following condition holds:

(X ∈ D∗ ⇒ X + ǫ B ∈ D, ∀ ǫ > 0). (4)

Then,
PDB = (PD)|B,

where (PD) |B denotes the set of linear previsions

(PD)|B = {P (·|B) : P ∈ PD and P (B) > 0},

and, for each P with P (B) > 0, P (·|B) is defined as
follows:

P (X |B) =
P (BX)
P (B)

, ∀X ∈ L.

Proof:

First, let us prove that (PD)|B ⊆ PDB . If Q ∈ (PD)|B,
then Q = P (.|B), where P ∈ PD and P (B) > 0.

If X ∈ DB, then either X > 0, and then it is verified
Q(X) ≥ 0, or XB ∈ D. In the last case, as P ∈ PD,
we have that P (XB) ≥ 0, and as Q = P (.|B), then
Q(X) = Q(XB) = P (XB)

P (B) ≥ 0. Being Q(X) ≥ 0 for
any X ∈ DB, we can conclude that Q ∈ PDB .

To prove the other inclusion PDB ⊆ (PD)|B , first
consider that both are credal sets with probabilities
which are 0 outside of B, then the inclusion can
be obtained if we show that any linear restriction
P (X) ≥ 0 verified by probabilities in (PD)|B with
X(ω) = 0, ∀ω ∈ Ω− B, it is also verified by probabil-
ities in PDB .

Assume that X(ω) = 0, ∀ω ∈ Ω−B and that P (X) ≥
0, ∀P ∈ (PD)|B. Then, we have that Q(X |B) ≥
0, ∀Q ∈ PD, with Q(B) > 0. As, X(ω) = 0, ∀ω ∈
Ω − B, then Q(X |B) = Q(XB)/Q(B) ≥ 0, ∀Q ∈
PD, Q(B) > 0. As, the inequality is trivially verified
if Q(B) = 0, then we have that Q(XB) ≥ 0, ∀Q ∈
PD.

If we add an amount ǫ to the gamble we obtain a desir-
able gamble: XB + ǫ ∈ D, ∀ǫ > 0, and by condition
(4) we have that XB + ǫB ∈ D, ∀ǫ > 0. By the defi-
nition of DB, we obtain that XB+ǫB ∈ DB, ∀ǫ > 0.
This implies that P (XB + ǫB) ≥ 0, ∀ǫ > 0, ∀P ∈
PDB and therefore P (XB) ≥ 0, ∀P ∈ PDB . As
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XB = X , then the inequality P (X) ≥ 0 is also veri-
fied by probabilities P ∈ PDB . �

According to Lemmas 1 and 2 and Theorem 3, we
derive the following corollary:

Corollary 4 Let D ⊂ L be a coherent set of desir-
able gambles and let B be an arbitrary subset of the
universe Ω. Let us assume that one of the following
conditions holds:

1. P (B) > 0.

2. P (B) > 0 and D ⊂ L satisfies the restriction
considered in Equation (3).

Then:
PDB = (PD)|B.

Remark 3.1 When P (B) > 0 the set of linear previ-
sions (PD)|B can be written as follows:

(PD)|B = {P (·|B) : P ∈ PD},

since then condition P (B) > 0 is redundant.

This corollary represents the main result in this paper.
First it shows the known fact that when P (B) > 0,
conditioning (in terms of credal sets) can be done by
conditioning all the probability measures. The sec-
ond thing is relative to conditioning when P (B) = 0,
but P (B) > 0, in this case conditioning is not deter-
mined when we look at the associated credal set, but
if we assume condition (3), then conditioning can be
obtained in the associated credal set by conditioning
all the probabilities with P (B) > 0, this condition-
ing was called regular extension. Condition (3) can
be seen as a weaker version of Axiom D5, as here an
almost desirable gamble X is also desirable when −X
is not almost desirable. If X and −X are both almost
desirable and we were accepting both of them as de-
sirable, then we would obtain that the null gamble is
desirable, and then the associated set would not be
coherent. But, if X is almost desirable, but −X is
not, then it could be considered that we have some
reasons to assume that X is desirable. Here, we have
shown that this implies regular conditioning.

Example 2 Assume that we have the credal set of
Figure 2 and that we want to compute its conditional
credal set to B = {ω1, ω2} and that the points P
with P (B) = 1 are the triangle base. In this case
conditional gambles are those gambles X such that
X(ω3) = 0 and the associated linear restrictions pass
through the vertex opposite to the triangle base. When
the credal set does not contain this vertex (P (B) > 0),

Figure 2: Conditional Gambles

then there are desirable conditional gambles that deter-
mine that the conditional credal set is the thick seg-
ment represented in the basis and that is equal to the
projection of all the probabilities in the credal set from
the upper vertex (the projection of a probability P is
its conditional probability P (.|B)). In other words,
the set linear restrictions associated to the conditional
gambles (passing through the upper vertex) that are
strictly desirable (all the probabilities verify them and
are not touching the credal set) as the one in the figure
are enough to restrict the set on conditional probabil-
ities to the segment in the figure.

However, when P (B) = 0, then the upper vertex is in
the credal set, as in Figure 3, and all the conditional
gambles as the one depicted in the figure are touch-
ing the border of the credal set, and therefore their
desirability is not determined by the credal set. The
set of conditional desirable gambles could contain only
the trivial gambles and then the conditional credal set
is the full base (the natural extension of the general-
ized Bayes rule [6]) or it could be a more restrictive
one and include all the gambles with linear restric-
tions verified by the probabilities in the segment AC
(the smallest possible conditional credal set: the regu-
lar extension).

4 Introduction to Representation and
Algorithms

A very important issue to make desirable gambles use-
ful in practice is to determine an effective method to
represent information and to develop algorithms able
of working with this representation. In particular we
would like to have procedures that have as input a set
of gambles F and are able of carrying out the follow-
ing basic reasoning tasks:

1. to determine whether the natural extension F is
coherent (i.e. 0 6∈ F),
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Figure 3: Conditional Gambles, P (B) = 0

2. given X, to determine whether X ∈ F ,

3. given X and B ⊂ Ω, to compute P (X |B) and
P (X |B) under F when this set is coherent.

The second question is immediate to answer if we can
solve the first one, as the following theorem shows.

Theorem 5 If F is an arbitrary set of gambles such
that F is coherent, then X ∈ F if and only if
F ∪ {−X} is not coherent.

Proof: If X ∈ F , then X,−X ∈ F ∪ {−X}, and
X −X = 0 ∈ F ∪ {−X}. So this set is not coherent.

On the other hand, if F ∪ {−X} is not coherent, then
0 ∈ F ∪ {−X}. This set is equal to all the gambles
Y = α.Z − β.X , where Z ∈ F and α, β ≥ 0, α > 0
or β > 0. In particular, there must be α, β such that
0 = α.Z−β.X , where Z ∈ F . As F is coherent, β 6= 0,
and we obtain X = α

β Z, and by Axiom D3, X ∈ F .
�

A coherent set of gambles D contains infinite gambles.
If we want to represent them in a computer in order to
manipulate them by means of algorithms, we need to
determine a procedure to represent a coherent set of
gambles D by means of a set F such that D = F , and
for representing the set F in some formal language.
A basic issue is: to determine the type of sets F we
are going to consider and the representation we are
going to use. For sets of almost desirable gambles, we
can start with a finite set of gambles F (which can
be represented by enumerating the gambles in the set
F). This could also be done with sets of desirable
gambles, but the capabilities of representation would
be too limited, as the following example shows.

Example 3 Assume that we know that P (B) = 0,
then the only possible set of desirable gambles repre-
senting this fact, should include all the gambles ǫ−B
for any ǫ > 0, but not the gamble in the limit −B.

If B 6= Ω, then −B can be almost desirable without
giving rise to an incoherent set. So this fact can be
represented with a finite set of almost desirable gam-
bles, but not with a finite set of desirable gambles.

If we start with a finite set of gambles and compute
its natural extension then some of the basic pieces of
information can not be represented. In this paper, we
want to point out a representation scheme which is
not general enough for all the sets of desirable gam-
bles, but which is enough for some of the most usual
types of information and for which there are efficient
algorithms in the literature.

Definition 1 A basic set of gambles is a set of gam-
bles FX,B = {X + ǫB : ǫ > 0}, where X is an arbi-
trary gamble and B ⊆ Ω. This set of gambles will be
denoted as (X, B).

When B = ∅, we have a single gamble, X . Otherwise,
(X, B) is an infinite set with X in the limit.

The representation we propose is based in considering
sets F given by the union of a finite family of basic
sets of gambles: (X1, B1), . . . , (Xk, Bk).

With this system, P (X |B) = c is represented by
means of ((X − c)B, B), i.e. in frame B, we are
ready to pay c− ǫ to get reward X(ω), for any ǫ > 0.
P (X |B) = c is represented by means of ((c−X)B, B).

Coherence of the set of gambles generated by a finite
set of basic gambles, (X1, B1), . . . , (Xk, Bk)1, is equiv-
alent to the fact that the 0 gamble is not in the set
of gambles generated by these gambles, which can be
checked by showing that the following system in λi

and ǫ has no solution:

∑k
i=1 λi(Xi + ǫBi) ≤ 0

λi ≥ 0, ǫ > 0

This is due to the fact that the set of gambles∑k
i=1 λi(Xi + ǫBi) where λi ≥ 0, ǫ > 0 is the set of

gambles generated by the finite set of basic gambles
by applying Axioms D3 and D4. So, we are checking
whether the null gamble is contained in the natural
extension.

An algorithm to solve this system is given by Walley,
Pelessoni, and Vicig [8]. They start with a set of
lower previsions of events, but they finally arrive to a
system of this form, and propose an efficient algorithm
to solve it, based on the resolution of a sequence of
linear programming problems.

1We are considering coherence of the generated set of gam-
bles and not the usual notion of coherence for conditional previ-
sions which implies that none of the initial statements is strictly
redundant.
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To compute P (X |B) it is necessary to solve the fol-
lowing optimization problem (we are computing the
supremum value of α such that (X −α)B is desirable
in the natural extension of the basic gambles:

sup α
s.t.∑k

i=1 λi(Xi + ǫBi) ≤ (X − α)B
ǫ > 0, λi ≥ 0

This paper [8] also proposes algorithms to solve an op-
timization problem completely analogous to this one
than can be easily adapted.

A basic question is whether there are simple sets of
gambles which can not be covered with this represen-
tation. The following example shows a simple case
in which there is no obvious solution by using this
representation.

Example 4 Consider Ω = {ω1, ω2} and the two gam-
bles X, Y given by X(ω1) = 1, X(ω2) = −1 and
Y (ω1) = −1, Y (ω2) = 1. Consider the set of gam-
bles F given by ǫ1X + ǫ2Y , where ǫ1, ǫ2 > 0. This
set of gambles is not coherent, as X + Y = 0 belongs
to it. However, if we start with any representation
(X, B1), (Y, B2), then either B1 = B2 = ∅ with which
we are adding X and Y to the set F (they were not ini-
tially in F as they can not be expressed as ǫ1X + ǫ2Y
with ǫ1, ǫ2 > 0) or if one of them, B1 or B2, is not
empty, then the set generated by (X, B1), (Y, B2) is
coherent.

The solution could be to start with more complex rep-
resentations as (X1, . . . , Xk) representing all the gam-
bles Z =

∑k
i=1 ǫiXi where ǫi > 0, that we will call

an open set of gambles. And then to work with sets
of gambles which are generated by a finite family of
open sets of gambles. However, the development of
algorithms for coherence and inference is something
to be done in the future, though it does not seem to
be simple task.

5 Maximal Sets of Gambles

In this section we will investigate maximal coherent
sets of gambles. These sets of gambles represent a
complete uncertain knowledge: adding a single more
gamble will give rise to an incoherent set. The associ-
ated credal sets will be linear previsions (probability
measures). But, we will also be able of associating
finite sequences of probability measures similar to the
ones considered by Coletti and Scozzafava [2].

Definition 2 We will say that a set of gambles D is
maximal if it is coherent and there does not exist any

X 6∈ D such that D ∪ {X} is coherent.

Lemma 6 If D is coherent and −X 6∈ D, X 6= 0,
then D ∪ {X} is coherent.

Proof: Let us check it by contradiction. Let us sup-
pose that D ∪ {X} is not coherent. Then there exists
a collection of non-negative numbers c1, . . . , cn, cn+1

such that
∑n

i=1 ciXi + cn+1X = 0, where some of the
ci’s is non zero. Furthermore, according to the coher-
ence of D, cn+1 6= 0. And, as X 6= 0, some of the
ci, i = 1, . . . , n is also different from 0. Thus, −X can
be written as follows: −X =

∑n
i=1

ci

cn+1
Xi. Then, by

the coherence of D, −X belongs to it, and we get a
contradiction. �

Theorem 7 A coherent set of gambles D is maxi-
mal if and only if X ∈ D xor −X ∈ D, for all
X ∈ L, X 6= 0.

Proof: Let us suppose that D is maximal and X 6∈ D.
Then, by definition, (D ∪ {X}) is not coherent. Thus,
according to Lemma 6, −X must belong to D. On the
other hand, if for any X ∈ L, X ∈ D xor −X ∈ D,
then D is maximal, as if X 6∈ D, then −X ∈ D and
D ∪ {X} can not be coherent. �

Lemma 8 If D is maximal then DB is maximal for
all B ⊆ Ω, B 6= ∅.
Proof: It is trivially derived from Theorem 7. �

Lemma 9 Let D be a maximal set of gambles and let
P and P be respectively the lower and the upper previ-
sions associated to it. Then P (B) = P (B), ∀B ⊆ Ω.

Proof: Let us prove it by contradiction. Let us sup-
pose that there exists some B ⊆ Ω such that P (B) <
P (B). Then, for all p ∈ (P (B), P (B)), B−p 6∈ D and
−(B − p) = p− B 6∈ D. According to Theorem 7, D
cannot be maximal. �

If we have a sequence of nested sets Ω = C0 ⊃ C1 ⊃
· · · ⊃ Cn = ∅, and B ⊆ Ω, then the layer of B with
respect to this sequence, will be the minimum value
of i such that B ∩ (Ci \Ci+1) 6= ∅. It will be denoted
by layer(B).

Theorem 10 If D is maximal then there is a se-
quence of nested sets Ω = C0 ⊃ C1 ⊃ · · · ⊃ Cn = ∅
and a sequence of probability measures P0, . . . , Pn−1

satisfying the following conditions:

1. for each probability Pi, Pi(Ci\Ci+1) = 1, Pi(ω) >
0 for any ω ∈ Ci \ Ci+1,

2. for each A ⊆ B ⊆ Ω, if i = layer(B), then
P (A|B) = P (A|B) = Pi(A|B), where P (A|B)
and P (A|B) are the lower and upper probabilities
computed from DB.
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Proof: According to Lemma 9, the lower and the
upper probabilities associated to D do coincide. In
other words, the class PD is a singleton (it is deter-
mined by an additive probability measure P on Ω).
Let C1 ( Ω be the subset of elements of probability
0 C1 = {ω ∈ Ω : P ({ω}) = 0}. If C1 6= ∅, accord-
ing to Lemma 8, DC1 is maximal. Based again on
Lemma 9, it induces a probability measure on C1,
P1. We can repeat the same process again and get
a strictly decreasing finite sequence of nonempty sets
Ci and an associated finite family of probability mea-
sures Pi. (Note that, after a finite sequence of n steps,
the set Cn will be the empty set and the process is
finished.)

On the other hand, if A ⊆ B ⊆ Ω and i is the layer of
B, then we have that B ⊆ Ci and Pi(B) > 0 (remem-
ber that Ci+1 is the subset of Ci given by the ω ∈ Ci

such that Pi(ω) = 0). Probability Pi is defined in Ci

and as it is associated to DCi and this set is maximal,
we have that P (E|Ci) = P (E|Ci) = Pi(E) for any
E ⊆ Ci. As Pi(B) > 0, then its lower conditional
probability is greater than 0, and by Corollary 4, the
conditional probability can be computed by condition-
ing in the associated credal set, obtaining the desired
result:

Pi(A|B) = P (E|Ci ∩B) =

P (A|Ci ∩B) = P (A|B) = P (A|B)

�

This theorem shows the great similarity between max-
imal coherent gambles and the sequence of probabil-
ities associated to a coherent set of conditional as-
sessments given by Coletti and Scozzafava [2]. The
layer of B is also the minimum value of i for which
Pi(B) > 0, and therefore is the equivalent concept to
the zero layer of B proposed by these authors. How-
ever, there are some differences between the two mod-
els as we will show later: we can have the same se-
quence of probabilities associated to different maxi-
mal coherent sets of desirable gambles.

In the following we show that any coherent set of gam-
bles is the intersection of a family of coherent maximal
sets of gambles. First, we need a technical result.

Lemma 11 If D is coherent and −X, X 6∈ D and
X 6= 0, then D+X = (D ∪ {X} ∪ {−X + Y : Y ∈ D)
is coherent.

Proof: If this set is not coherent, then we have that
there are α1, α2, α3 ≥ 0, and Y1, Y2 ∈ D such that
α1Y1 + α2X + α3(−X + Y2) ≤ 0, and at least one of
the αi is not equal to 0.

From this inequality we have that: α1Y1 + α3Y2 ≤
(α3 − α2)X .

First, notice that α1, α3 can not be both equal to 0,
because otherwise, 0 ≤ (−α2)X , and as X 6= 0 and
α2 6= 0, we have that −X ∈ D, which is in contradic-
tion with the fact that −X, X 6∈ D.

Then, at least one of the values α1, α3 is different from
0, and thus α1Y1 + α3Y2 ∈ D.

Three situations are now possible:

• α3 = α2, which is in contradiction with the fact
that D is coherent.

• (α3−α2) > 0, which is in contradiction with the
fact that D is coherent and X 6∈ D.

• (α2−α3) > 0, which is in contradiction with the
fact that D is coherent and −X 6∈ D.

In any case, we arrive to a contradiction, so D+X must
be coherent. �

Theorem 12 Let D be a coherent set of gambles.
Then, there exists at least one maximal set of gam-
bles containing it.

Proof:

Let us start with a coherent set and then, repeat the
following process:

1. If for any gamble X (X 6= 0), we have that X ∈ D
or−X ∈ D, thenD is maximal and the procedure
stops.

2. Select a gamble X such that −X, X 6∈ D and
X 6= 0.

3. Transform D by making it equal to D+X . By
Lemma 11, this new set is coherent and contains
to the old D.

4. Go to step 1.

The main point of this procedure is that it arrives
to a maximal coherent set after a finite number of
steps. This result is based on the fact that if in the
first k + 1 loops of this process we select gambles
X1, X2, . . . , Xk+1, then these gambles are linearly in-
dependent. This fact is obtained by proving that after
having added X1, . . . , Xk, then for any linear combina-
tion of these gambles Y =

∑k
i=1 αiXi, and Y 6= 0, we

have that either Y ∈ D or −Y ∈ D. So, in step 2, we
have to select a gamble which is linearly independent
of the previously selected ones.

This is going to be proved by induction in k. For
k = 1, Y = α1X1. Then if α1 > 0, Y ∈ D, and
if α1 < 0, then −Y ∈ D. α1 can not be equal to 0
because Y 6= 0.
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Now, assume that it is true for the first k gambles
X1, . . . , Xk, and let us prove it for X1, X2, . . . , Xk+1.

Assume, Y =
∑k+1

i=1 αiXi. Let us denote by Z =∑k
i=1 αiXi.

If αi = 0 for all 1 ≤ i ≤ k, then Y = αk+1Xk+1 and
we are in a situation similar to the case k = 1.

If some αi with i ≤ k is different from 0, then by
induction, we have that either Z or −Z is in D, after
adding X1, . . . , Xk.

We have that Y = Z + αk+1Xk+1. The following
situations are possible:

• αk+1 = 0, then Y = Z and we have that either
Y or −Y is in D.

• αk+1 > 0 and Z ∈ D, then by coherence Y ∈ D.

• αk+1 > 0 and −Z ∈ D, then −Y = −Z −
αk+1Xk+1, and by the way we compute D+Xk+1

in which we add any gamble −Xk+1 + U , and
therefore any gamble −αk+1Xk+1 +U where U ∈
D, we have that −Y ∈ D.

• αk+1 < 0 and −Z ∈ D, then by coherence −Y ∈
D.

• αk+1 < 0 and Z ∈ D, then Y = αk+1Xk+1 +Z ∈
D after replacing D by D+Xk+1 .

As, we always choose a gamble that is linearly inde-
pendent of the previous one, and Ω being finite, the
dimension of L as a linear space is finite, and so the
process has to stop after a finite number of steps. �

Theorem 13 Let D be a coherent set of gambles.
Then D = ∩i∈IDi, where {Di : i ∈ I} is the class
of maximal sets of gambles containing D.

Proof: We only have to check the inclusion ∩i∈IDi ⊆
D. We will prove it by contradiction. Let us suppose
that X ∈ ∩i∈IDi \ D. Then, by Lemma 6, D ∪ {−X}
is coherent. By Theorem 12 there exists at least one
maximal set of gambles containing D ∪ {−X}. This
maximal set coincides with one of the Di, for some
i ∈ I. Then there exists some i ∈ I such that −X ∈
Di. It contradicts the assumption of coherence of Di.
�

This theorem can be the basis to obtain a representa-
tion of gambles analogous to the credal sets for sets
of almost desirable gambles. Now, a coherent set of
gambles can be expressed as a family of maximally
coherent sets of gambles, each one of them has an
associated sequence of probability measures. There
are important problems to be solved. One of them is
that a maximally consistent coherent set of gambles

is not exactly equivalent to a sequence of probability
measures as the following example shows.

Example 5 Assume that Ω = {ω1, ω2} and the prob-
ability given by P0(ω1) = P0(ω2) = 0.5 (only one prob-
ability in the sequence). It is clear that any gamble
with X(ω1) + X(ω2) > 0 should be desirable. But,
this probability does not determine whether the gam-
ble Y (ω1) = 1, Y (ω2) = −1 is desirable. We can have
a coherent set in which neither Y nor −Y is desirable,
another coherent set in which Y is desirable, and other
one in which −Y is desirable. Only the two last ones
are maximal.

An alternative model that allows to establish a cor-
respondence between maximally coherent sets of gam-
bles and sequences of probability measures is obtained
by making the consistency Axiom D1 stronger, modi-
fying it to the following version:

D1”. If X ∈ D, then there is ǫ > 0, such that −X +
ǫ supp(X) 6∈ D.

where supp(X), the support of X , is the set of ω ∈ Ω
such that X(ω) 6= 0.

This consistency condition is stronger than Axiom D1,
as this axiom was assuming that we can not have X
and −X as desirable. D1” implies that the null gam-
ble is not desirable. This axiom says that we can not
have X as desirable if −X is the limit of desirable
gambles with the same support. This is a kind of a
minimum of separation between X and −Y , if both
X and Y are desirable and have the same support.
The support is necessary in the condition, as if we
had only considered −X + ǫ (as in strict desirability
axioms [6, Section 3.7.8]), then it would have become
a too strong condition. Imagine that P0(B) = 0 , then
as P0(B) = 0 we have that −B + ǫ is also desirable
for any ǫ > 0. But we have that B ∈ D. So, the
separation condition without considering the support
would not be fulfilled.

The following theorem shows that a sequence of prob-
ability measures as the one generated in Theorem 10
can always be represented by means of a maximally
coherent set of gambles among those satisfying D1”
and that this set is unique.

Theorem 14 If we have a sequence of nested sets
Ω = C0 ⊃ C1 ⊃ · · · ⊃ Cn = ∅ and a sequence of prob-
ability measures P0, . . . , Pn−1 satisfying condition:

• for any i, Pi(Ci \ Ci+1) = 1, and Pi(ω) >
0, ∀ω ∈ Ci \ Ci+1,

then the set of gambles D = {X : Pi(X) >
0, where i = layer(supp(X))} is the only maximally
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coherent set of desirable gambles among those satis-
fying Axiom D1” and that for any i the credal set
associated to DCi contains only probability measure
Pi.

Proof: First, it is easy to prove that this set of gam-
bles satisfies all the axioms for coherence including
Axiom D1”. Considering Pi(X) > 0, we have that
Pi(supp(X)) > 0, Pi(−X + ǫ supp(X)) = −Pi(X) +
ǫ < 0 if we choose ǫ > 0 small enough. Therefore,
there is an ǫ > 0 such that −X + ǫ supp(X) 6∈ D.

It is immediate to prove that Pi is the credal set as-
sociated to DCi , as there can not be a probability Q
different to Pi defined on Ci for which Q(X) > 0 for
all X ∈ DCi .

On the other hand, this set is unique: if D′ is such
that for any i the credal set associated to D′

Ci
is

the probability Pi, then, if X is a gamble and i =
layer(supp(X)), then supp(X) ⊆ Ci and:

• if X is such that Pi(X) > 0, then X ∈ D′,

• if X is such that Pi(X) < 0, then X 6∈ D′,

• if X is such that Pi(X) = 0, then as there is
ω ∈ Ci \Ci+1 such that X(ω) > 0 and Pi(ω) > 0,
we have that for any ǫ > 0, Pi(−X+ǫ supp(X)) =
Pi(−X) + ǫ = ǫ > 0 then we have that −X +
ǫ supp(X) ∈ D′

Ci
⊆ D′. By Axiom D1”, X 6∈ D′.

As a consequence, D′ obeys the same criteria than D
to determine whether a gamble belongs to it (Pi(X) >
0) and thus D = D′.

The fact that D is maximal is a consequence of the
uniqueness. �

6 Conclusions

In this paper we have presented some basic concepts
under the light of desirability. We have tried to show
that this approach can shed light on some important
notions in imprecise probability, such as conditioning.
It can be useful for showing the relationships with
other approaches, such as as probabilistic coherence
[2]. There is important work to do, mainly on the
algorithmic side. Here we have shown some existing
algorithms which can be directly applied to some re-
stricted forms of coherent sets, but it is necessary
to determine whether this restriction is too severe
to leave out some important real situations. Also,
it would be interesting to determine some extra ax-
ioms under which the representation based on what
we have called basic sets of gambles is enough to cover
any possible set of desirable gambles.

As we have mentioned, Moral [4] studied the concept

of epistemic irrelevance and independence taking de-
sirability as basis. An important problem for the fu-
ture is how to use graphical models to represent and
use epistemic independence assessments in the com-
putation of conditional sets of desirable gambles.
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Abstract

This paper presents concentration inequalities and
laws of large numbers under weak assumptions of ir-
relevance, expressed through lower and upper expec-
tations. The results are variants and extensions of De
Cooman and Miranda’s recent inequalities and laws of
large numbers. The proofs indicate connections be-
tween concepts of irrelevance for lower/upper expec-
tations and the standard theory of martingales.

1 Introduction

This paper investigates concentration inequalities and
laws of large numbers under weak assumptions of “ir-
relevance” that are expressed using lower and upper
expectations. The starting point is the assumption
that, given bounded variables X1, . . . , Xn, we have:

for each i ∈ [2, n], variables X1, . . . , Xi−1

are epistemically irrelevant to Xi.
(1)

Epistemic irrelevance of variables X1, . . . , Xi−1 to Xi

obtains when [26, Def. 9.2.1]

E[f(Xi)|A(X1:i−1)] = E[f(Xi)] (2)

for any bounded function f of Xi and any nonempty
event A(X1:i−1) defined by variables X1:i−1, where the
functional E is an upper expectation (Section 2). Here
and in the remainder of the paper we simplify notation
by using X1:i for X1, . . . , Xi.

A judgement of epistemic irrelevance can be inter-
preted as a relaxed judgement of stochastic indepen-
dence, perhaps motivated by a robustness analysis or
by disagreements amongst a set of decision makers.
Alternatively, one might consider epistemic irrelevance
as the appropriate concept of independence when ex-
pectations are not known precisely.

De Cooman and Miranda have recently proven a num-
ber of inequalities and laws of large numbers that also
deal with judgements of irrelevance expressed through

lower/upper expectations [5]. De Cooman and Mi-
randa’s weak law of large numbers implies that, given
Assumption (1), for any ε > 0,

P

(
µ

n
− ε ≤

∑n
i=1 Xi

n
≤ µn + ε

)
≥ 1− 2e

− nε2/4
(maxi Bi)

2 ,

where Bi is such that |Xi| ≤ Bi, and

µ
n

.=
∑n

i=1 E[Xi]
n

, µn
.=
∑n

i=1 E[Xi]
n

.

Moreover, De Cooman and Miranda’s results and As-
sumption (1) imply a two-part strong law of large num-
bers: for any ε > 0, there is N ∈ N+ such that for any
N ′ ∈ N+,

P

(
∃n ∈ [N,N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)
< ε,

P

(
∃n ∈ [N,N + N ′] :

∑n
i=1 Xi

n
≤ µ− ε

)
< ε.

This law of large numbers corresponds to a finitary ver-
sion of the usual strong law of large numbers [9]; the
focus on a finitary law is justified by the fact that De
Cooman and Miranda do not assume countable addi-
tivity. If countable additivity holds, the finitary strong
law of large numbers implies convergence of empirical
means with probability one [5, Sec. 5.3].

To obtain their results, De Cooman and Miranda as-
sume, following Walley’s theory of lower previsions,
that all variables are bounded, and that conglomerabil-
ity (and consequently disintegrability) holds. These
assumptions are discussed in more detail later.

The present paper derives laws of large numbers by ex-
ploiting concentration and martingale inequalities that
are adapted to the setting of lower/upper expectations.
These results use either Assumption (1) or the weaker
assumption that, for each i ∈ [2, n] and any nonempty
event A(X1:i−1),

E[Xi|A(X1:i−1)] = E[Xi]
and

E[Xi|A(X1:i−1)] = E[Xi].
(3)
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Several results for bounded variables presented in this
paper are basically implied by De Cooman and Mi-
randa’s work. Regarding bounded variables our con-
tribution lies in offering tighter inequalities and alter-
native proof techniques that are more closely related
to established methods in standard probability theory
(in particular, close to Hoeffding’s and Azuma’s in-
equalities). In Section 4 we offer more significant con-
tributions as we lift the assumption of boundedness for
variables, and use martingale theory to prove laws of
large numbers under elementwise disintegrability.

2 Expectations, disintegrability, and
zero probabilities

In this section we present notation and terminology.
Throughout the paper we assume that an expectation
functional E maps bounded variables into real num-
bers, and satisfies:
(1) if α ≤ X ≤ β, then α ≤ E[X] ≤ β;
(2) E[X + Y ] = E[X] + E[Y ];
where X,Y are bounded variables and α, β are real
numbers (inequalities are understood pointwise).

From such an expectation functional, a finitely additive
probability measure P is induced by P (A) .= E[A] for
any event A; note that A denotes both the event and
its indicator function.1

Given a set of expectation functionals, the lower and
upper expectations of variable X are respectively

E[X] = inf E[X] , E[X] = sup E[X] .

Lower and upper probabilities are defined similarly
using indicator functions. Given an event A, a
conditional expectation functional is constrained by
E[X|A] P (A) = E[XA]. If we have a set of expecta-
tion functionals, then a set of conditional expectation
functionals given an event A is produced by element-
wise conditioning on event A (that is, each expectation
functional is conditioned on A).

2.1 Disintegrability and factorization

We will employ an assumption of disintegrability in our
proofs; namely,

E[W ] ≤ E
[
E[W |Z]

]
(4)

for any W ≥ 0, Z ≥ 0 of interest, where W and Z may
stand for sets of (non-negative) variables. Note that
disintegrability can fail for a single finitely additive

1A probability measure defined on a field completely charac-
terizes an expectation functional on bounded functions that are
measurable with respect to the field and vice-versa [26, Theorem
3.2.2].

probability measure over an infinite space [6, 10]; that
is, there is a finitely additive probability measure P
such that

EP [W ] > EP [EP [W |Z]] .

One way to obtain disintegrability is to restrict atten-
tion to simple variables; that is, variables that take on
finitely many distinct values. In particular, indicator
functions are simple variables; hence simple variables
suffice to express convergence of relative frequencies,
and our results apply then.

Another way to obtain disintegrability for every prob-
ability measure P is to adopt countable additivity [1].
That is, assume that if

A1 ⊃ A2 ⊃ . . .

is a countable sequence of events, then

∩iAi = ∅ implies lim
n→∞

P (An) = 0. (5)

This assumption says that if ∩iAi = ∅, then
limn→∞ P (An) = 0 for every possible probability mea-
sure.

A third way to obtain disintegrability is simply to im-
pose it. One may consider disintegrability a “rational-
ity” requirement.

• The theories of coherent behavior by Heath and
Sudderty [14] and by Lane and Sudderth [19] fol-
low this path by axiomatizing the strategic mea-
sures of Dubins and Savage [11], and thus pre-
scribing probability measures that disintegrate
appropriately along some predefined partitions.
This would be sufficient for our purposes, but
there are limitations in the approach as summa-
rized by Kadane et al [16]. The disintegrability
of strategic measures has actually been used to
prove various laws of large numbers in a finitely
additive setting [17].

• Another scheme that imposes disintegrability is
Walley’s theory of lower previsions; in that the-
ory, Expression (4) is a consequence of axioms for
“coherent” behavior. This is the path adopted by
De Cooman and Miranda, who consequently have
Expression (4) at their disposal.

When disintegrability holds, recursive application of
Expression (4) yields: if fi(Xi) ≥ 0 for i ∈ {1, . . . , n},
then

E

[
n∏

i=1

fi(Xi)

]

≤ E

[
. . . E

[
E

[
n∏

i=1

fi(Xi)|X1:n−1

]
|X1:n−2

]
. . .

]
;
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Assumption (1) then implies an inequality we use later:
for bounded and nonnegative functions,

E

[
n∏

i=1

fi(Xi)

]
≤

n∏

i=1

E[fi(Xi)] . (6)

2.2 Zero probabilities, full conditional
measures and weak irrelevance

It should be noted that the definition of epistemic ir-
relevance (Expression (2)) does not contain any clause
concerning zero probabilities. Indeed, Walley’s the-
ory of lower previsions follows de Finetti in adopting
full conditional measures, and in this setting Expres-
sion (2) can be imposed without concerns about zero
probabilities. Recall that a full conditional measure
P : B × (B\∅) → <, where B is a Boolean algebra, is
a set-function that for every nonempty event C satis-
fies [10, 18]:
(1) P (C|C) = 1;
(2) P (A|C) ≥ 0 for all A;
(3) P (A ∪B|C) = P (A|C) +P (B|C) for all disjoint A
and B;
(4) P (A ∩B|C) = P (A|B ∩ C) P (B|C) for all A and
B such that B ∩ C 6= ∅.
Full conditional measures are not adopted in the usual
Kolmogorovian theory, and if countable additivity is
adopted and conditioning is defined through Radon-
Nykodym derivatives, it may be impossible to sat-
isfy the axioms for full conditional measures [23, 24].
Thus there are are some differences between epistemic
irrelevance (at least as defined by Walley) and the
usual Kolmogorovian set-up, besides the obvious set-
valued/point-valued distinction.

Suppose that one wishes to deal with sets of proba-
bility measures and associated lower/upper expecta-
tions, but chooses to adopt the Kolmogorovian set-
up for each measure. That is, each measure satis-
fies countable additivity and thus disintegrability, and
conditioning is left undefined when the conditioning
event has probability zero. It might seem reasonable
to amend Expression (2) as follows:

E[f(Xi)|A(X1:i−1)] = E[f(Xi)] (7)
if P (A(X1:i−1)) > 0.

This condition is a natural for theories that do not
define conditioning on events of lower probability zero,
such as Giron and Rios’ theory [13]. Alas, this weaker
condition is really too weak to produce laws of large
numbers, as the following example shows.

Example 1 Suppose X1, X2, . . . assume values in
{0, 1, 2}, and

P (Xi = x) = 0,

P (Xi = x) = 1/2

for x ∈ {0, 1, 2}. Consequently, E[Xi] ∈ [1/2, 3/2].
Suppose additionally that

P (Xi = x|Xi−1 = x,X1:i−2) = 1

for x ∈ {0, 1, 2}; that is, the ith variable reproduces
the value of the (i− 1)th variable. They are obviously
dependent variables. However, all events have lower
probability zero, so variables X1:i−1 would be irrelevant
to Xi by Expression (7).

In this example, Expression (6) fails. For instance,

E[X1X2] = 5/2 > 9/4 = (3/2)(3/2) = E[X1] E[X2] .

Moreover the example illustrates a failure of any sen-
sible law of large numbers, as for any ε > 0,

P

(
1/2− ε ≤

∑n
i=1 Xi

n
≤ 3/2 + ε

)
∈ [0, 1/2],

because the inequality inside the probability is only sat-
isfied when {X1 = 1} obtains.

We might thus consider an alternative to Expres-
sion (7):

E[f(Xi)|A(X1:i−1)] = E[f(Xi)] (8)
if P (A(X1:i−1)) > 0.

The concept of irrelevance conveyed by Expression (8)
does lead to Expression (6). To see this, note that for
nonnegative X and Y , we have

E[XY ] ≤ sup
P

EP

[
E[XY |Y ]

]

= sup
P

EP

[
AE[XY |Y ] + AcE[XY |Y ]

]
,

using disintegrability and defining A as the set of all
values of Y such that P (Ac) = 0. Hence P (Ac) = 0
for every P and using Expression (8):

E[XY ] ≤ sup
P

EP

[
AY E[X|Y ]

]

= sup
P

EP

[
AY E[X]

]

= sup
P

EP [AY ] E[X]

= E[X] sup
P

EP [Y ]

= E[X] E[Y ] .

[As a digression, note that one might define conditional
expectations as E[X|A] = infP :P(A)>0 EP [X|A] and
E[X|A] = supP :P(A)>0 EP [X|A]. This form of condi-
tioning has been advocated by several authors [27, 28],
and it is quite similar to Walley’s concept of regular
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extension [26, Ap. J]. For such a form of conditioning,
Expression (8) seems to be the natural definition of
irrelevance.]

In short, more than one combination of definitions and
assumptions lead to the results presented in the re-
mainder of this paper. For instance, Expression (6)
obtains when Assumption (1) holds and disintegrabil-
ity holds (because all variables are simple, or because
countable additivity is assumed, or because disintegra-
bility is imposed). Alternatively, Expression (6) ob-
tains when Expression (8) holds for any i ∈ [2, n], any
bounded function f of Xi, and any event A(X1:i−1),
and additionally disintegrability holds.

Similar remarks concerning zero probabilities can be
directed at Assumption (3). We say that weak irrele-
vance obtains when either:

• For any i ∈ [2, n] and any nonempty event
A(X1:i−1),

E[Xi|A(X1:i−1)] = E[Xi]
and

E[Xi|A(X1:i−1)] = E[Xi]

[this is Assumption (3), and it requires full condi-
tional measures].

or:

• For any i ∈ [2, n] and any event A(X1:i−1),

E[Xi|A(X1:i−1)] = E[Xi] if P (A(X1:i−1)) > 0
and

E[Xi|A(X1:i−1)] = E[Xi] if P (A(X1:i−1)) > 0.

3 Bounded variables

Take variables X1, . . . , Xn such that |Xi| ≤ Bi and
define

γn
.=

n∑

i=1

B2
i > 0.

We start by deriving two concentration inequalities.

3.1 Concentration inequalities

The following inequality is a counterpart of Hoeffding
inequality [8, 15] in the context of lower/upper expec-
tations; it is slightly tighter than similar inequalities
by De Cooman and Miranda [5]. It is interesting to
note that the proof is remarkably similar to the proof
of the original Hoeffding inequality.

Theorem 1 If bounded variables X1, . . . , Xn satisfy
Expression (6), then if γn > 0,

P

(
n∑

i=1

(Xi − E[Xi]) ≥ ε

)
≤ e−2ε2/γn ,

P

(
n∑

i=1

(Xi − E[Xi]) ≤ −ε

)
≤ e−2ε2/γn .

Proof. By Markov inequality, if X ≥ 0, then for any
ε > 0 we have P (X ≥ ε) ≤ E[X] /ε. Consequently, for
s > 0, any variable X satisfies

P (X ≥ ε) = P
(
esX ≥ esε

)
≤ e−sεE[exp(sX)] .

Using this inequality and Expression (6):

P

(
n∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[
exp

(
n∑

i=1

s(Xi − E[Xi])

)]

≤ e−sε
n∏

i=1

E
[
exp

(
s(Xi − E[Xi])

)]
.

We now use Hoeffding’s result (Expression (11)) that
if variable X satisfies a ≤ X ≤ b and E[X] ≤ 0, then
E[exp(sX)] ≤ exp(s2(b − a)2/8) for any s > 0. Thus
for any P , EP

[
exp(s(Xi − E[Xi]))

]
≤ exp(s2B2

i /8),
and then E

[
exp

(
s(Xi − E[Xi])

)]
≤ exp(s2B2

i /8).
Consequently,

P

(
n∑

i=1

(Xi − E[Xi]) ≥ ε

)
≤ e−sεes2γn/8 ≤ e−2ε2/γn ,

where the last inequality is obtained by taking
s = 4ε/γn. This proves the first inequality in the
theorem; the second inequality is proved by tak-
ing P

(∑n
i=1((−Xi)− E[−Xi]) ≥ ε

)
and noting that

E[Xi] = −E[−Xi]. 2

We now move to weak irrelevance and obtain an ana-
logue of Azuma’s inequality [2, 7]. It is again interest-
ing to note that the proof is remarkably similar to the
proof of the original Azuma inequality. De Cooman
and Miranda [5, Sec. 4.1] show that their inequalities
are valid under weak irrelevance; the next inequality
is slightly tighter than theirs.

Theorem 2 If bounded variables X1, . . . , Xn satisfy
weak irrelevance and disintegrability (Expression (4))
holds, then if γn > 0,

P

(
n∑

i=1

(Xi − E[Xi]) ≥ ε

)
≤ e−2ε2/γn ,
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P

(
n∑

i=1

(Xi − E[Xi]) ≤ −ε

)
≤ e−2ε2/γn .

Proof. Using both Markov’s inequality (as in the proof
of Theorem 1) and disintegrability, for any s > 0 we
get

P

(
n∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[
exp

(
n∑

i=1

s(Xi − E[Xi])

)]

≤ e−sεE

[
E

[
exp

(
n∑

i=1

s(Xi − E[Xi])

)
| X1:n−1

]]

≤ e−sεE

[
exp

(
n−1∑

i=1

s(Xi − E[Xi])

)
h(X1:n−1)

]
,

where

h(X1:n−1) = E
[
exp
(
s(Xn − E[Xn])

)
| X1:n−1

]
.

Due to weak irrelevance,

EP [Xn|X1:n−1] ≤ E[Xn|X1:n−1] = E[Xn] ;

consequently, for any P ,

EP

[
Xn − E[Xn] |X1:n−1

]
≤ 0.

We now use Hoeffding’s result (Expression (11)) that
if variable X satisfies a ≤ X ≤ b and E[X] ≤ 0, then
E[exp(sX)] ≤ exp(s2(b − a)2/8) for any s > 0. Thus
for any P we have

EP

[
exp

(
s(Xn − E[Xn])

)
|X1:n−1

]
≤ exp(s2B2

n/8)

and then h(X1:n−1) ≤ exp(s2B2
n/8). Thus

P

(
n∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[
exp

(
n∑

i=1

s(Xi − E[Xi])

)]

≤ e−sεE

[
exp

(
n−1∑

i=1

s(Xi − E[Xi])

)
exp(s2B2

n/8)

]

≤ e−sε exp(s2B2
n/8)E

[
exp

(
n−1∑

i=1

s(Xi − E[Xi])

)]
.

These inequalities can be iterated to produce:

P

(
n∑

i=1

(Xi − E[Xi]) ≥ ε

)
≤ e−sε exp

(
s2

n∑

i=1

B2
i /8

)
.

Finally, by taking s = 4ε/γn,

P

(
n∑

i=1

(Xi − E[Xi]) ≥ ε

)
≤ e−2ε2/γn .

The second inequality in the theorem is proved by not-
ing that weak irrelevance of X1, . . . , Xn implies weak
irrelevance of −X1, . . . ,−Xn (as E[Xi] = −E[−Xi]),
and then by taking P

(∑n
i=1((−Xi)− E[−Xi]) ≥ ε

)
.

2

3.2 Laws of large numbers

Theorem 1 leads to simple proofs of laws of large num-
bers already stated by De Cooman and Miranda [5].
To start, take Assumption (1). Using subadditivity of
upper probability and Theorem 1,

P

((
n∑

i=1

Xi ≥ nµn + ε

)
∪
(

n∑

i=1

Xi ≤ nµ− ε

))
≤2e−

2ε2
γn ,

where as before, µ
n

.= (1/n)
∑n

i=1 E[Xi] and µn
.=

(1/n)
∑n

i=1 E[Xi]. By noting that P (A) = 1 − P (Ac)
for any event A, by including the endpoints of relevant
inequalities, and by using nε instead of ε:

P

(
µ− ε ≤

∑n
i=1 Xi

n
≤ µ + ε

)
≥

P

(
µ− ε <

∑n
i=1 Xi

n
< µ + ε

)
≥ 1− 2e−

2nε2

B2 ,

where we define B
.= maxi Bi. By taking limits, we

obtain a weak law of large numbers:

lim
n→∞

P

(
µ

n
− ε <

∑n
i=1 Xi

n
< µn + ε

)
= 1.

An analogue of De Cooman and Miranda’s finitary
strong law of large numbers can be deduced as well
from the previous inequalities, as follows. Here and
in the remainder of the paper, n, N and N ′ denote
positive integers. For all ε > 0, N > 0 and N ′ > 0,

P

(
∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)

≤
N+N ′∑

n=N

P

(∑n
i=1 Xi

n
≥ µ + ε

)

≤
N+N ′∑

n=N

e−2nε2/B2

=
(
e−2Nε2/B2

) N ′∑

n=0

e−2nε2/B2

=
(
e−2Nε2/B2

) 1− e2(N ′+1)ε2/B2

1− e−2ε2/B2

<
e−2Nε2/B2

1− e−2ε2/B2 .
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Consequently,

P

(
∃n ∈ [N,N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)
< ε,

provided that N is a positive integer such that

N > −(B2/(2ε2)) ln ε(1− e−2ε2/B2
).

An analogous argument leads to

P

(
∃n ∈ [N,N + N ′] :

∑n
i=1 Xi

n
≤ µ− ε

)
< ε.

By superadditivity of upper probability, we obtain a
perhaps more intuitive statement of the strong law of
large numbers: for all ε > 0, there is N such that for
any N ′,

P

(
∀n∈ [N, N +N ′] :µ

n
−ε<

∑n
i=1 Xi

n
<µn+ε

)
>1−2ε,

thus reproducing De Cooman and Miranda’s strong
laws.

We now present a pair of weak/strong laws of large
numbers under weak irrelevance. De Cooman and Mi-
randa prove a similar pair of laws by resorting to their
previous results on forward irrelevant natural exten-
sions [5, Sec. 4.1]. The proof offered now is perhaps
more direct, using our analogue of Azuma’s inequality.

Theorem 3 If bounded variables X1, . . . , Xn satisfy
weak irrelevance and Expression (4) holds, then for
any ε > 0,

P

(
µ

n
− ε <

∑n
i=1 Xi

n
µn + ε

)
≥ 1− 2e−2nε2/B2

,

and there is N such that for any N ′,

P

(
∀n∈ [N, N +N ′] :µ

n
−ε<

∑n
i=1Xi

n
<µn+ε

)
>1− 2ε.

Proof. Using subadditivity of upper probability and
Theorem 2, and defining again B

.= maxi Bi,

P

((
n∑

i=1

Xi ≥ nµn + ε

)
∪
(

n∑

i=1

Xi ≤ nµ− ε

))
≤2e−

2nε2

B2 ,

and we obtain the first expression in the theorem. To
produce the second inequality (strong law), note:

P

(
∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)

≤
N+N ′∑

n=N

P

(∑n
i=1 Xi

n
≥ µ + ε

)

≤
N+N ′∑

n=N

e−2nε2/B2

<
e−2Nε2/B2

1− e−2ε2/B2 .

Again,

P

(
∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)
< ε

provided that N is a positive integer such that

N > −(B2/(2ε2)) ln ε(1− e−2ε2/B2
).

This is “half” of the second expression in the theorem;
the other “half” is proved analogously. 2

The theorem easily implies the following concise weak
law of large numbers, by taking limits:

lim
n→∞

P

(
µ

n
− ε <

∑n
i=1 Xi

n
< µn + ε

)
= 1.

4 Laws of large numbers without
boundedness

We now consider variables without bounds in their
ranges under the assumption of weak irrelevance; the
resulting laws of large numbers are the main contri-
bution of the paper. We will assume in this section
that countable additivity holds (Expression (5)). This
assumption of countable addivity implies disintegra-
bility; that is, EP [W ] = EP [EP [W |Z]] for any P , W
and Z. Thus our setup is close to the standard (Kol-
mogorovian) one, where any expectation functional is
a linear monotone and monotonically convergent func-
tional that can be expressed through Lebesgue integra-
tion. We only depart from the Kolmogorovian tradi-
tion in explicitly letting a set of such functionals to be
permissible given a set of assessments.

We will use a sequence of variables {Yn} defined as
follows:

Yn
.=

n∑

i=1

Xi − EP [Xi|X1:i−1] .

The key observation is that Yn is a function of all vari-
ables X1:n such that

EP [Yn|X1:n−1] =

(
n−1∑

i=1

Xi − EP [Xi|X1:i−1]

)
+

EP [Xn−EP [Xn|X1:n−1] |X1:n−1]
= Yn−1 +

EP [Xn|X1:n−1]− EP [Xn|X1:n−1]
= Yn−1;

so, {Yn} is a martingale with respect to P . Thus,

EP

[
(Yn − Yn−1)2|X1:n−1

]

= EP

[
Y 2

n |X1:n−1

]
− 2EP [Yn−1Yn|X1:n−1] + Y 2

n−1

= EP

[
Y 2

n |X1:n−1

]
− 2Yn−1EP [Yn|X1:n−1] + Y 2

n−1

= EP

[
Y 2

n |X1:n−1

]
− 2Yn−1Yn−1 + Y 2

n−1

= EP

[
Y 2

n |X1:n−1

]
− Y 2

n−1.
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And by taking expectations on both sides and noting
that Yi − Yi−1 = Xi − EP [Xi|X1:i−1], we get

EP

[
Y 2

n

]
= EP

[
(Xn − EP [Xn|X1:n−1])2

]
+ EP

[
Y 2

n−1

]
.

Iterating this expression, we obtain:

EP

[
Y 2

n

]
=

n∑

i=1

EP

[
(Xi − EP [Xi|X1:i−1])2

]
. (9)

With these preliminaries, we have:

Theorem 4 Assume countable additivity. If variables
X1, . . . , Xn satisfy weak irrelevance, and E[Xi] and
E[Xi] are finite quantities such that E[Xi]−E[Xi] ≤ δ,
and the variance of any Xi is no larger than a finite
quantity σ2, then for any ε > 0,

P

(
µ

n
− ε <

∑n
i=1 Xi

n
< µn + ε

)
≥ 1− σ2 + δ2

ε2n
,

and there is N > 0 such that for any N ′ > 0,

P

(
∀n∈ [N, N +N ′] :µ

n
−ε<

∑n
i=1Xi

n
<µn+ε

)
>1− 2ε.

Consequently,

∀ε > 0 : lim
n→∞

P

(
µ

n
− ε <

∑n
i=1 Xi

n
< µn + ε

)
= 1,

P

(
lim sup

n→∞

(∑n
i=1 Xi

n
− µn

)
≤ 0
)

= 1,

P

(
lim inf

n→∞

(∑n
i=1 Xi

n
− µ

n

)
≥ 0
)

= 1.

Proof. For a fixed P and for all ε > 0,

P

(
µ

n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= P

(
n∑

i=1

E[Xi]− εn <

n∑

i=1

Xi <

n∑

i=1

E[Xi] + εn

)

≥ P

(
n∑

i=1

EP [Xi|X1:i−1]− εn <

n∑

i=1

Xi

<

n∑

i=1

EP [Xi|X1:i−1] + εn

)

(using weak irrelevance)

= P

(
−ε <

∑n
i=1 Xi − EP [Xi|X1:i−1]

n
< ε

)

= P (−ε < Yn/n < ε)
= P (|Yn/n| < ε) .

Applying Chebyshev’s inequality and Expression (9),

P (|Yn/n| ≥ ε) ≤ EP

[
Y 2

n

]

ε2n2

=
∑n

i=1EP

[
(Xi−EP [Xi|X1:i−1])2

]

ε2n2
.

Now write (Xi − EP [Xi|X1:i−1])2 as

((Xi − EP [Xi]) + (EP [Xi]− EP [Xi|X1:i−1]))2 ,

and then:
n∑

i=1

EP

[
(Xi − EP [Xi|X1:i−1])2

]

=
n∑

i=1

EP

[
(Xi − EP [Xi])2

]

+2EP [(Xi − EP [Xi])(EP [Xi]− EP [Xi|X1:i−1])]
+EP

[
(EP [Xi]−EP [Xi|X1:i−1])2

]

≤
n∑

i=1

σ2 + δ2

+2(EP [Xi]− EP [Xi|X1:i−1])EP [Xi − EP [Xi]]

=
n∑

i=1

σ2 + δ2.

Hence
n∑

i=1

EP

[
(Xi − EP [Xi|X1:i−1])2

]
≤ n(σ2 + δ2), (10)

and combining these inequalities, we obtain:

P (|Yn/n| ≥ ε) ≤ σ2 + δ2

ε2n
,

and then

P

(
µ

n
− ε <

∑n
i=1 Xi

n
< µn + ε

)
≥ 1− σ2 + δ2

ε2n

for any P , as desired. By taking the limit as n grows
without bound, we obtain

lim
n→∞

P

(
µ

n
− ε <

∑n
i=1 Xi

n
< µn + ε

)
= 1.

The proof of the strong law of large numbers uses
the same strategy, but replaces the appeal to Cheby-
shev’s inequality by an appeal to the Kolmogorov-
Hajek-Renyi inequality (described in the Appendix),
following the proof of the strong law of large numbers
by Whittle [29, Thm. 14.2.3].So, for a fixed P and for
all ε > 0, we proceed as previously to obtain:

P

(
∀n∈ [N, N +N ′] : µ

n
−ε<

∑n
i=1Xi

n
<µn+ε

)

≥ P

(
∀n∈ [N,N +N ′] : −ε <

Yn

n
< ε

)

= P (∀n∈ [N,N +N ′] : |Yn/n| < ε) .
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As {YN , YN+1, . . . , YN+N ′} forms a martingale, we use
the Kolmogorov-Hajek-Renyi inequality to produce:

P (∀n∈ [N, N +N ′] : |Yn/n| < ε)

≥ 1−
∑N

i=1 EP

[
(Xi − EP [Xi|X1:i−1])2

]

ε2N2

−
N+N ′∑

i=N+1

EP

[
(Xi − EP [Xi|X1:i−1])2

]

ε2i2

≥ 1− σ2 + δ2

ε2N
−

N+N ′∑

i=N+1

σ2 + δ2

ε2i2

(using Expression (10))

≥ 1− σ2 + δ2

ε2N
−

∞∑

i=N+1

σ2 + δ2

ε2i2

≥ 1− σ2 + δ2

ε2

(
1
N

+
∫ ∞

N

1/i2di

)

= 1− σ2 + δ2

ε2

(
1
N

+
1
N

)

= 1− 2
σ2 + δ2

ε2N
.

Consequently, for integer N > (σ2 + δ2)/ε3, we obtain
the desired inequality

P

(
∀n∈ [N, N +N ′] :µ

n
−ε<

∑n
i=1Xi

n
<µn+ε

)
>1−2ε.

As we assume countable additivity for every P , the
proof of the Kolmogorov-Hajek-Renyi can be extended
to an infinite intersection of (decreasing) events ex-
pressed as {∀j ≥ 1 : |Xj | < εj}; thus

∀ε > 0 : ∀δ > 0 : ∃N > 0 :

P

(
∀m ≥ N :

∑m
i=1 Xi − E[Xi]

m
> ε

)
≥ 1− δ,

and this is equivalent to:

∀ε > 0 : lim
N→∞

P

(
∀m≥N :

∑m
i=1 Xi − E[Xi]

m
> ε

)
= 1.

As the events in these probability values form an in-
creasing sequence, we have, for all ε > 0,

P

(
∃N > 0 : ∀m ≥ N :

∑m
i=1 Xi − E[Xi]

m
> ε

)
= 1.

Now this is equivalent to ∀k > 0 : P (Ak) = 1, where
Ak = {∃N > 0 : ∀m ≥ N : (1/m)

∑m
i=1 Xi − E[Xi] >

1/k}, and because P (∪k>0¬Ak) ≤∑k>0 P (¬Ak) = 0,
we have P (∀k > 0 : Ak) = 1, so

P

(
∀k>0: ∃N >0: ∀m≥N :

∑m
i=1 Xi − E[Xi]

m
> ε

)
= 1.

This is exactly the desired expression

P

(
lim sup

n→∞

(∑n
i=1 Xi

n
− µn

)
≤ 0
)

= 1.

A similar argument proves the last inequality in the
theorem, starting from:

∀ε > 0 : ∀δ > 0 : ∃N > 0 :

P

(
∀m ≥ N :

∑m
i=1 Xi − E[Xi]

m
< −ε

)
≥ 1− δ.

2

5 Discussion

The concentration inequalities and laws of large num-
bers proved in this paper assume rather weak con-
ditions of epistemic irrelevance. When compared to
usual laws of large numbers, both premises and con-
sequences are weaker: expectations are not assumed
precisely known, and convergence is interval-valued.

Theorems 1 and 2 and their ensuing laws of large num-
bers are implied by De Cooman and Miranda’s seminal
work [5] (and their results generalize several previous
efforts [12]). Actually, De Cooman and Miranda start
from a weaker condition of forward factorization that
implies both Assumption (1) and weak irrelevance.
The possible advantage of our proof techniques for
these two theorems is that they are rather close to
well-known methods in standard probability theory,
such as Hoeffding’s inequality (it should be noted that
De Cooman and Miranda already indicate the similar-
ity between their inequalities and Hoeffding’s).

The most significant results of the paper employ weak
irrelevance to produce concentration inequalities (The-
orem 2) and laws of large numbers (Theorems 3 and 4).
The latter theorem is possibly the most valuable con-
tribution. The strategy for most proofs is to translate
assumptions of weak irrelevance into facts regarding
martingales, and to adapt results for martingales to
this setting. This strategy keeps the proof relatively
short and close to well-known results in probability
theory. The connection between lower/upper expecta-
tions and the theory of martingales seems rather natu-
ral [4, 25], but the relationship between epistemic irrel-
evance and martingales does not appear to have been
explored in depth so far. We note that the basic con-
straint defining martingales (that is, E[Yn|X1:n−1] =
Yn−1) is preserved by convex combination of mixtures;
therefore, the study of martingales seems appropriate
when one deals with convex sets of probability mea-
sures — certainly it seems less contorted than the anal-
ysis through stochastic independence, as stochastic in-
dependence is not preserved by convex combination.
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The proofs presented in this paper need assumptions of
disintegrability that can be easily satisfied if countable
additivity is adopted. It is an open question whether
similar results can be proven without disintegrability,
particularly when one deals with unbounded variables.
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A Two auxiliary inequalities

The following inequality is a simple extension of a basic
result by Hoeffding [8, 15]: If variable X satisfies a ≤
X ≤ b and E[X] ≤ 0, then for any s > 0,

E[exp(sX)] ≤ exp(s2(b− a)2/8). (11)

First, the inequality is clearly valid if a = b, or if a = 0,
or if b < 0. From now on, suppose b ≥ 0 > a. By
convexity of the exponential function,

exp(sx) ≤ x− a

b− a
esb +

b− x

b− a
esa for x ∈ [a, b].

Given monotonicity of expectations and E[X] ≤ 0,

E[exp(sX)] ≤ b

b− a
esa − a

b− a
esb .= exp(φ(s(b− a)))

for φ(u) = −pu + log(1− p + peu) with p = −a/(b−a)
(and note that p ∈ (0, 1] in the situation under
consideration). Given that φ(0) = φ′(0) = 0 and
φ′′(u) ≤ 1/4 for u > 0 (as the maximum of φ′′(u)
is 1/4, attained at eu = (1 − p)/p), we can use
Taylor’s theorem as follows. For some v ∈ (0, u),
φ(u) = φ(0) + uφ′(0) + (u2/2)φ′′(v) ≤ (u2/8) and
consequently φ(s(b − a)) ≤ s2(b − a)2/8. By putting
together these inequalities, we obtain Expression (11).

We now review the Kolmogorov-Hajek-Renyi inequal-
ity, almost exactly as proved by Whittle [29]; this is
presented just to indicate the role of (elementwise) dis-
integrability in the derivation. Let {Xi} be a mar-
tingale with X0 = 0, and let {εi} be a sequence
0 = ε0 ≤ ε1 ≤ . . . ; the inequality is

P (∀j ∈ [1, n] : |Xj | < εj) ≥ 1−
n∑

i=1

E
[
(Xi −Xi−1)2

]

ε2i
.

To prove this inequality, define

An
.= {∀j ∈ [1, n] : |Xj | < εj}.

Using ξi = Xi−Xi−1, and again denoting an event and
its indicator function by the same symbol, we have

P (An) = EP [An]
= EP [An−1{|Xn| < εn}]
≥ EP

[
An−1(1−X2

n/ε2n)
]

(as {|X| < ε} ≥ 1−X2/ε2)
= EP

[
An−1(1− (X2

n−1 + ξ2
n)/ε2n)

]

(by the martingale property)
≥ EP

[
An−2(1−X2

n−1/ε2n−1)
]
− EP

[
ξ2
n/ε2n

]

(as εn−1 ≤ εn and
{|X| < ε}(1−X2/ε2) ≥ (1−X2/ε2)).

Iteration of the last inequality yields the result. Note
that it was necessary to apply disintegrability of P
when applying the martingale property (that is, ele-
mentwise disintegrability is used).
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Abstract

Several authors have presented methods for consider-
ing the behaviour of Markov chains in the generalised
setting of imprecise probability. Some assume a con-
stant transition matrix which is not known precisely,
instead bounds are given for each element. Others
consider a transition matrix which is neither known
precisely nor assumed to be constant, though each
element is known to exist within intervals that are
constant over time. In both cases results have been
published regarding the long-term behaviour of such
chains. When a finite Markov chain is considered with
a single absorbing state, however, eventual absorption
is generally certain in both cases. Thus it is of inter-
est to consider the long-term behaviour of the chain,
conditioned on non-absorption, within the setting of
imprecise probability. Methods have previously been
presented for the case of a constant transition matrix,
and submitted for the case of a non-constant transi-
tion matrix. In this paper the methods for the two
cases are compared.

Keywords. Absorbing state, imprecise probability,
Markov chains, time-inhomogeneity

1 Introduction

There are several papers in which the theory of in-
terval probability has been applied to the considera-
tion of Markov chains. Kozine and Utkin [10] con-
sider the situation in which the individual elements
of the transition matrix are assumed to be constant
over time, but may not be known precisely (thus that
paper can be thought of as generalising the time-
homogeneous case). Instead, all that is known are
the intervals in which each individual matrix element
is contained. This property can be relaxed, as it was
by Škulj [13, 14], by only requiring that the intervals
to which those elements belong remain constant over
time, and allowing the elements to vary with time
(thus those papers can be thought of as generalising

the time-inhomogeneous case). In those same papers
the concept of the initial distribution is also gener-
alised, so that rather than assume a specific initial
distribution, an entire set of possible initial distri-
butions is defined. The papers then considered the
long-term behaviour of such chains, and proved that,
subject to certain conditions, the possible distribu-
tions as time approaches infinity form a set that is
independent of the set of initial distributions. An al-
ternate method for considering the situation found in
[13, 14] was offered by de Cooman et al. in [3]; we
explain in Section 3 why we have not adopted their
method in this paper.

It can be proved that for a finite Markov chain with
one absorbing state eventual absorption is certain
both in the case given by Kozine and Utkin [10], and
also the case found in [14], assuming the conditions
required in that paper (the respective proofs for these
results can be found in Crossman et al. [4, 5]). In this
situation, then, it is of more interest to consider the
long-term behaviour of the chain when conditioning
on non-absorption at each step.

What follows can be thought of as a generalisation
of the limiting conditional distribution in the pre-
cise case. The limiting conditional distribution, if
used as the initial distribution, is referred to as the
quasi-stationary distribution (QSD). The QSD has
many applications. For example, it is used by Pakes
[11] to better understand population sizes, which are
modelled in that paper as birth-death processes with
catastrophes. In this case the QSD represents the
long-term behaviour of a stable population, before the
point at which it becomes extinct. Further, Parsons
and Pollet [12] apply QSDs to describe the long-term
behaviour of certain catalytic chemical reactions.

Crossman et al. [4] considered the long-term be-
haviour conditioned on non-absorption for the model
given in [10], and the consideration of sets of initial
distributions is introduced as in [13]. Crossman and
Škulj [5] then applied this consideration to the model
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given in [13], though the restrictions upon each row
of the transition matrix is given as a closed probabil-
ity set, rather than a group of intervals. In this paper
the method found in [4] is similarly expanded to using
closed probability sets (more on this can be found in
Crossman [6]), and the two different approaches are
compared.

1.1 Markov chains with imprecision

The following model is given in a slightly different
form by Škulj [13]. Let X = {X(n), n = 0, . . .}
be a discrete-time Markov chain on the state space
S = {−1} ∪ C with C = {0, . . . , s} where −1 is an
absorbing state and C is a set of transient states. Im-
precision is introduced by the assumption that the
transition matrix for any given time step is not known
precisely. Instead, limitations are imposed upon the
possible values of each transition probability at each
step.

Define s + 2 closed sets of probability distributions,
P(i), i = −1, 0, . . . , s.

Definition 1.1 All potential transition matrices for
a given time step belong to the set

M(P ) :=







p(−1)

...
p(s)


 | p(i) ∈ P(i), ∀i ∈ C





where the choice of the element from P(i) has no effect
on the choice of the element P(j) if i 6= j.

Thus, each row of the transition matrix for a given
time step is chosen from a set of probability distribu-
tions, and each choice is made independently.

Further conditions are now given. First, as −1 is an
absorbing state P(−1) = {(1, 0, . . . , 0)} is required.
Further, each of the possible transition matrices must
guarantee that C is a single communicating class with
each set in C aperiodic.1

Definition 1.2 The set of all possible initial distri-
butions over S is denoted by

M0 := {v = (v−1, v0, . . . , vs)|vi ≥ 1 ∀i,
s∑

i=−1

vi = 1}.

Furthermore, D0 is used to denote a strict subset of
M0.

Thus, D0 can be thought of as the set of initial
distributions deemed possible for a given process,

1Note that this is a more general formulation than can be
found in [4], the justification for this change can be found in
[6].

where this conclusion is arrived at by some unspec-
ified method. M0 would be used only when nothing
whatsoever is known about the initial distribution.

2 Imprecise Markov chains with
constant transition matrix

In this section it is assumed that there is a single
element of M(P ) that describes the transition prob-
abilities at every time step, i.e. the transition matrix
is unknown, but constant.

As mentioned, D0 represents the set of initial distri-
butions over S that have been judged possible. Thus
for a matrix P ∈ M(P ) the set D̃n(P ) of all possible
distributions over S at time n ≥ 1 can be defined as
follows.

Definition 2.1

D̃n(P ) := {vP | v ∈ D̃n−1(P )} = {vPn | v ∈ D̃0(P )}

where D̃0(P ) := D0. Should every possible initial
distribution be considered possible, the appropriate
definition becomes

M̃n(P ) := {vP |v ∈ M̃n−1(P )} = {vPn|v ∈ M̃0(P )}

where M̃0(P ) :=M0.

However, since it is unknown which element of the set
M(P ) actually describes the behaviour of the chain,
it is of more pratical use to introduce the following
definition.

Definition 2.2

M̃n :=
⋃

P∈M(P )

M̃n(P ). (2.1)

Thus M̃n contains every distribution possible at time
n.

Theorem 2.1 For each P ∈M(P ) and n ≥ 0,

M̃n+1(P ) ⊆ M̃n(P ).

Proof. For each P ∈ M(P ), it follows from the def-
inition of M̃0(P ) and the fact that P is a strictly
stochastic matrix that M̃1(P ) = {vP |v ∈ M̃0(P )} ⊆
M̃0(P ). Now assume that for a certain n > 1,
M̃n(P ) ⊆ M̃n−1(P ). Then

M̃n+1(P ) = {vP | v ∈ M̃n(P )}
⊆ {vP | v ∈ M̃n−1(P )}
= M̃n(P ).

2
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It is therefore appropriate to define

Definition 2.3

M̃∞(P ) :=
∞⋂

n=0

M̃n(P )

This set M̃∞(P ) describes the behaviour of the chain
as time approaches infinity. Once again, though, since
the correct matrix fromM(P ) is unknown, the follow-
ing definition is of more practical use.

Definition 2.4

M̃∞ =
⋃

P∈M(P )

M̃∞(P ).

It is proved in [4] that in our current case

M̃∞ =
⋃

P∈M(P )

{(1, 0, . . . , 0)} = {(1, 0, . . . , 0)}.

Thus, since D̃n(P ) ⊆ M̃n(P ) for all n, eventual ab-
sorption is certain irrespective of our choice of D0 or
the actual element of the setM(P ) that correctly de-
scribes the chain. We therefore consider the situation
in which the chain is conditioned on non-absorption
at each step.

We now define the following functions.

Definition 2.5 For

v ∈M0 \ {(1, 0, . . . , 0)} (2.2)

we have

f(v) = f((v−1,v
∗)) =

1
1− v−1

v∗,

and

f̃α(f(v)) = f̃α(
1

1− v−1
(v0, . . . , vs))

:= (α, (1− α)(v0, . . . , vs))

where α ∈ [0, 1).

Thus f(·) takes a distribution over S (for which ab-
sorption is not certain) and conditions it on non-
absorption. f̃α(·) takes a distribution over C and
maps it to a distribution in S for which the relative
probabilities for being in any two states in C remain
constant.

Lemma 2.1 f(f̃α(v)P ) = f(f̃β(v)P ) for any P ∈
M(P ), independently of the values of α and β.

Proof.

f(f̃α(v)P ) = f

(
(α, (1− α)v)

(
1 0
p Q

))

=
(1− α)vQ
|(1− α)vQ|

=
vQ

|vQ| .

2

Using f(·) it becomes possible to define the set of
all possible distributions over C, conditioned on non-
absorption, given D0, in the following way

Definition 2.6

M̃C
n := {f(v)|v ∈ M̃n \ {(1, 0, . . . , 0)}} (2.3)

and

D̃Cn := {f(v)|v ∈ D̃n \ {(1, 0, . . . , 0)}}.

Theorem 2.2 For each P ∈M(P ) and n ≥ 0,

M̃C
n+1 ⊆ M̃C

n .

Proof. For each P ∈M(P ), and forMC
0 (P ) =MC

0 ,
we have from (2.3) and Theorem 2.1 that

M̃C
n+1(P ) = {f(v) | v ∈ M̃n+1(P )\{(1, 0, . . . , 0)}}

⊆ {f(v) | v ∈Mn(P )\{(1, 0, . . . , 0)}}
= M̃C

n (P ).

By taking the union of both sides over all P ∈M(P )
the proof is complete. 2

The following definition is therefore appropriate.

Definition 2.7

M̃C
∞ :=

∞⋂

i=0

M̃C
i .

Equivalently

M̃C
∞ =

⋃

P∈M(P )

M̃C
∞(P ).

Thus M̃C
∞ contains the possible distributions, condi-

tioned on non-absorption as time goes to infinity, for
all possible matrices fromM(P ) assuming nothing is
known about the initial distribution.

Associated with each element P ∈ M(P ) is a unique
limiting conditional distribution αP . In [4] it is
proved that

M̃C
∞ =

⋃

P∈M(P )

M̃C
∞(P ) =

⋃

P∈M(P )

αP (2.4)
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That is, although the correct element ofM(P ) is un-
known, we know that the only possible distributions
that can occur as time approaches infinity are the
limiting conditional distributions of the elements of
M(P ). Since we have from Darroch and Seneta [7]
that αP is reached independently of the initial dis-
tribution, we have that the right hand side of (2.4)
represents the long-term behaviour of the chain, con-
ditioned on non-absorption, independent of the choice
of DC0 .

3 Imprecise Markov chains with
non-constant transition matrix

In the case considered in Section 2, the long-term be-
haviour conditioned on non-absorption is easy to de-
fine, since such behaviour in the time-homogeneous
case is well-known. In this section it is no longer as-
sumed that the unknown transition matrix for time
step n equals that for time step m 6= n. This cor-
responds in the precise case to the concept of time-
inhomogeneous chains, the long-term behaviour of
which is far less well understood.

A further condition is required in this case, namely
that if [P ]ij = 0 for any P ∈M(P ) then [Q]ij = 0 for
all Q ∈M(P ). Thus a jump from state i to state j is
either possible at all time steps, or impossible at all
time steps. This is to prevent situations in which two
or more transition matrices, each of which has C as a
single communicating class, can be chosen fromM(P )
which, when multiplied, form a matrix for which C
is not a single communicating class. It is certainly
true that such matrices exist, but it is possible that
they may already be disqualified by the conditions
in Section 1.1 (most critically the assumption of in-
dependence), making this new condition unnecessary.
Work is currently being conducted into ascertaining
whether or not the new condition is redundant.

Definition 3.1 The set of possible n step transition
matrices Mn(P ) is defined as follows:

Mn(P ) := {P1P2 . . . Pn| Pi ∈M(P )}.

Definition 3.2 The setM(P ) is referred to as regu-
lar if for some n every P ∈ Mn(P ) has only strictly
positive elements. Further, the set M(P ) is referred
to as conditionally regular on C if for some r every
P ∈ Mr(P ) has all elements [P ]ij strictly positive,
where i ∈ C, j ∈ S.

Lemma 3.1 All matrices which belongs to the set
Ms+1(P ) are conditionally regular on C.

Proof. Any matrix Ps+1 contained in Ms+1(P )
represents the behaviour of a time-inhomogeneous

Markov chain over s + 1 time steps. By assumption
each of the time steps are described by transition ma-
trices for which C is a single communicating class, and
each state in C is aperiodic. There must therefore be
a path of n states, denoted {ak}k=1,...,n, strictly be-
tween i and j, where i, j ∈ C, and no element of
{ak}k=1,...,n is equal to either i or j.

Assume i 6= j. By assumption a jump from state
i to state j is either possible or not at a given
time step independent of that time step. Therefore
if there exists k1 6= k2 such that ak1 = ak2 , the
elements ak1 , ak1+1, . . . , ak2−1 can be removed from
{ak}k=1,...,n and the remainder still represents a vi-
able path from i to j. This process can continue
until there remains no duplicated value in the path,
which forces n ≤ s − 1. Thus j can be reached from
i in s jumps, forcing P (X(s) = j|X(0) = i) > 0.
P (X(s + 1) = j|X(0) = i) > 0 follows immediately
from the fact that each possible transition matrix has
C as a single communicating class, and thus cannot
contain a column of zeroes.

Now assume i = j. The same process as above applies,
except that without duplicated values in the path we
have n ≤ s, and hence we can return to i after s + 1
jumps, and P (X(s+ 1) = j|X(0) = i) > 0. 2

M0 and D0 are defined just as they were in Section
2. Since a constant transition matrix can no longer
be assumed, the following definitions are required.

Definition 3.3

Mn := {vP |v ∈Mn−1, P ∈M(P )}
and

Dn := {vP |v ∈ Dn−1, P ∈M(P )}.
Furthermore

MC
n := {f(v)|v ∈Mn \ {(1, 0, . . . , 0)}}

and

DCn := {f(v)|v ∈ Dn \ {(1, 0, . . . , 0)}}.

It should be clear that

M̃C
n ⊆MC

n ,∀n > 0 (3.1)

and moreover that

M̃C
1 =MC

1

where M̃C
n is as defined in (2.3).

Lemma 3.2

MC
n = {f(f̃α(v) · P )|v ∈MC

n−1, P ∈M(P )}
and

DCn = {f(f̃α(v) · P )|v ∈ DCn−1, P ∈M(P )}.
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Proof. v ∈ DCn−1 ⇒ f̃α(v) ∈ Dn−1 for some α ∈
[0, 1) by definition. Thus f̃α(v)P ∈ DCn . By Lemma
2.1, however f(f̃α(v)P ) = f(f̃β(v)P ) for any β ∈
[0, 1), and so in fact f(f̃α(v)P ) ∈ DCn independently
of our choice of α. 2

It is proven in [13] that

Mn+1 ⊆Mn

making the following definition appropriate.

Definition 3.4

M∞ :=
∞⋂

n=0

Mn.

It is proven in [5] that

M∞ = {(1, 0, . . . , 0)}

so absorption is certain even when the transition ma-
trix is unknown and can change between time steps.
Once again the long-term behaviour of the chain con-
ditioned on non-absorption is considered.

It is proved in [5] (in an almost identical manner to
Theorem 2.2) that

MC
n+1 ⊆MC

n (3.2)

and hence the following definition is appropriate.

Definition 3.5

MC
∞ :=

∞⋂

n=0

MC
n .

Definition 3.6 A set of distributionsM is denoted a
conditionally invariant set of distributions, henceforth
known as CISD, if

f(f̃α(M) · M(P )) =M

for some α and therefore for every α ∈ [0, 1), where ·
represents an element-wise product.

Thus if at any time-step the set of possible distribu-
tions over C is a CISD every subsequent time-step will
have an identical set of possible distributions over C.
Note that MC

∞ must be a CISD By Lemma 2.1.

MC
∞ describes the behaviour of the chain, conditioned

on non-absorption, as time approaches infinity, as-
suming that there is nothing whatsoever that can be
said regarding the initial distribution over C. An im-
portant property of the limiting conditional distribu-
tion in the precise case, however, is that the behaviour

of the chain, conditioned on non-absorption, tends to-
ward it independently of the choice of initial distribu-
tion over C. In what follows we outline the method
by which the generalisation of this property can be
proved.

Definition 3.7 Two sets of distributions over S, M
andN , are described as conditionally equal if f(M) =
f(N ), where f(M) := {f(v)|v ∈M}.

A non-symmetric distance measure d(·, ·) between two
sets of distributions over S is defined in [5], where
d(M,N ) = 0 if and only if for every v ∈ M there is
a w ∈ N such that f(v) = f(w).

Corollary 3.1 Let M and N be closed sets of dis-
tributions. Then f(M) ⊆ f(N ) if and only if
d(M,N ) = 0.

Proof. f(M) ⊆ f(N ) implies that for every f(v) ∈
M there exists w ∈ N such that f(v) = f(w). Thus
d(M,N ) = 0.

Let d(M,N ) = 0. By the above assertion, for every
v ∈ M there exists w ∈ N such that d(v,w) = 0.
Thus f(M) ⊆ f(N ).

2

It is proven in [5] that, under the conditions given in
this paper

d(M ·M(P ),N ·M(P )) < d(M,N ) (3.3)

and

f(M) = f(M′)⇒ d(M,N ) = d(M′,N ) (3.4)

for any set of distributions N .

Definition 3.8 LetM be a compact set of distribu-
tions and M(P ) a set of transition matrices that are
conditionally regular on C. Then M is a fixed set of
M(P ) conditionally on C if f(M ·M(P )) = f(M),
or equivalently, ifM andM·M(P ) are conditionally
equal on C.

It is important to note that if M is a fixed set of
M(P ) conditionally on C, then f(M) must be a con-
ditionally invariant set of distributions.

Theorem 3.1 Let M and N be conditionally fixed
sets ofM(P ) on C. Then they are conditionally equal
on C.

Proof. It follows from Corollary 3.1 that the sets
M and N are conditionally equal on C if and only if
d(M,N ) = d(N ,M) = 0. Suppose that one of the
distances is greater than 0, say d(M,N ) > 0. By the
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assertion that both sets are conditionally fixed sets,
we have that f(M) = f(M · M(P )) and f(N ) =
f(N · N (P )) Then, by Corollary 3.1, (3.3) and (3.4),
d(M,N ) = d(M · M(P ),N ) = d(M · M(P ),N ×
M(P )) < d(M,N ), which is a contradiction. 2

Thus we have that there can be only one condition-
ally invariant set of distributions for a given impre-
cise Markov chain. Finally, [5] goes on to prove that
convergence to this set is certain, conditioned upon
non-absorption, irrespective of the choice of DC0 .

These results confirm the CISD as the imprecise ana-
log to the QSD. Not only does setting DC0 = MC

∞
ensure that DCn =MC

∞, for all n, but the set of possi-
ble distributions tends towards MC

∞ no matter what
initial distributions are allowed.

We now discuss the method offered in [3], and explain
why we do not make use of it here. The results pre-
sented in Section 3 are based on the notion of regular-
ity defined in Definition 3.2. In this sense the results
on convergence directly generalise those found in [7],
where the analogous notion of regularity is used in the
precise case.

Two important further insights for the case of uncon-
ditional convergence of imprecise Markov chains are
found in [3], which suggest that the concept of reg-
ularity that we use might be too strong. First, de
Cooman et al. show that even the concept of regu-
larity itself can be transferred to the imprecise case
in a weaker form, which suggests that there might be
different types of convergence with different proper-
ties. However, their approach is substantially differ-
ent from ours, where the main difference is that they
represent imprecision in terms of lower and upper ex-
pectation operators instead of sets of probabilities and
moreover, the calculations of the distributions at fur-
ther time steps are done by the use of so called back-
wards recursion.

While in the case where sets of probabilities are con-
vex, which certainly is the most important case, the
representation with expectation operators coincides
with the approach with sets of probabilities, our ap-
proach is more general if sets of probabilities are not
assumed to be convex. Our stronger notion of reg-
ularity seems to be necessary in this case to assure
convergence. The second problem with efficiently ap-
plying the approach taken in [3] to studying conver-
gence under conditioning on non-absorption is that it
is not obvious to us how the conditioning that must
take place at every step would be combined with the
backward recursion method. This effectively means
that we do not see how the step performed in Lemma
2.1, which is shown to be easy using the forward calcu-
lations, could be done using the backwards recursion.

Of course, while the chain is still finite, conditioning
can be done at an arbitrary step n, but when conver-
gence is in question as n tends to infinity, it is not
clear how and where conditioning can be done, as it
is clearly too late to condition at infinity where ab-
sorption takes place with certainty. Despite the above
difficulties we believe that combining our results with
those of de Cooman et al. is possible in some way,
which is a possible path of our future research.

The second important insight given in [3] is that, in
the case without conditioning and even in the precise
case, instead of regularity a weaker condition called
“regular absorption” is sufficient to assure unique con-
vergence, which also seems to be possible to apply to
the problem of unique convergence under condition-
ing.

4 Comparison between the models

In this section we consider two examples. In the
first, movement from all three transient states ex-
hibits imprecise behaviour, but the bounds on that
behaviour are comparatively tight. In the second ex-
ample, movement from only one transient state ex-
hibits imprecise behaviour, but the bounds on that
behaviour are comparatively much wider. In each ex-
ample we consider the difference between applying the
model given in Section 2 and that given in Section 3.
Note that throughout this section MC

0 is used as the
set of possible initial distributions over C.

In this section simplex diagrams (see e.g. Walley [16])
are used to graphically represent probability distribu-
tions with three elements. A simplex diagram is an
equilateral triangle with height one unit in which each
vertex represents the probability distribution with all
mass in one state of C. The probabilities assigned to
the three elements of C are identified with perpen-
dicular distances from the three sides of the triangle.
Thus the setMC

0 is represented by the whole simplex
diagram.

Example 1

Consider a time-homogeneous birth-death process X
with state space Ω = {−1} ∪ C where C = {0, 1, 2}.
The set of all possible one-step transition matrices
M(P ) is given as follows. Each P ∈ M(P ) takes the
form

P =




1 0 0 0
a 0 1− a 0
0 b 0 1− b
0 0 c 1− c




where a ∈ [0.1, 0.3], b ∈ [0.5, 0.6], and c ∈ [0.67, 0.73].

Generating either M̃C
n orMC

n in their entirety for this
example (or any other) is a non-trivial task. There are
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several alternative methods that can be used to gain
sensible approximations. For instance, the maximum
and minimum values of each element of the vectors
contained in M̃C

n and MC
n can be calculated. The

simplex diagrams in Figure 1 below show such approx-
iations for M̃C

n for n = 2, 3, 4 (left column, from top
to bottom), and MC

n , also for n = 2, 3, 4 (right col-
umn, from top to bottom). Bounds have also been ap-
proximated for the sets M̃C

100 and MC
100. These were

found by randomly generating 1000 100-step transi-
tion matrices for each of the two cases, multiplying
each one by (1, 0, 0), (0, 1, 0) and (0, 0, 1), and finding
the overall maximum and minimum of each element.
The 100th time step is an excellent approximation to
the case as time approaches infinity.

Recall that it is known that the size of the bounded ar-
eas are non-increasing from time step n to n+1, from
(2.3) and (3.2). Figure 1 demonstrates these proper-
ties very well. Note also that, as expected, for each
times step the bounded areas on the right are larger
than those on the left. This again is exactly what was
expected given (3.1), and moreover is consistent with
the idea that more can be said about the long term
behaviour for the case where the transition matrix
is constant than can be said for the case where the
transition matrix is potentially non-constant between
time steps. One could say that the second case allows
for “more imprecision,” in that less can be assumed
about the underlying process.

It is important to note that the variable a does in fact
play a role in the example, despite the fact that by
conditioning on non-absorption we implicitly assume
that every transition from state 0 must have been to
state 1. This can be easily seen by noting that

f((0, x, y, z)




1 0 0 0
a 0 1− a 0
0 b 0 1− b
0 0 c 1− c


)

= (
1

1− ax )(by, (1− a)x+ cz, (1− b)y + (1− c)z)

and therefore conditioning on non-absorption does not
prevent a from contributing to the distribution over
C.

Example 2

Consider a time-homogeneous birth-death process X
with state space Ω = {−1} ∪ C where C = {0, 1, 2}.
The set of all possible one-step transition matrices
M(P ) is given as follows. Each P ∈ M(P ) has the
following form.

P =




1 0 0 0
0.6 0 0.4 0
0 d 0 1− d
0 0 0.7 0.3




where d ∈ [0.37, 0.73]. The diagrams were created
using identical methods to those used in the first ex-
ample.

The same comments regarding Figure 1 also apply to
Figure 2. It should also be noted that in the second
example more can be said about the probability of
being in state 1, conditioned on non-absorption. as
time approaches infinity, but less can be said about
the probabilities of being in states 1 or 3. This may
be explained as follows. Note that in the method
used in Section 2, the bounds upon M̃C

∞ are sim-
ply the bounds upon the set

⋃
P∈M(P )αP (see (2.4)).

Thus the bounds approximated in the bottom-left
simplex of Figure 1 relate to the three elements of
a vector function with three unknowns, a, b and c, all
with comparatively small ranges. In comparison, the
bounds approximated in the bottom-left simplex of
Figure 2 relate to the three elements of a vector func-
tion with one unknown, d, which has a comparatively
large range. The elongated, thinner shape in Figure
2 is thus intuitively unsurprising, though the validity
of this intuition can be questioned, as d will eventu-
ally appear in all transition proabilities given enough
jumps.

The final point regarding Figures 1 and 2 is the fact
that in both the situation in which little is known
about one state’s behaviour, and in that where no
state’s behaviour is completely known, there is much
that can be said about the long-term behaviour con-
ditioned on non-absorption. It is not the case, as may
have been feared, that the imprecision grows with
each new iteration until there is nothing to be said
about a given time-step. Moreover, this is true even
when the transition matrix is not assumed to be con-
stant. This is particularly important because it sug-
gests that the model used in Section 3 can be applied
to approximating the long-term behaviour of precise
time-inhomogeneous chains with an absorbing state,
conditioned upon non-absorption, an area in which
comparatively little work has been done.

Note that is would also be possible to compare the
two models by creating a set of r initial distributions
to approximate MC

0 and a set of s transition matri-
ces to approximateM(P ). These can then be used to
create sets of vectors to approximate M̃C

n and MC
n .

The drawback to this method is that it rapidly be-
comes computationally heavy. In the example above,
allowing MC

0 to be approximated by the 231 vectors
{ i20 ,

j
20 ,

k
20}, where i, j, k are the set of non-negative

integers for which i+ j + k = 20, and allowingM(P )
to be approximated by the 264 matrices for which
a ∈ [0.1, 012, . . . , 0.3], b ∈ [0.5, 0.52, . . . , 0.7], and
c ∈ [0.67, 0.69, 0.71, 0.73], then by the time n = 4
there are over a thousand billion vectors to calculate.
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5 Concluding remarks

In this paper we have summarised two methods in
which imprecision can be applied to the theory of
Markov chains, and discussed that in each case, given
certain conditions and conditioned on non-absorption,
convergence to a unique conditionally invariant set is
guaranteed, and that using this set as the set of initial
distributions, the possible behaviour of the chain is
unchanging over time. It has also been demonstrated
that, by considering this extension of the QSD, it
is possible to say something regarding the long-term
behaviour, conditioned on non-absorption, of finite
Markov chains with an absorbing state, in situations
in which the transition matrix at each time-step is not
known precisely. Moreover, it has been shown that
much can be said even in situations where the transi-
tion matrix is not assumed to be constant over time,
and in which there is no transient state from which
the transition probabilities are known precisely. This
in turn means that the model presented in Section 3
could be applied when considering the long-term be-
haviour of certain precise time-inhomogeneous chains.
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(0,1,0) (0,1,0)

(0,1,0) (0,1,0)

(0,1,0) (0,1,0)

(1,0,0) (1,0,0)

(1,0,0) (1,0,0)

(1,0,0) (1,0,0) (0,0,1)(0,0,1)

(0,0,1) (0,0,1)

(0,0,1)(0,0,1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,0,0) (0,0,1)

(0,1,0) (0,1,0)

(1,0,0) (0,0,1)

n=100

n=4

n=3

n=2

Figure 1: Bounds for the sets M̃C
n and MC

n , all for
n = 2, 3, 4 and 100.
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Abstract

In this paper we propose a credal representation of
the set of interval probabilities associated with a belief
function, and show how it relates to several classical
Bayesian transformations of belief functions through
the notion of “focus” of a pair of simplices. Start-
ing from the interpretation of the pignistic function
as the center of mass of the credal set of consistent
probabilities, we prove that relative belief and plau-
sibility of singletons and intersection probability can
be described as foci of different pairs of simplices in
the simplex of all probability measures. Such sim-
plices are associated with the lower and upper proba-
bility constraints, respectively. This paves the way for
the formulation of frameworks similar to the transfer-
able belief model for lower, upper, and interval con-
straints.

Keywords. Belief functions, credal sets, Bayesian
transformations, upper and lower simplices, focus.

1 Introduction

Consider a given decision or estimation problem Q.
We assume that the possible answers to Q form a
finite set Θ = {x1, ..., xn} called “frame of discern-
ment”. Given a certain amount of evidence, we are
allowed to describe our belief on the outcome of Q
in several possible ways: the classical option is to as-
sume a probability distribution on Θ. However, as
we may need to incorporate imprecise measurements
and people’s opinions in our knowledge state, or cope
with missing or scarce information, a more sensible
approach is to assume that we have no access to the
“correct” probability distribution. The available ev-
idence, though, provides us with some sort of con-
straint on this true distribution.
Such a constraint is often given in the form of a credal
set, i.e., the convex set of probability distributions
maintained by the agent [14]. A specific class of credal
sets is formed by belief functions [16]. Even though

in their original definition [16] belief functions are de-
fined as set functions b : 2Θ → [0, 1] on the power set
2Θ of a finite universe Θ, they are equivalent to a set
of linear constraints determining a credal set. Belief
functions are a popular tool for representing uncertain
knowledge under scarce information, as they can nat-
urally cope with ignorance, qualitative judgements,
and missing data.
Their credal interpretation is at the core of a widely
adopted approach to the theory of evidence, the
“Transferable Belief Model” (TBM) [20, 21]. In the
TBM, decisions are made by resorting to a probabil-
ity called “pignistic function”. Based on a number of
rationality principles, the pignistic function has a nice
geometric interpretation as the center of mass of the
credal set of probability measures “consistent” with b,
i.e. the probabilities that dominate b on all the events
A: P [b] .=

{
p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ

}
(here P

denotes the set of all the probability measures on Θ).

The relation between belief and probability mea-
sures or “Bayesian belief functions” has been widely
studied in the context of the theory of evidence
[1, 10, 11, 13, 26, 27], often with different goals. While
some authors have looked for efficient implementa-
tions of the rule of combination [15, 23], others have
argued that Bayesian and belief calculi have the same
expressive power as each model can be transformed
into the other.
An approach to the Bayesian transformation prob-
lem seeks approximations which enjoy commutativ-
ity properties with respect to some evidence com-
bination rule, in particular the original Dempster’s
sum [9]. Voorbraak [24] was probably the first to ex-
plore this direction. He proposed to adopt the rela-
tive plausibility of singletons, i.e., the unique proba-
bility that, given a belief function b with plausibility
plb : 2Θ → [0, 1], plb(A) = 1 − b(Ac), assigns to each
element x ∈ Θ of the domain its normalized plausi-
bility. Cobb and Shenoy later analyzed its properties
in detail [3]. More recently, a dual relative belief of
singletons has been investigated in terms of both its
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semantics [7] and its properties with respect to Demp-
ster’s rule. The condition under which some of those
transformations coincide has been studied in [4].
Unlike the case of the pignistic transformation, a
credal semantic is still lacking for most other major
Bayesian approximations of belief functions. More-
over, not all such transformations are consistent with
the original belief function, i.e., they do not necessar-
ily fall into the corresponding credal set. We address
this issue here in the framework of “probability in-
tervals”. An admissible constraint on the true prob-
ability p which describes the given problem Q can
be provided by enforcing lower and upper bounds on
its probability values on the elements of the frame Θ.
What we get is a set of probability intervals [8, 22, 25]:

{
l(x) ≤ p(x) ≤ u(x), ∀x ∈ Θ

}
. (1)

Probability intervals are themselves a special class of
credal sets. Besides, each belief function determines
itself such a set of intervals, in which the lower bound
to p(x) is the belief value b(x) on x, while its upper
bound is the plausibility value plb(x) = 1− b({x}c):

P [b, plb]
.=

{
p ∈ P : b(x) ≤ p(x) ≤ plb(x), ∀x ∈ Θ

}
.

(2)
The credal set (2) determined by the set of probability
intervals associated with a belief function is strictly
related to the credal set of consistent probabilities.
More precisely, it is the intersection of two higher-
dimensional triangles or “simplices”: A “lower sim-
plex” T 1[b] determined by the lower bound constraint
b(x) ≤ p(x), and an “upper simplex” T n−1[b] deter-
mined by the upper bound constraint p(x) ≤ plb(x).

1.1 Contribution

We can exploit the different credal sets associated
with a belief function to provide several important
Bayesian transformations with a credal semantic sim-
ilar to that of the pignistic transformation. In this
paper we focus on relative plausibility [24] and be-
lief [7] of singletons, and on the so-called intersection
probability, a new Bayesian approximation introduced
in [5]. We prove that each of the above transfor-
mations can be geometrically described in a homo-
geneous fashion as the focus f(S, T ) of a pair S, T of
simplices, i.e., the unique point which has the same
coordinates w.r.t. the two simplices. When the focus
of two simplices falls into their intersection, it is the
unique intersection of the lines joining corresponding
vertices of S and T (see Figure 1).

Here we consider the pairs of simplices {P , T 1[b]},
{P , T n−1[b]}, {T 1[b], T n−1[b]}. We prove that, while
the relative belief of singletons is the focus of
{P , T 1[b]}, the relative plausibility of singletons is the
focus of {P , T n−1[b]} and the intersection probability

Figure 1: The focus f of a pair of simplices (e.g. two
triangles S, T in the 2-D case) is the unique intersec-
tion of the lines joining their corresponding vertices.

that of {T 1[b], T n−1[b]}.
Their respective focal coordinates encode major fea-
tures of the underlying belief function: the total mass
it assigns to singletons, their total plausibility, and
the fraction of the related probability intervals which
determines the intersection probability.
This provides a consistent, comprehensive credal se-
mantics for a wide family of Bayesian transformations
in terms of geometric loci in the probability simplex.
In perspective, this paves the way for TBM-like frame-
works based on those same transformations.

1.2 Paper outline

We start by recalling the credal interpretation of be-
lief functions and interval probabilities as convex con-
straints on the value of the unknown probability dis-
tribution assumed to describe the problem (Section
2). In particular we focus on the credal sets of prob-
abilities consistent with a belief function and a set of
probability intervals, respectively, and introduce what
we call the “lower” and “upper” simplices, i.e. the sets
of probability measures which meet the lower and up-
per probability constraints on singletons.
As the pignistic function has a strong credal interpre-
tation in its capacity of center of mass of the polytope
of consistent probabilities, we can conjecture the ex-
istence of an analogous credal interpretation for other
major Bayesian transformations of belief functions
(Section 3).
Drawing inspiration from the ternary case, we prove in
Section 4 that all the considered probability transfor-
mations (relative belief and plausibility of singletons,
intersection probability) are geometrically the foci of
different pairs of simplices, and discuss the meaning of
the map associated with a focus in terms of mass as-
signment. Finally, in Section 5 we comment on those
results, and outline alternative reasoning frameworks
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based on the introduced credal interpretations of up-
per and lower probability constraints and the associ-
ated probability transformations.

2 Credal semantics of belief functions
and probability intervals

Belief functions and probability intervals are different
but related mathematical representations of the bod-
ies of evidence we possess on a given decision or es-
timation problem Q. They determine different credal
sets or sets of probability distributions on Θ.

2.1 Credal interpretation of belief functions

A belief function (BF) b : 2Θ → [0, 1] on a finite set
or “frame” Θ has the form

b(A) =
∑

B⊆A

mb(B), (3)

where mb : 2Θ → [0, 1] is a set function called “basic
probability assignment” (b.p.a.) or “basic belief as-
signment”, and is such that mb(A) ≥ 0 ∀A ⊆ Θ and∑

A⊆Θ mb(A) = 1.
Events A ⊆ Θ such that mb(A) 6= 0 are called “focal
elements”. Bayesian BFs are belief functions which
assign non-zero mass to singletons only: mb(A) = 0
∀A : |A| > 1.
In the following we denote by bA the unique categor-
ical belief function assigning unitary mass to a single
event A: mbA(A) = 1, mbA(B) = 0 ∀B 6= A. We can
then write each belief function b with b.p.a. mb as [6]

b =
∑

A⊆Θ

mb(A)bA. (4)

Belief functions have a natural interpretation as con-
straints on the “true”, unknown probability distribu-
tion of Q. According to this interpretation the mass
assigned to each event A ⊆ Θ can float freely among
its elements x ∈ A. A probability distribution “con-
sistent” with b emerges by redistributing the mass of
each focal element to its singletons.

Example. Let us consider a little example, namely
a belief function b on a frame of cardinality three
Θ = {x, y, z} with focal elements (Figure 2-top):
mb({x, y}) = 2

3 , mb({y, z}) = 1
3 . One way of obtain-

ing a probability consistent with b is, for instance, to
equally share the mass of {x, y} among its elements
x and y, while attributing the entire mass of {y, z}
to y (Figure 2-bottom-left). Or, we can assign all the
mass of the focal element {x, y} to y, and give the
mass of {y, z} to z only, obtaining the Bayesian belief
function of Figure 2-bottom-right.

Figure 2: Top: A simple belief function in a frame of
size 3. Bottom: two probabilities consistent with it
on the same frame.

Belief function as lower bound. The credal set
associated with a belief function b (i.e., the set of all
the probability distributions consistent with b) is

P [b] =
{

p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ
}

(5)

i.e. the set of distributions whose values dominate
that of b on all events A. These are well known to
form a polytope in the space P of all probability mea-
sures [2], whose center of mass coincides with the pig-
nistic transformation. Let us denote by Cl the con-
vex closure operator: Cl(b1, ..., bk) = {b ∈ B : b =
α1b1 + · · ·+ αkbk,

∑
i αi = 1, αi ≥ 0 ∀i}, where B is

the space of all belief functions.

Proposition 1. The polytope P [b] of all the probabil-
ity measures consistent with a belief function b can be
expressed as the convex closure P [b] = Cl(pρ[b] ∀ρ),
where ρ is any permutation (xρ(1), ..., xρ(n)) of the el-
ements of Θ = {x1, ..., xn}, and the vertex pρ[b] is the
unique Bayesian BF such that

pρ[b](xρ(i)) =
∑

A∋xρ(i),A 6∋xρ(j)∀j<i

mb(A). (6)

Each probability function (6) assigns to each single-
tons x = xρ(i) the mass of all the focal elements of
b which contain it, but do not contain the elements
which precede x in the ordered list (xρ(1), ..., xρ(n))
generated by the permutation ρ.

2.2 Credal interpretation of probability
intervals

A set of probability intervals provides instead lower
and upper bounds for the probability values of the
elements of Θ (singletons):

{
l(x) ≤ p(x) ≤ u(x), ∀x ∈ Θ

}
.

Any belief function determines itself such a set of in-
tervals, in which the lower bound to p(x) is the belief
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value b(x) on x, while its upper bound is the plausibil-
ity value plb(x) of x,

{
b(x) ≤ p(x) ≤ plb(x), ∀x ∈ Θ

}
.

The plausibility function plb(A) = 1−b(Ac) expresses
the evidence not against an event A.
Probability intervals possess themselves a credal rep-
resentation, which for intervals associated with belief
functions is also strictly related to the credal set P [b]
of all consistent probabilities.

Credal form. By definition (5) of P [b] it follows
that the polytope of consistent probabilities can be
decomposed into a number of polytopes

P [b] =
n−1⋂

i=1

P i[b], (7)

where P i[b] is the set of probabilities meeting the
lower probability constraint for size i events :

P i[b] .=
{
p ∈ P : p(A) ≥ b(A), ∀A : |A| = i

}
.

Note that for i = n the constraint is trivially met by
all the probability distributions: Pn[b] = P .
In fact, a simple and elegant geometric description
can be given if we consider the credal sets

T i[b] .=
{
p ∈ P ′ : p(A) ≥ b(A), ∀A : |A| = i

}

where P ′ denotes the set of all pseudo-probabilities1

on Θ, the functions p : Θ → R which meet the normal-
ization constraint

∑
x∈Θ p(x) = 1 but not necessarily

the non-negativity one: it may exist an element x such
that p(x) < 0.
In particular we focus here on the set of pseudo-
probability measures which meet the lower constraint
on singletons

T 1[b] .=
{
p ∈ P ′ : p(x) ≥ b(x) ∀x ∈ Θ

}
, (8)

and the set T n−1[b] of pseudo-probabilities which
meet the lower constraint on events of size n − 1:
T n−1[b] .=

.=
{
p ∈ P ′ : p(A) ≥ b(A) ∀A : |A| = n− 1

}

=
{
p ∈ P ′ : p({x}c) ≥ b({x}c) ∀x ∈ Θ

}

=
{
p ∈ P ′ : p(x) ≤ plb(x) ∀x ∈ Θ

}
,

(9)
i.e., the set of pseudo-probabilities which meet the
upper bound for the elements x of Θ.

Simplicial form. The generalization to pseudo-
probabilities allows to give the credal sets (8) and (9)
the form of simplices. A simplex is the convex clo-
sure of a collection of “affinely independent” points
v1, ..., vk of a vector space, i.e., points which cannot
be expressed as an affine combination of the others:

∄
{
αj , j 6= i :

∑

j 6=i

αj = 1
}

s.t. vi =
∑

j 6=i

αjvj .

1Also called “normalized signed measures” in measure the-
ory.

The notation introduced in Equation (4) is extensively
used in the following [4].

Proposition 2. The credal set T 1[b] or lower simplex
can be written as the convex closure

T 1[b] = Cl(t1x[b], x ∈ Θ) (10)

of the vertices

t1x[b] =
∑

y 6=x

mb(y)by +
(

1−
∑

y 6=x

mb(y)
)

bx. (11)

Dually, the upper simplex T n−1[b] reads as the convex
closure

T n−1[b] = Cl(tn−1
x [b], x ∈ Θ) (12)

of the vertices

tn−1
x [b] =

∑

y 6=x

plb(y)by +
(

1−
∑

y 6=x

plb(y)
)

bx. (13)

To clarify the above results, let us denote by

kb
.=

∑

x∈Θ

mb(x) ≤ 1, kplb
.=

∑

x∈Θ

plb(x) ≥ 1

the total mass and plausibility of singletons, respec-
tively. By Equation (11) each vertex t1x[b] of the lower
simplex is the distribution that adds the mass 1− kb

of non-singletons to the original mass of the element
x, leaving all the others unchanged:

mt1x[b](x) = mb(x)+1−kb, mt1x[b](y) = mb(y) ∀y 6= x.

As mt1x[b](z) ≥ 0 ∀z ∈ Θ ∀x (all the t1x[b] are actual
probabilities) we have that

T 1[b] = P1[b] (14)

is completely included in the probability simplex P .
On the other hand the vertices (13) of the upper sim-
plex are not guaranteed to be valid probabilities, but
only pseudo-probabilities in the sense that they may
assign negative values to some element of Θ. Each
vertex tn−1

x [b] assigns to each element of Θ different
from x its plausibility plb(y), while it subtracts from
plb(x) the plausibility “in excess” kplb − 1:

mtn−1
x [b](x) = plb(x) + (1− kplb),

mtn−1
x [b](y) = plb(y) ∀y 6= x.

As 1−kplb can be a negative quantity, mtn−1
x [b](x) can

be negative too and tn−1
x [b] is not guaranteed to be a

“true” probability. We will see this in Section 4.
In conclusion, by Equations (2), (14) and (9) the
credal set of probabilities consistent with a probability
interval is the intersection2 P [b, plb] = T 1[b]∩T n−1[b].

2This credal set is an outer approximation [10] of P[b].

132 Fabio Cuzzolin



3 Bayesian transformations

The relation between belief and probability measures
or “Bayesian belief functions” is central in uncertainty
theory [1, 10, 11, 13, 27], and in the theory of evidence
[16] in particular.

3.1 Pignistic function as center of mass of
consistent probabilities

In Smets’ “Transferable Belief Model” [17, 18, 20, 21]
beliefs are represented as convex sets of probabilities,
while decisions are made by resorting to a Bayesian
BF called pignistic function:

BetP [b](x) =
∑

A⊇{x}

mb(A)
|A| . (15)

The rationality principle behind the pignistic function
can be explained in terms of the “floating mass” in-
terpretation of focal elements exposed in Section 2.1.
If the mass of each focal element is uniformly dis-
tributed among all its elements, the probability we
obtain is (15). The pignistic function BetP [b] has a
strong credal interpretation, as it is known [2, 12] to
be the center of mass of the set P [b] of probabilities
consistent with b. Many other popular and signifi-
cant Bayesian functions used to approximate belief
functions or to represent them in a decision process,
however, have not yet a similar credal interpretation.
The aim of this paper is indeed to show that relative
plausibility [24], relative belief of singletons [7], and
intersection probability [5] possess such credal inter-
pretations in terms of the probability intervals asso-
ciated with a belief function.

3.2 Relative plausibility and belief

The relative plausibility of singletons [24] p̃lb is the
unique probability that, given a belief function b with
plausibility plb, assigns to each singleton its normal-
ized plausibility:

p̃lb(x) =
plb(x)∑

y∈Θ plb(y)
=

plb(x)
kplb

. (16)

Voorbraak has proven that p̃lb is a perfect represen-
tative of b when combined with other probabilities
through Dempster’s orthogonal sum ⊕ [9], p̃lb ⊕ p =
b ⊕ p ∀p ∈ P . Cobb and Shenoy [3] have later shown
that (16) meets a number of other interesting proper-
ties with respect to ⊕.
Dually, a relative belief of singletons b̃ [7] can be de-
fined. This probability function assigns to the ele-
ments of Θ their normalized belief values:

b̃(x) .=
b(x)∑

y∈Θ b(y)
. (17)

Even though the existence of (17) is subject to quite
a strong condition

kb =
∑

x∈Θ

mb(x) 6= 0,

the case in which b̃ does not exist is indeed patho-
logical, as it excludes a great number of belief and
probability measures [7].
While p̃lb is associated with the less conservative (but
incoherent) scenario in which all the mass that can
be assigned to a singleton is actually assigned to it, b̃
reflects the most conservative (but still not coherent)
choice of assigning to x only the mass that the BF b
(seen as a constraint) assures it belong to x.
It can be proven that relative belief meets a number of
dual properties with respect to Dempster’s sum which
are the dual of those enjoyed by relative plausibility
[7]. These two approximations form a strongly linked
couple: we will see what this implies in terms of their
geometry in the probability simplex.

3.3 Intersection probability

For any set of probability intervals (1) we can define
its intersection probability as the unique probability
of the form p(x) = l(x) + α(u(x)− l(x)) for all x ∈ Θ
for some α ∈ [0, 1] such that:

∑

x∈Θ

p(x) =
∑

x∈Θ

[
l(x) + α(u(x)− l(x))

]
= 1

(see Figure 3). This corresponds to the reasonable re-
quest that the desired probability, as a candidate to
represent the set of intervals (1), should behave ho-
mogeneously for each element x of the domain. When

Figure 3: An illustration of the notion of intersection
probability for an upper/lower probability system.

the set of intervals is that associated with a belief
function, the upper bound to the probability of a sin-
gleton is obviously u(x) = plb(x), its lower bound
l(x) = b(x) = mb(x). The intersection probability
can then be written as [5]

p[b](x) = β[b]plb(x) + (1 − β[b])b(x) (18)

as the quantity α of Figure 3 has value

β[b] =
1− kb

kplb − kb
. (19)
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Here kplb , kb denote again the total plausibility and
belief of singletons, respectively.
The ratio β[b] (19) measures the fraction of each prob-
ability interval which we need to add to the lower
bound b(x) to obtain a valid distribution.
Another interpretation of the intersection probability
comes from its alternative form

p[b](x) = b(x) +
(
1−

∑

x

b(x)
)
R[b](x) (20)

where

R[b](x) .=
plb(x)− b(x)

kplb − kb
=

plb(x)− b(x)∑
y(plb(y)− b(y))

. (21)

The quantity plb(x)− b(x) measures the width of the
probability interval on x, i.e., the uncertainty on the
probability value on each element of Θ. Then R[b](x)
indicates how much the uncertainty on the probability
value on x “weights” on the total uncertainty associ-
ated with the set of intervals (1). It is the natural to
call it relative uncertainty on singletons.
According to (20), p[b] re-distributes to each x ∈ Θ a
fraction of the mass of non-singletons (1−∑

x b(x)) in
proportion to the relative uncertainty R[b](x) of each
singleton in the set of intervals.

4 Credal interpretation of Bayesian
approximations

4.1 The ternary case

Taking inspiration from the important case of the pig-
nistic transformation, here we will be able to prove
that other Bayesian transformations of belief func-
tions possess a similar credal interpretation.
Let us first analyze the case of a frame of cardinality
three: Θ = {x, y, z}. Consider the BF

mb(x) = 0.2, mb(y) = 0.1, mb(z) = 0.3,
mb({x, y}) = 0.1, mb({y, z}) = 0.2, mb(Θ) = 0.1.

(22)
Figure 4 illustrates the geometry of the related con-
sistent polytope P [b] in the simplex Cl(bx, by, bz) of
all probability measures on Θ. By Proposition 1 P [b]
has as vertices ρ1, ρ2, ρ3, ρ4, ρ5[b]

ρ1 = (x, y, z),
ρ1[b](x) = .4, ρ1[b](y) = .3, ρ1[b](z) = .3;

ρ2 = (x, z, y),
ρ2[b](x) = .4, ρ2[b](y) = .1, ρ2[b](z) = .5;

ρ3 = (y, x, z),
ρ3[b](x) = .2, ρ3[b](y) = .5, ρ3[b](z) = .3;

ρ4 = (z, x, y),
ρ4[b](x) = .3, ρ4[b](y) = .1, ρ4[b](z) = .6;

ρ5 = (z, y, x),
ρ5[b](x) = .2, ρ5[b](y) = .2, ρ5[b](z) = .6;

(23)

(as the permutations (y, x, z) and (y, z, x) yield the
same probability distribution). We can notice that:

1. P [b] (the polygon delimited by little squares) is
the intersection of two triangles (2-dimensional
simplices) T 1[b] and T 2[b];

2. the relative belief of singletons

b̃(x) =
1
3
, b̃(y) =

1
6
, b̃(z) =

1
2

is the intersection of the lines joining the corre-
sponding vertices of the probability simplex P and
the lower simplex T 1[b];

3. the relative plausibility of singletons

p̃lb(x) =
4
15

, p̃lb(y) =
1
3
, p̃lb(z) =

2
5

is the intersection of the lines joining the corre-
sponding vertices of P and upper simplex T 2[b];

4. finally, the intersection probability

p[b](x) = mb(x) + β[b](mb({x, y}) + mb(Θ))
= .2 + .4

1.5−0.40.2 = .27,

p[b](y) = .1 + .4
1.10.4 = .245, p[b](z) = .485

is the unique intersection of the lines joining the
corresponding vertices of upper T 2[b] and lower
T 1[b] simplices.

Point 1. is easily explained by noticing that in the
ternary case, by Equation (7), P [b] = T 1[b] ∩ T 2[b].
Figure 4 suggests that b̃, p̃lb and p[b] might be con-
sistent with b, i.e. they could lie inside the consistent
simplex P [b]. This, though, is not guaranteed to be
true in the general case.

Theorem 1. The relative belief of singletons is not
always consistent.

A counterexample similar to that of the proof of The-
orem 1 can be found for p̃lb. The inconsistency of
relative belief and plausibility is due to the fact that
those functions only constrain the probabilities of sin-
gletons, not considering higher size events as full be-
lief functions do. Indeed these approximations b̃, p̃lb,
p[b] are consistent with the set of probability intervals
associated with b:

b̃, p̃lb, p[b] ∈ P [b, plb] = T 1[b] ∩ T n−1[b].

Their geometric behavior, described by points 2., 3.
and 4., holds in the general case too.
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Figure 4: The polytope of all the probabilities consistent with the belief function (22) is shown here in the
simplex P = Cl(bx, by, bz) of all probability distributions on Θ = {x, y, z}. Its vertices (red squares) are given
by Equation (23). Intersection probability p[b], relative belief b̃ and plausibility p̃lb of singletons are the foci of
the pairs of simplices {T 1[b], T 2[b]}, {T 1[b],P} and {P , T 2[b]} respectively. In the ternary case the lower and
upper simplices T 1[b] and T 2[b] are nothing but triangles. Their focus is geometrically the intersection of the
lines joining corresponding vertices (dashed lines for {P , T 1[b]} and {P , T 2[b]}, solid ones for {T 1[b], T 2[b]}).

4.2 Focus of a pair of simplices

In the ternary case relative belief, plausibility and
intersection probability lie in the intersection of the
lines joining corresponding vertices of pairs formed by
the upper simplex, the lower simplex, or the probabil-
ity simplex. This remark can be formalized through
the notion of focus of a pair of simplices, laying the
foundations for a credal interpretation of these three
Bayesian transformations.
Definition 1. Consider a pair of simplices S =
Cl(s1, ..., sn), T = Cl(t1, ..., tn) in Rn−1.
We call focus of the pair (S, T ) the unique point
f(S, T ) of S ∩ T which has the same affine coordi-
nates {α1, ...αn} in both simplices:

f(S, T ) =
n∑

i=1

αisi =
n∑

i=1

αitj,

n∑

i=1

αi = 1. (24)

Such point always exists, even though it does not al-
ways fall into the intersection of the two simplices. In
the latter case, though, the focus coincides with the
unique intersection of the lines joining corresponding
vertices of S and T (see Figure 1 again).
Suppose indeed that a point p is such that

p = αsi + (1 − α)ti, ∀ i = 1, ..., n (25)

(i.e. p lies on the line passing through si and ti ∀i).
Then necessarily ti = 1

1−α [p− αsi] ∀ i = 1, ..., n. If p

has coordinates {αi, i = 1, ..., n} in T , p =
∑n

i=1 αiti,
then

p =
n∑

i=1

αiti =
1

1− α

∑

i

αi

[
p− αsi

]

= 1
1−α

[
p

∑
i αi − α

∑
i αisi

]

=
1

1− α

[
p− α

∑

i

αisi

]

which implies p =
∑

i αisi, i.e. p is the focus of (S, T ).
Notice that the center of mass itself of a simplex is a
special case of focus. Indeed, the center of mass of
a d-dimensional simplex S is the intersection of the
medians of S, i.e. the lines joining each vertex with
the center of mass of the opposite (d−1 dimensional)
face (see Figure 5). But those centers of mass for all
d − 1 dimensional faces form themselves the vertices
of a simplex T . Therefore, the pignistic function itself
can be thought of as the focus of two simplices.

4.3 Bayesian transformations as foci

Theorem 2. The relative belief of singletons is the
focus of the pair of simplices {P , T 1[b]}.
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Figure 5: The center of mass b of a simplex S is the
focus of the simplex itself and the simplex T formed
by the centers of mass of all its n − 1-dimensional
faces. Here a 2-dimensional example is shown.

A dual result can be proven for the relative plausibility
of singletons.

Theorem 3. The relative plausibility of singletons is
the focus of the pair of simplices {P , T n−1[b]}.

The notion of focus of upper and lower simplices pro-
vides indeed the desired credal semantics for the fam-
ily of Bayesian transformations linked to Dempster’s
rule of combination, in terms of the credal set associ-
ated with the related set of probability intervals.
The coordinate of the focus on the intersecting lines
also has a meaning in terms of degrees of belief.

Theorem 4. The affine coordinate of b̃ as focus of
{P , T 1[b]} on the corresponding intersecting lines is
the inverse of the total mass of singletons.

A similar result holds for the relative plausibility of
singletons.

Theorem 5. The affine coordinate of p̃lb as focus of
{P , T n−1[b]} on the corresponding intersecting lines
is the inverse of the total plausibility of singletons.

An analogous result has recently been proven [4] for
the intersection probability (18).

Proposition 3. The intersection probability is the fo-
cus of the pair of simplices {T n−1[b], T 1[b]}.

As we could have expected, the line coordinate of the
intersection probability as a focus also corresponds to
a basic feature of the underlying belief function (or
better, the associated set of probability intervals).

Theorem 6. The coordinate of the intersection prob-
ability as focus of {T 1[b], T n−1[b]} on the correspond-
ing intersecting lines is the ratio β[b] (19).

The fraction of the uncertainty of the singletons that
generates the intersection probability can be read in
the probability simplex, as its coordinate on any the
lines determining the focus of {T 1[b], T n−1[b]}.

5 Comments and conclusions

The notion of focus of a pair of simplices pro-
vides a unifying geometric framework for a num-
ber of different Bayesian transformations of belief
functions. In fact, as we pointed out here, it
is more correct to think of relative belief, plau-
sibility, and intersection probability as transforma-
tions/approximations/representatives of lower, up-
per, and interval probability systems respectively.
While b̃, p̃lb and p[b] are potentially inconsistent with
the original BF, they are perfectly consistent with the
associated lower/upper probability systems (as they
fall into the corresponding credal set). Therefore we
can argue that simply replacing the pignistic trans-
form with a different transformation when operating
on BFs in the TBM would not be semantically correct.

The geometric notion of focus has a simple semantic in
terms of probability constraints. Selecting the focus
of two simplices representing two different constraints
(i.e., the point with the same convex coordinates in
the two simplices) means adopting the single proba-
bility distribution which meets both constraints in ex-
actly the same way. Notice that the second constraint
can be empty, like in the case of upper or lower prob-
ability systems. If we assume homogeneous behavior
in the two sets of constraints as a rationality princi-
ple for a probability transformation, then the above
Bayesian functions follow as the necessary unique so-
lutions to the corresponding transformation problems.
The notion can be easily extended to more than two
constraints.

Finally, the credal interpretation of upper, lower,
and interval probability constraints on singletons lays
in perspective the foundations of the formulation of
TBM-like frameworks for such systems.
In the Transferable Belief Model belief functions b are
represented by their credal sets, while decisions are
made through the corresponding center of mass, the
pignistic function BetP [b]:

{
P [b], BetP [b]

}
. We can

therefore imagine similar frameworks
{{

P , T 1[b]
}
, b̃

}
,

{{
P , T n−1[b]

}
, p̃lb

}
,

{{
T 1[b], T n−1[b]

}
, p̃lb

} (26)

in which lower, upper, and interval constraints on a
probability distribution on P are represented by the
associated credal sets. This would involve replacing
the TBM’s disjunctive/conjunctive combination rules
[19] by specific evidence elicitation/revision operators
for lower, upper, and interval probability systems.
Decisions would then be made based on the appro-
priate focus probability: relative belief, plausibility,
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or interval probability respectively.
Notice that, even though in the case of belief func-
tions such systems are simply less informative than
the original BF, and their credal sets outer approx-
imations of the credal set of consistent probabilities
P [b], they can be defined independently in their own
right, according to the available evidence at hand. In
such a case, the use of the appropriate transformation
according to the above rationality principle would en-
sure the consistency of the result. We plan to elabo-
rate on this line of research in the near future.

Appendix: proofs

Proof of Theorem 1. Consider a belief function b :
2Θ → [0, 1], Θ = {x1, x2, ..., xn} such that mb(xi) =
kb/n, mb({x1, x2}) = 1− kb. Then

b({x1, x2}) = 2 · kb

n
+ 1− kb = 1− kb

(
n− 2

n

)
,

b̃(x1) = b̃(x2) =
1
n
⇒ b̃({x1, x2}) =

2
n

.

For b̃ to be consistent with b it is necessary that
b̃({x1, x2}) ≥ b({x1, x2}), i.e.

2
n
≥ 1− kb

n− 2
n

⇒ kb ≥ 1

i.e. kb = 1. Therefore if kb < 1 (b is not a probability)
its relative belief of singletons is not consistent.

Proof of Theorem 2. We need to prove that b̃ has
the same simplicial coordinates in P and T 1[b]. By
definition (17) b̃ can be expressed in terms of the ver-
tices of the probability simplex P as

b̃ =
∑

x∈Θ

mb(x)
kb

bx.

We then need to prove that b̃ can be written as the
same affine combination

b̃ =
∑

x∈Θ

mb(x)
kb

t1x[b]

in terms of the vertices t1x[b] of T 1[b]. Replacing (11)
in the above equation yields

∑
x∈Θ

mb(x)
kb

t1x[b] =

=
∑

x∈Θ

mb(x)
kb

[ ∑

y 6=x

mb(y)by +
(

1−
∑

y 6=x

mb(y)
)

bx

]
=

=
∑

x∈Θ

bx

(
mb(x)

kb

∑

y 6=x

mb(y)
)

+
∑

x∈Θ

mb(x)
kb

bx+

−
∑

x∈Θ

bx

(
mb(x)

kb

∑

y 6=x

mb(y)
)

=
∑

x∈Θ

mb(x)
kb

bx = b̃.

Proof of Theorem 3. We just need to replace belief
with plausibility values in the proof of Theorem 2.

Proof of Theorem 4. In the case of the pair
{P , T 1[b]} we can compute the (affine) line coordi-
nate α of b̃ = f(P , T 1[b]) by imposing condition (25).
The latter assumes the following form (being si = bx,
ti = t1x[b]):

∑
x∈Θ

mb(x)
kb

bx =

= t1x[b] + α(bx − t1x[b]) = (1− α)t1x[b] + αbx

= (1− α)
[ ∑

y 6=x

mb(y)by +
(
1− kb + mb(x)

)
bx

]
+ αbx

= bx

[
(1 − α)

(
1− kb + mb(x)

)
+ α

]
+

+
∑

y 6=x

mb(y)(1 − α)by,

and for 1− α = 1
kb

, α = kb−1
kb

the condition is met.

Proof of Theorem 5. Again we can compute the
line coordinate α of p̃lb = f(P , T n−1[b]) by imposing
condition (25). The latter assumes the form (being
si = bx, ti = tn−1

x [b]):
∑

x∈Θ
plb(x)
kplb

bx =

= tn−1
x [b] + α(bx − tn−1

x [b]) = (1− α)tn−1
x [b] + αbx

= (1− α)
[ ∑

y 6=x

plb(y)by +
(
1− kplb + plb(x)

)
bx

]
+ αbx

= bx

[
(1 − α)

(
1− kplb + plb(x)

)
+ α

]
+

+
∑

y 6=x

plb(y)(1− α)by ,

and for 1−α = 1
kplb

, α = kplb
−1

kplb

the condition is met.

Proof of Theorem 6. Again, we need to impose
condition (25) on the pair {T 1[b], T n−1[b]}, or

p[b] = t1x[b]+α(tn−1
x [b]−t1x[b]) = (1−α)t1x[b]+αtn−1

x [b]

for all the elements x ∈ Θ of the frame, α being some
constant. This is equivalent to (after replacing the
expressions (11), (13) of t1x[b] and tn−1

x [b])
∑

x∈Θ

bx

[
mb(x) + β[b](plb(x)−mb(x))

]
=

= (1− α)
[ ∑

y 6=x

mb(y)by + (1− kb + mb(x))bx

]
+

+α
[ ∑

y 6=x

plb(y)by +
(
1−

∑

y 6=x

plb(y)
)
bx

]

= (1− α)
[ ∑

y∈Θ

mb(y)by + (1− kb)bx

]
+

+α
[ ∑

y∈Θ

plb(y)by + (1− kplb)bx

]

= bx

[
(1− α)(1 − kb) + (1− α)mb(x) + αplb(x)+

+α(1− kplb )
]

+
∑

y 6=x

by

[
(1− α)mb(y) + αplb(y)

]

= bx

{
(1− kb) + mb(x)+

+α
[
plb(x) + (1− kplb )−mb(x)− (1− kb)

]}
+

+
∑

y 6=x

by

[
mb(y) + α(plb(y)−mb(y))

]
.
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If we set α = β[b] = 1−kb

kplb
−kb

we get for the coefficient
of bx (the probability value of x)

1− kb

kplb − kb

[
plb(x) + (1 − kplb)−mb(x)− (1 − kb)

]
+

+(1− kb) + mb(x) = β[b]
[
plb(x) −mb(x)

]
+ (1− kb)

+mb(x) − (1− kb) = p[b](x)

while obviously mb(y) +α(plb(y)−mb(y)) = mb(y) +
β[b](plb(y)−mb(y)) = p[b](y) for all y 6= x, no matter
the choice of x.
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Abstract

Consistent belief functions represent collections of co-
herent or non-contradictory pieces of evidence. As
most operators used to update or elicit evidence do
not preserve consistency, the use of consistent trans-
formations cs[·] in a reasoning process to guarantee
coherence can be desirable. Such transformations are
turn linked to the problem of approximating an arbi-
trary belief function with a consistent one.
We study here the consistent approximation problem
in the case in which distances are measured using clas-
sical Lp norms. We show that, for each choice of the
element we want them to focus on, the partial approx-
imations determined by the L1 and L2 norms coincide,
and can be interpreted as classical focused consistent
transformations. Global L1 and L2 solutions do not
in general coincide, however, nor are they associated
with the highest plausibility element.

Keywords. Consistent belief function, simplicial
complex, approximation, Lp norms.

1 The consistent approximation
problem

Belief functions (b.f.s) [19] are complex objects, in
which different and sometimes contradictory bod-
ies of evidence may coexist, as they mathemati-
cally describe the fusion of possibly conflicting expert
opinions and/or imprecise/ corrupted measurements,
etcetera. Making decisions based on such objects can
then be misleading. This is a well known problem
in classical logics, where the application of inference
rules to inconsistent sets of assumptions or “knowl-
edge bases” may lead to incompatible conclusions, de-
pending on the subset of assumptions we start our
reasoning from.
Consistent belief functions (cs.b.f.s), i.e. belief func-
tions whose non-zero mass events or “focal elements”
have non-empty intersection or “core”, are then par-

ticularly interesting as they represent collections of
coherent or non-contradictory pieces of evidence. In
some situations it may then be desirable to design
a method which, given an arbitrary belief function
b, generates a consistent or non-contradictory belief
function cs[b]: we call this consistent transformation.
Such a transformation is all the more valuable as sev-
eral important operators used to update or elicit evi-
dence represented as belief measures, like Dempster’s
sum [8] and disjunctive combination [21], do not pre-
serve consistency. To guarantee the consistency of a
state of belief we may want to seek a scheme in which
each time new evidence is combined to yield a new
b.f., the consistent transformation cs[·] is applied to
reduce it to a coherent knowledge state.
Now, consistent transformations can be built by solv-
ing a minimization problem of the form cs[b] =
argmincs∈CS dist(b, cs), where dist is some distance
measure between belief functions, and CS denotes the
collection of all consistent b.f.s. We call this the con-
sistent approximation problem. By plugging in dif-
ferent distance functions we get different consistent
transformations.

In this paper, in particular, we study what happens
when using classical Lp norms. Indeed, consistent be-
lief functions correspond to possibility distributions
(Section 2), which are in turn inherently related to
the L∞ norm. Besides, the region of all cs.b.f.s is ge-
ometrically the set of belief functions for which the
L∞ norm of the plausibility distribution is equal to 1.
We can then conjecture that Lp consistent approxima-
tions will be meaningful in terms of degrees of belief.
This is indeed the case.

From a technical point of view, consistent b.f.s do
not live in a single linear space, but in a collection of
higher-dimensional triangles or simplices, called “sim-
plicial complex” [11]. A partial solution has then to
be found separately for each maximal simplex CSx

of the consistent complex CS, i.e., the set of cs.b.f.s
whose core includes the element x. These partial solu-
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tions are later to be compared to determine the global
optimal solution.

We will prove here that the partial approximations de-
termined by both the L1 and the L2 norms are unique
and coincide. We will also prove that the L1/L2 con-
sistent approximation onto each component CSx of
CS generates indeed the consistent transformation fo-
cused on x [10, 1], i.e. a new belief function whose
focal elements have the form A′ = A ∪ {x}, where A
is a focal element of the original b.f. b. As we will see,
though, the associated global L1/L2 solutions do not
lie in general on the same component of the consistent
complex.

1.1 Paper outline

After recalling the notions of consistent and conso-
nant belief functions, we will recall their semantics
and stress why it can be desirable to transform a
generic belief function into a consistent one (Section
2). As we pose the approximation problem in a geo-
metric framework, we will briefly recall in Section 3
the geometry of consistent b.f.s. As the latter form a
complex, we need to solve the approximation problem
separately for each maximal simplicial component of
such complex (Section 4). After gaining some insight
from the analysis of the binary case (Section 5), we
will proceed to solve the L1 and L2 consistent approx-
imation problems in the general case in Section 6. We
will finally comment and interpret our results.

2 Semantics of consistent belief
functions

2.1 Consistent belief functions

We first recall the basic notions of the theory of evi-
dence, and the definition of consistent belief functions
in particular, to later discuss their semantics [19].

Definition 1 A basic probability assignment (b.p.a.)
on a finite set (frame of discernment [19]) Θ is a set
function mb : 2Θ → [0, 1] on 2Θ .= {A ⊆ Θ} s.t.

mb(∅) = 0,
∑

A⊆Θ

mb(A) = 1, mb(A) ≥ 0 ∀A ⊆ Θ.

Subsets of Θ associated with non-zero values of mb

are called focal elements (f.e.), and their intersection
core:

Cb
.=

⋂

A⊆Θ:mb(A) 6=0

A.

Definition 2 The belief function (b.f.) b : 2Θ →
[0, 1] associated with a basic probability assignment mb

on Θ is defined as:

b(A) =
∑

B⊆A

mb(B).

A dual mathematical representation of the evidence
encoded by a belief function b is the plausibility func-
tion (pl.f.) plb : 2Θ → [0, 1], A 7→ plb(A) where

plb(A) .= 1− b(Ac) = 1−
∑

B⊆Ac

mb(B)

expresses the amount of evidence not against A.
In the theory of evidence a probability function is sim-
ply a special belief function assigning non-zero masses
to singletons only (Bayesian b.f.): mb(A) = 0 |A| > 1.
Consonant belief functions are b.f.s whose f.e.s A1 ⊂
· · · ⊂ Am are nested. Consonant b.f.s always have a
non-empty core, namely their smallest f.e. A1. How-
ever, not all b.f.s whose core is non-empty are conso-
nant.

Definition 3 A belief function is said to be consis-
tent if its core is non-empty.

2.2 Semantics of consistent belief functions

Consistent belief functions (cs.b.f.s) form a signif-
icant class of b.f.s, for several reasons. On one
side, they correspond to possibility distributions,
and form therefore with consonant b.f.s the link be-
tween evidence and possibility theory. More impor-
tantly, though, they are the analogues of consistent,
non-contradictory sets of propositions (“knowledge
bases”) in logics. As maintaining coherence along an
inference process is highly desirable, the utility of an
operator which maps arbitrary belief functions to con-
sistent ones emerges. This is all the more valuable as
several evidence combination rules, like Dempster’s
sum [8] and disjunctive combination [21] do not pre-
serve consistency. To guarantee the consistency of the
knowledge state a scheme like the following (where
we use ⊕ to denote a valid combination rule) can be
brought forward

b1, b2 → b1 ⊕ b2

↓
cs[b1 ⊕ b2], b3 → cs[b1 ⊕ b2]⊕ b3

↓
cs[cs[b1 ⊕ b2]⊕ b3]

(1)
in which when new evidence is combined to yield a
new belief state, the consistent transformation cs[·] is
applied to ensure coherence.
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2.3 Consistent b.f.s and possibility
distributions

In possibility theory [9, 14], subjective probability is
mathematically described by possibility measures, i.e.
functions Pos : 2Θ → [0, 1] such that Pos(∅) = 0,
Pos(Θ) = 1 and Pos

( ⋃
i Ai

)
= supi Pos(Ai), for any

family of subsets {Ai|Ai ∈ 2Θ, i ∈ I}, where I is an
arbitrary set index.
Each measure Pos is uniquely characterized by a pos-
sibility distribution π : Θ → [0, 1], π(x) .= Pos({x}),
via the formula Pos(A) = supx∈A π(x).
A central role in the connection between possibility
and evidence theory [20, 18, 14, 12, 23, 3] is played
by consonant and consistent belief functions. On one
side,

Proposition 1 The plausibility function plb associ-
ated with a b.f. b is a possibility measure iff b is con-
sonant.

On the other, after calling plausibility assignment p̄lb
the restriction of the plausibility function to single-
tons p̄lb(x) = plb({x}) it can be proven that [13, 5]

Proposition 2 The plausibility assignment p̄lb asso-
ciated with a belief function b is the admissible possi-
bility distribution of a possibility measure iff the b.f.
b is consistent.

Consistent b.f.s are then the counterparts of possibil-
ity distributions in the theory of evidence.
A different, powerful semantics comes in terms of con-
sistent knowledge bases.

2.4 Consistent b.f.s as collections of
coherent pieces of evidence

Belief functions are complex objects, in which some-
times contradictory bodies of evidence may coexist, as
they may result from the fusion of possibly conflicting
expert opinions and/or imprecise/corrupted measure-
ments. In formal logics, the application of inference
rules to inconsistent sets of assumptions or “knowl-
edge bases” may lead to incompatible conclusions, de-
pending on the subset of assumptions we start from.
A variety of approaches to solve this problem have
been proposed. These include fragmenting the knowl-
edge base into maximally consistent subsets, limiting
the power of the formalism, or adopting non-classical
semantics [17, 2]. Paris, on his side, tackles the prob-
lem by not assuming each proposition in the knowl-
edge base as a fact, but by attributing to it a certain
degree of belief [16]. This leads to something similar
to a belief function.
A mechanism able to obtain a consistent knowledge
base from an inconsistent one is therefore desirable.

In the theory of evidence such a mechanism can be
described as an operator

cs : B → CS, b 7→ cs[b]

where B, CS denote respectively the set of all b.f.s,
and that of all cs.b.f.s.

2.5 Consistent belief functions and
combination rules

Such a transformation acquires even more impor-
tance when we notice that most operators used to
update/elicit evidence in the theory of evidence do
not preserve consistency.

Definition 4 The orthogonal sum or Dempster’s
sum of two belief functions b1, b2 is a new belief func-
tion b1 ⊕ b2 with b.p.a.

mb1⊕b2(A) =
∑

B∩C=A mb1(B) mb2(C)∑
B∩C 6=∅ mb1(B) mb2(C)

,

where mbi denotes the b.p.a. associated with bi.
Their disjunctive combination is a new belief function
b1 ∩ b2 with b.p.a.

mb1∩b2(A) =
∑

B∩C=A

mb1(B)mb2 (C).

Their conjunctive combination is instead the b.f. b1∪
b2 with b.p.a.

mb1∪b2(A) =
∑

B∪C=A

mb1(B)mb2 (C).

Now, it is not difficult to prove that:

Proposition 3 If b1, b2 are consistent then b1 ∪ b2 is
also consistent. On the other hand, if b1, b2 are con-
sistent and their cores Cb1 , Cb2 have non-empty inter-
section, then both b1 ⊕ b2 and b1 ∩ b2 are consistent
with core Cb1∩b2 = Cb1 ∩ Cb2 . Finally, if Cb1 ∩ Cb2 = ∅
then b1 ⊕ b2, b1 ∩ b2 are not consistent.

In other words, consistency is preserved by the con-
junctive rule, the price to pay being increasing un-
certainty as new evidence is combined, since the core
of the belief state tends to Θ (complete ignorance).
On the other side, both Dempster’s rule and disjunc-
tive combination preserve consistency only when the
collection of focal elements of b1 and b2 is already con-
sistent (i.e. any intersection A∩B of a f.e. A of b1 and
a f.e. B of b2 is non-empty). As long as the new ev-
idence is consistent with the existing one uncertainty
is reduced. The price to pay is the loss of consistency
in most cases.
The use of a consistent transformation in a reasoning
process (1) would then guarantee consistency, while
allowing the degree of uncertainty affecting our knowl-
edge of the problem to decrease with time.
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2.6 Making a belief function consistent

Consistent transformations can be built by solving a
minimization problem of the form

cs[b] = arg min
cs∈CS

dist(b, cs) (2)

where dist is some distance measure between belief
functions, and CS denotes again the collection of all
consistent b.f.s.
We call (2) the consistent approximation problem.
Plugging in different distance functions in (2) we get
different consistent transformations.

In this paper we study what happens when using clas-
sical Lp norms in the approximation problem. As
possibility measures are inherently related to the L∞
norm (see above) cs.b.f.s live in a space linked to such
a norm (Section 3). This leads to suppose that Lp-
based approximations may indeed generate meaning-
ful consistent transformations.

3 The simplicial complex of
consistent belief functions

To solve the consistent approximation problem (2) we
need to understand the structure of the space in which
consistent belief functions live. We can then move
forward and find the projection of b onto this space
by minimizing the chosen distance.

3.1 The consistent complex

A belief function is determined by its N−2, N = 2|Θ|

belief values {b(A) ∅ ( A ( Θ} (since b(∅) = 0,
b(Θ) = 1 for all b.f.s). It can then be thought of
as a vector of RN−2. The collection B of points of
RN−2 which are b.f.s is a “simplex” (in rough words
a higher-dimensional triangle), which we call belief
space. B is the convex closure1

B = Cl(bA, ∅ ( A ⊆ Θ)

of the (“categorical”) belief functions bA assigning all
the mass to a single event A: mb(A) = 1, mb(B) = 0
∀B 6= A. In the belief space the vector b ∈ B which
represents a belief function is the convex combination

b =
∑

∅(A⊆Θ

mb(A)bA (3)

of the vectors bA representing all the categorical belief
functions.

1Here Cl denotes the convex closure operator:
Cl(b1, ..., bk) = {b ∈ B : b = α1b1 + · · · + αkbk,

∑
i αi =

1, αi ≥ 0 ∀i}.

The geometry of consistent belief functions can be de-
scribed as a structure collection of simplices or sim-
plicial complex [7]. More precisely, CS is the union

CS =
⋃

x∈Θ

Cl(bA, A ∋ x)

of the maximal simplices Cl(bA, A ∋ x) formed by all
the b.f.s with core containing a given element x of Θ.

3.2 Example: the binary case

As an example let us consider a frame of discernment
formed by just two elements, Θ2 = {x, y}. In this
very simple case each belief function b : 2Θ2 → [0, 1]
is completely determined by its belief values b(x), b(y)
as b(Θ) = 1, b(∅) = 0 ∀b ∈ B.
We can then represent each b.f. b as the vector

[b(x) = mb(x), b(y) = mb(y)]′

of RN−2 = R2 (since N = 22 = 4). Since

mb(x) ≥ 0, mb(y) ≥ 0, mb(x) + mb(y) ≤ 1

the set B2 of all the possible belief functions on Θ2 is
the triangle of Figure 1, whose vertices are the points
bΘ = [0, 0]′, bx = [1, 0]′, by = [0, 1]′ which corre-
spond respectively to the vacuous belief function bΘ

(mbΘ(Θ) = 1), the Bayesian b.f. bx with mbx(x) = 1,
and the Bayesian b.f. by with mby (y) = 1. The re-

b =[0,0]'
Θ

b =[0,1]'y

b =[1,0]'
x

b

B

P

m (x)

m (y)
b

b

CS

CS

2

2

x

y

Figure 1: The belief space B for a binary frame is a
triangle of R2 whose vertices are the categorical b.f.s
focused on {x}, {y} and Θ. The probability region is
the segment Cl(bx, by), while all consistent b.f.s live
in the union of the two segments CSx = Cl(bΘ, bx)
and CSy = Cl(bΘ, by).

gion P2 of all the Bayesian b.f.s on Θ2 is the segment
Cl(bx, by). In the binary case consistent belief func-
tions can have as list of focal elements either {{x}, Θ2}
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or {{y}, Θ2}. Therefore the space of cs.b.f.s CS2 is
the union of two one-dimensional simplices (line seg-
ments):

CS2 = CSx ∪ CSy = Cl(bΘ, bx) ∪ Cl(bΘ, by).

4 The Lp consistent approximation
problem

4.1 Using norms of the Lp family

The geometry of the binary case hints to a strict rela-
tion between consistent belief functions and Lp norms.
As the plausibility of all the elements of their core is

plb(x) =
∑

A⊇{x}
mb(A) = 1 ∀x ∈ Cb,

the region of consistent b.f.s

CS =
{
b : max

x∈Θ
plb(x) = 1

}
=

{
b : ‖p̄lb‖L∞ = 1

}

is the set of b.f.s for which the L∞ norm of the plau-
sibility distribution is equal to 1. This reinforces the
observation that cs.b.f.s correspond to possibility dis-
tributions (Section 2), which are in turn inherently
related to L∞.
It makes then sense to conjecture that the consistent
transformation we obtain by picking as distance func-
tion in the approximation problem (2) one of the clas-
sical Lp norms

‖b− b′‖L1 =
∑

A⊆Θ |b(A)− b′(A)|,
‖b− b′‖L2 =

√∑
A⊆Θ(b(A)− b′(A))2,

‖b− b′‖L∞ = maxA⊆Θ{|b(A)− b′(A)|}

will be meaningful.
When looking for a probabilistic approximation p[b] =
arg minp∈P dist(b, p) the use of Lp norms leads indeed
to quite interesting results. The L2 approximation
produces the so-called “orthogonal projection” of b
onto P [6], while, at least in the binary case, the set
of L1/L∞ probabilistic approximations of b coincide
with the set of probabilities dominating b:

P [b] .= {p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ}.

4.2 Approximation on a complex

As the consistent complex CS is a collection of lin-
ear spaces (better, simplices which generate a linear
space) solving the problem (2) involves finding a num-
ber of partial solutions

csx
Lp

[b] = arg min
cs∈CSx

‖b− cs‖Lp (4)

Figure 2: To minimize the distance of a point from
a simplicial complex, we need to find all partial so-
lutions (4) for all maximal simplices in the complex
(empty circles), and later compare these partial solu-
tions to select the global optimum (black circle).

(see Figure 2). Then, the distance of b from all such
partial solutions has to be assessed in order to select
a global optimal approximation.
In the rest of the paper we will apply this scheme to
both the approximation problems associated with L1

and L2, respectively.

5 Approximation in the binary case

To get some insight on how to proceed in the general
case, we will first consider the case study of a binary
frame (Figure 3), and discuss how to approximate a
belief function b ∈ B2 with a Bayesian or a consistent
b.f. using an Lp norm. We will denote by

pLp [b]
.= argmin

p∈P
‖b− p‖Lp

the probability which minimizes the Lp distance from
b. Analogously, we will use the notation

csLp [b] .= arg min
cs∈CS

‖b− cs‖Lp

for Lp consistent approximations.
In the Bayesian case we get

pL2 [b] =
[
mb(x) +

mb(Θ)
2

, mb(y) +
mb(Θ)

2

]′
;

this probability is called orthogonal projection π[b] of
b onto P [6], and coincides with the pignistic function
BetP [b] [22, 4] in the binary case.
The L1 solution pL1[b], instead, is the whole set of

probabilities “dominating” b [15], i.e.,

pL1 [b] = P [b] .=
{
p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ

}
. (5)

Figure 3 illustrates the geometry of all Lp Bayesian
and consistent approximations of a belief function b
in the binary frame. We can notice that:
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b =[0,0]'
Θ

b =[0,1]'y

b =[1,0]'
x

b

P

m (x)

m (y)
b

b

CS

CS x

y
P[b]=p  [b]

L1

p  [b]=p  [b]=BetP[b]
L2Linf

CS[b]=cs  [b]
Linf

cs  [b]=cs  [b]
L2L1

m (x)+
b

m (y)
b

m (x)−
b

m (y)
b

Figure 3: The dual behavior of Bayesian pLi [b] and
consistent cLi [b] approximations of a b.f. b associated
with the norms L1, L2, L∞ is shown in the binary case.

1. the solution of the L∞ approximation problem
determines an entire set CS[b] of consistent b.f.s;

2. on the other hand, L1/L2 approximations on the
same component CSx of CS are point-wise and
coincide;

3. the corresponding consistent transformation
csx

L2
[b] maps the original belief function b to a

new b.f. with a focal element A ∪ {x} whenever
A is a f.e. of b. The resulting b.p.a. is

mcsx
L2

[b](x) =
∑

A:A∪{x}={x}
mb(A) = mb(x),

mcsx
L2

[b](Θ) =
∑

A:A∪{x}=Θ

mb(A)

= mb(y) + mb(Θ).

4. finally, the global L1/L2 consistent transforma-
tions also coincide, as they belong to the same
component of the consistent complex (CSx in the
figure).

These facts (except the last point, which turns out
to be an artifact of binary frames) are valid in the
general case. Here we are going to focus on L1/L2

approximations.

6 Consistent L1/L2 approximations

6.1 Reducing the approximation problem to
a linear system

In the case of an arbitrary frame a cs.b.f. cs ∈ CSx is
a solution of the L2 partial approximation problem if

b − cs is orthogonal to all the generators bB − bΘ of
the simplex CSx = Cl(bB, B ⊇ {x}):

〈b− cs, bB − bΘ〉 = 〈b− cs, bB〉 = 0 ∀B ⊇ {x}

(as bΘ = 0 is the origin of RN−2, see binary example).
We denote by α(A) .= mcs(A) the b.p.a. of cs so that
we can write each consistent belief function whose core
contains {x} as

cs =
∑

A⊇{x}
α(A)bA

(by Equation (3)). After introducing the notation

β(A) .= mb(A) − α(A)

we can write b− cs =
∑

A(Θ β(A)bA and the orthog-
onality condition reads as

〈 ∑

A(Θ

β(A)bA, bB

〉
= 0 ∀B ⊇ {x}

i.e. (still for ∀B ⊇ {x}),
{ ∑

A⊇{x}
β(A)〈bA, bB〉+

∑

A 6⊃{x}
mb(A)〈bA, bB〉 = 0.

(6)
The L1 minimization problem reads instead as

arg min
~α

{ ∑

A⊇{x}

∣∣ ∑

B⊆A

mb(B)−
∑

B⊆A,B⊇{x}
α(B)

∣∣} =

arg min
~β

{ ∑

A⊇{x}

∣∣ ∑

B⊆A,B⊇{x}
β(B) +

∑

B⊆A,B 6⊃{x}
mb(B)

∣∣}

which is clearly solved by setting all addenda to zero,
obtaining the linear system:
{ ∑

B⊆A,B⊇{x}
β(B)+

∑

B⊆A,B 6⊃{x}
mb(B) = 0 ∀A ⊇ {x}.

(7)

6.2 Linear transformation

We are going to show here that the two minimization
problems associated with the linear systems (6) and
(7) coincide. The solution is indeed conserved due
to the fact that the second linear system is obtained
from the first one through a linear transformation.

Lemma 1
∑

B⊇A〈bB, bC〉(−1)|B\A| = 1 if C ⊆ A, 0
otherwise.

Corollary 1 The linear system (6) can be reduced
to the system (7) through a linear transformation of
rows:

rowA 7→
∑

B⊇A

rowB(−1)|B\A|. (8)
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Proof. If we apply the linear transformation (8) to
the system (6) we get

∑

B⊇A

[ ∑

C⊇{x}
β(C)〈bB , bC〉+

∑

C 6⊃{x}
mb(C)〈bB , bC〉

]
·

·(−1)|B\A| =
∑

C⊇{x}
β(C)

∑

B⊇A

〈bB, bC〉(−1)|B\A|+

+
∑

C 6⊃{x}
mb(C)

∑

B⊇A

〈bB, bC〉(−1)|B\A| ∀A ⊇ {x}.

Therefore by Lemma 1 we get
∑

C⊇{x},C⊆A

βC +
∑

C 6⊃{x},C⊆A

mb(C) = 0 ∀A ⊇ {x}

i.e. the system of equations (7). �

6.3 Form of the solution

To obtain both the L2 and the L1 consistent approx-
imations of b it then suffices to solve the system (7)
associated with the L1 norm.

Theorem 1 The unique solution of the linear system
(7) is given by

β(A) = −mb(A \ {x}).

Proof. We can prove it by substitution. System (7)
becomes

−
∑

B⊆A,B⊇{x}
mb(B \ {x}) +

∑

B⊆A,B 6⊃{x}
mb(B) =

= −
∑

C⊆A\{x}
mb(C) +

∑

B⊆A,B 6⊃{x}
mb(B) =

= −
∑

C⊆A\{x}
mb(C) +

∑

C⊆A\{x}
mb(C) = 0. �

Therefore, according to what discussed in Section 4,
the partial L1/L2 consistent approximations of b on
the maximal component CSx of the consistent com-
plex have b.p.a.

mcsx
L1

(A) = mcsx
L2

(A) = α(A) = mb(A)− β(A)
= mb(A) + mb(A \ {x})

for all events A such that {x} ⊆ A ( Θ.
The value of α(Θ) can be obtained by normalization:

α(Θ) = 1−
∑

{x}⊆A(Θ

α(A)

= 1−
∑

{x}⊆A(Θ

mb(A) + mb(A \ {x})

= 1−
∑

{x}⊆A(Θ

mb(A)−
∑

{x}⊆A(Θ

mb(A \ {x})

= 1−
∑

A 6=Θ,{x}c

mb(A) = mb({x}c) + mb(Θ)

as B 6⊃ {x} iff B = A \ {x} for A = B ∪ {x}.

Corollary 2 The partial L1 and L2 consistent ap-
proximations of a belief function b with b.p.a. mb onto
the component CSx of the consistent complex coincide.
They have b.p.a.

mcsx
L1

(A) = mcsx
L2

(A) = mb(A) + mb(A \ {x})

∀x ∈ Θ, and for all A s.t. {x} ⊆ A ⊆ Θ.

6.4 Partial solutions as focused consistent
transformations

The basic probability assignment of the L1/L2 con-
sistent approximations of b has an elegant expression.
It also has a straightforward interpretation: to get a
consistent b.f. focused on a singleton x, the mass con-
tribution of all the events B such that B ∪ {x} = A
coincide is assigned indeed to A. But there are just
two such events: A itself, and A \ {x}.
As an example, the partial consistent approximation
of a belief function on a frame Θ = {x, y, z, w} with
core {x} is illustrated in Figure 4. The b.f. with focal

Figure 4: A belief function (left) and its L1/L2 con-
sistent approximation with core {x} (right).

elements {y}, {y, z}, and {x, z, w} is transformed by
the map

{y} 7→ {x} ∪ {y} = {x, y},
{y, z} 7→ {x} ∪ {y, z} = {x, y, z},
{x, z, w} 7→ {x} ∪ {x, z, w} = {x, z, w}

into the consistent b.f. with focal elements {x, y},
{x, y, z}, and {x, z, w} and the same b.p.a.

Partial solutions to the L1/L2 consistent approxima-
tion problem turn out to be related to classical in-
ner consonant approximations of a belief function b,
i.e. the set of consonant b.f.s such that c(A) ≥ b(A)
∀A ⊆ Θ (or equivalently plc(A) ≤ plb(A) ∀A).
Dubois and Prade [10] proved indeed that such an ap-
proximation exists iff b is consistent. However, when
b is not consistent a “focused consistent transforma-
tion” can be applied to get a new belief function b′

such that

m′(A ∪ xi) = m(A) ∀A ⊆ Θ

and xi is the element of Θ with highest plausibility.
Theorem 1 and Corollary 2 state that the L1/L2 con-
sistent approximation onto each component CSx of CS
generates the consistent transformation focused on x.
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6.5 Global optimal solution for L1

To find the global consistent approximation of b we
need to work out which of the partial approximations
csx

L1/2
[b] has minimal distance from b. To do so we

need to find

argmin
x
‖b− csx

L1/2
[b]‖.

The L1 distance of b from CSx can be computed as

‖b− csx
L1

[b]‖L1 =
∑

A⊆Θ

|b(A)− csx
L1

[b](A)|

=
∑

A 6⊃{x}
|b(A)− 0|+

∑

A⊇{x}

∣∣b(A)−
∑

B⊆A,B⊇{x}
α(B)

∣∣

=
∑

A 6⊃{x}
b(A) +

∑

A⊇{x}

∣∣∣
∑

B⊆A

mb(B)+

−
∑

B⊆A,B⊇{x}

(
mb(B) + mb(B \ {x})

)∣∣∣

=
∑

A 6⊃{x}
b(A) +

∑

A⊇{x}

∣∣∣
∑

B⊆A,B 6⊃{x}
mb(B)+

−
∑

B⊆A,B⊇{x}
mb(B \ {x})

∣∣∣ =
∑

A 6⊃{x}
b(A)+

+
∑

A⊇{x}

∣∣∣
∑

C⊆A\{x}
mb(C)−

∑

C⊆A\{x}
mb(C)

∣∣∣

=
∑

A 6⊃{x}
b(A) =

∑

A⊆{x}c

b(A).

(9)
Immediately,

Theorem 2 The global optimal L1 consistent ap-
proximation of any belief function b is given by

csL1 [b]
.= arg min

cs∈CS
‖b− csx

L1
[b]‖ = csx̂

L1
[b]

i.e. the partial approximation associated with the ele-
ment x̂ which minimizes (9):

x̂ = argmin
x

{ ∑

A⊆{x}c

b(A), x ∈ Θ
}

.

6.6 A counterexample

In the binary case (Figure 3) the condition of Theorem
2 reduces to

x̂ = argmin
x

∑

A⊆{x}c

b(A) = argmin
x

mb({x}c)

= argmaxx plb(x)

and the global approximation falls on the component
of the consistent complex associated with the element
of maximal plausibility.
Unfortunately, this is not generally the case for arbi-
trary frames of discernment Θ. Let us see this in a

simple counterexample. Let us first write
∑

A⊆{x}c

b(A) =
∑

A⊆{x}c

∑

B⊆A

mb(B) =
∑

B⊆{x}c

mb(B)·

·|{A ⊆ {x}c : A ⊇ B}| =
∑

B⊆{x}c

mb(B) · 2|{x}c|−|B|.

(10)
Now, consider a belief function on a frame Θ =
{x1, ..., xn} of cardinality n, with just two focal el-
ements:

mb(x1) = mx,
mb({x1}c) = mb({x2, ..., xn}) = 1−mx.

If mx < 1/2 all y 6= x1 have maximal plausibility, as
plb(x1) = 1 − b({x1}c) = mx, while plb(y) = 1 − mx

for all y 6= x. However, according to (10),

‖b− csx1
L1

[b]‖L1 =
∑

A⊆{x1}c

b(A)

= (1−mx)2n−1−(n−1) = 1−mx,

where n = |Θ|, while

‖b− csy
L1

[b]‖L1 =
∑

A⊆{y}c

b(A)

= mx2n−1−1 = mx2n−2

∀y 6= x. But when

mx2n−2 ≥ 1−mx ≡ n ≥ 2 + log2

(1−mx

mx

)

we have that

‖b− csx1
L1

[b]‖L1 ≤ ‖b− csy
L1

[b]‖L1 ∀y 6= x1,

and therefore the global L1 consistent approximation
can fall on a component not associated with the max-
imal plausibility element.

6.7 Global optimal solution for L2

In the L2 case we get

‖b− csx
L2

[b]‖2 =
∑

A⊆Θ

(
b(A)− csx

L2
[b](A)

)2

=

=
∑

A⊆Θ

[ ∑

B⊆A

mb(B)−
∑

B⊆A,B⊇{x}
α(B)

]2

=

=
∑

A⊆Θ

[ ∑

B⊆A

mb(B)−
∑

B⊆A,B⊇{x}
mb(B)+

−
∑

B⊆A,B⊇{x}
mb(B \ {x})

]2

=

=
∑

A 6⊃{x}

(
b(A)

)2 +
∑

A⊇{x}

[ ∑

B⊆A,B 6⊃{x}
mb(B)+

−
∑

B⊆A,B⊇{x}
mb(B \ {x})

]2

=
∑

A 6⊃{x}

(
b(A)

)2+

+
∑

A⊇{x}

[ ∑

C⊆A\{x}
mb(C)−

∑

C⊆A\{x}
mb(C)

]2
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so that, in analogy with the L1 case,

‖b− csx
L2

[b]‖2 =
∑

A⊆{x}c

(b(A))2.

Theorem 3 The global optimal L2 consistent ap-
proximation of any belief function b is given by

csL2 [b]
.= arg min

cs∈CS
‖b− csx

L2
[b]‖ = csx̂

L2
[b]

i.e. the partial approximation associated with the ele-
ment

x̂ = argmin
x

{ ∑

A⊆{x}c

(b(A))2, x ∈ Θ
}
.

Other simple counterexamples show that the global
L2 consistent approximation can fall on a component
not associated with the maximal plausibility element.

7 Comments and conclusions

Belief functions represent coherent knowledge bases
in the theory of evidence. As consistency is not pre-
served by most operators used to update or elicit ev-
idence, the use of a consistent transformation in con-
junction with those combinations rules can be desir-
able. Consistent transformations are strictly related
to the problem of approximating a generic belief func-
tion with a consistent one.

In this paper we solved the instance of the consis-
tent approximation problem we obtain when measur-
ing distances between uncertainty measures by means
of the classical Lp norms. This makes sense as cs.b.f.s
live in a simplicial complex defined in terms of the L∞
norms, and correspond to possibility distributions. A
partial approximation for each component of the com-
plex has to be found. The conclusions of this study
are the following:
1. partial L1/L2 approximations coincide on each
component of the consistent complex;
2. such partial approximation turns out to be the con-
sistent transformation focused on the given element of
the frame;
3. the corresponding global solutions have not in gen-
eral as core the maximal plausibility element, and may
lie in general on different components of CS.

The interpretation of the polytope of all L∞ solutions
is worth to be fully investigated in the near future, in
the light of the intuition provided by the binary case.
In particular its clear analogy with the polytope of
consistent probabilities will be interesting matter to
study. A natural continuation of this line of research is
obviously the solution of the Lp approximation prob-
lem for consonant belief functions, as counterparts of

possibility measures in the theory of evidence. That
will complete our understanding of the relation be-
tween geometric norms and evidence consistency.

Proof of Lemma 1

We first note that, by definition of dogmatic belief
function bA (Section 3),

〈bB, bC〉 =
∑

D⊇B,C;D 6=Θ

1 =
∑

E((B∪C)c

1 = 2|(B∪C)c|−1.

Hence
∑

B⊆A

〈bB, bC〉(−1)|B\A| =

=
∑

B⊆A

(2|(B∪C)c| − 1)(−1)|B\A|

=
∑

B⊆A

2|(B∪C)c|(−1)|B\A| −
∑

B⊆A

(−1)|B\A|

=
∑

B⊆A

2|(B∪C)c|(−1)|B\A|,

as
∑

B⊆A

(−1)|B\A| =
|B\A|∑

k=0

1|A
c|−k(−1)k = 0

for Newton’s binomial:
n∑

k=0

pkqn−k = (p + q)n. (11)

Now, as both B ⊇ A and C ⊇ A the set B can be

Figure 5: Decomposition of B into A+B′+B′′ in the
proof of Lemma 1.

decomposed into the disjoint sum

B = A + B′ + B′′

where

∅ ⊆ B′ ⊆ C \A, ∅ ⊆ B′′ ⊆ (C ∪A)c

(see Figure 5), so that the above quantity can be writ-
ten as

∑

∅⊆B′⊆C\A

∑

∅⊆B′′⊆(C∪A)c

2|(A∪C)|c−|B′′|(−1)|B
′|+|B′′| =

∑

∅⊆B′⊆C\A
(−1)|B

′| ∑

∅⊆B′′⊆(C∪A)c

(−1)|B
′′|2|(A∪C)|c−|B′′|
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where
∑

∅⊆B′′⊆(C∪A)c

(−1)|B
′′|2|(A∪C)|c−|B′′| = [2+(−1)]|(A∪C)|c

= 1|(A∪C)|c = 1, again for Newton’s binomial (11).
The desired quantity becomes

∑

∅⊆B′⊆C\A
(−1)|B

′|

which is nil for C \A 6= ∅, equal to 1 when C \A = ∅,
i.e. C ⊆ A.
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Abstract
We replace strong independence in credal networks with
the weaker notion of epistemic irrelevance. Focusing on
directed trees, we show how to combine local credal sets
into a global model, and we use this to construct and jus-
tify an exact message-passing algorithm that computes up-
dated beliefs for a variable in the tree. The algorithm,
which is essentially linear in the number of nodes, is for-
mulated entirely in terms of coherent lower previsions. We
supply examples of the algorithm’s operation, and report
an application to on-line character recognition that illus-
trates the advantages of our model for prediction.

Keywords. Coherence, credal network, epistemic irrelev-
ance, epistemic independence, strong independence, im-
precise Markov tree, separation, hidden Markov chain.

1 Introduction

The last twenty years have witnessed a rapid growth of
graphical models in the fields of artificial intelligence and
statistics. These models combine graphs and probability
to address complex multivariate problems in a variety of
domains, such as medicine, finance, risk analysis, defense,
and environment, to name just a few.

Much has been done also on the front of imprecise probab-
ility. Credal networks [3] have been and still are the sub-
ject of intense research. A credal network creates a global
model of a domain by combining local uncertainty mod-
els using some notion of independence, and then uses this
to do inference. The local models represent uncertainty by
closed convex sets of probabilities, also called credal sets.

The notion of independence used with credal nets in the
vast majority of cases is that of strong independence (with
some exceptions in [6]). Loosely speaking, two variables
X ,Y are strongly independent if the credal set for (X ,Y )
can be regarded as originating from a number of precise
models in each of which X and Y are stochastically inde-
pendent. Strong independence is closely related with the
sensitivity analysis interpretation of credal sets, which re-

gards an imprecise model as arising out of partial ignor-
ance of a precise one. This is a somewhat narrow view,
and it does not apply in general.

An alternative and attractive way to express irrelevance
that is not committed to the sensitivity analysis interpret-
ation is offered by epistemic irrelevance [15]: we say that
X is irrelevant to Y if observing X does not affect beliefs
about Y . Epistemic irrelevance is defined directly in terms
of a subject’s beliefs and is therefore very well suited for
a behavioural theory of imprecise probability. It is also
weaker than strong independence, and it therefore does not
lead to overconfident inferences when the sensitivity ana-
lysis interpretation is not justified.

At this point the question that we address in this paper
should be clear: can we define credal nets based on epi-
stemic irrelevance, and moreover create an exact algorithm
to perform efficient inferences with them? We give a fully
positive answer to this question in the special case that (i)
the graph under consideration is a directed tree, and (ii) the
related variables assume only finitely many values. The in-
tuitions that showed us the way towards this result origin-
ated in previous work done by some of us on imprecise
probability trees [7] and imprecise Markov chains [8].

How do we address this problem? After giving some pre-
liminary notions and introducing the model in Sec. 2, we
discuss in Sec. 3 how to combine marginal models into
joint ones reflecting certain irrelevance assessments, in a
way that is as conservative as possible. We comment on
the graphical separation criteria induced by epistemic ir-
relevance in Sec. 5. We then go on to develop and jus-
tify an inference algorithm for treating the model as an ex-
pert system in Sec. 6. The algorithm is used to update the
tree: it computes posterior beliefs about a target variable
in the tree conditional on the observation of other vari-
ables, that are called instantiated, meaning that their value
is determined. It is based on message passing, as are the
traditional algorithms that have been developed for pre-
cise graphical models, and it has some remarkable prop-
erties: (i) it works in time essentially linear in the size of
the tree; (ii) it natively computes posterior lower and upper
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previsions (or expectations) rather than probabilities; (iii)
it is an algorithm for credal nets developed for the first
time exclusively using the formalism of coherent lower
previsions [15]; and (iv) it is shown to lead to coherent
inferences under mild conditions. We give a step-by-step
example of the way inferences can be done in our frame-
work in Sec. 7, where we also comment on the intriguing
relationship between the failure of certain classical separ-
ation properties in our framework, and dilation [10, 14].
The last part of the paper focuses on numerical simula-
tions. In Sec. 8 we empirically measure the amount of im-
precision introduced by using epistemic irrelevance rather
than strong independence in a credal tree, when propagat-
ing inferences backwards (towards the root) from instanti-
ated nodes to the target node; indeed, it can be shown [7]
that there is no difference between inferences that go for-
ward from instantiated nodes to target under strong inde-
pendence and epistemic irrelevance. In Sec. 9 we present
an application of our algorithm to on-line character recog-
nition. We learn the probabilities from data and compare
the predictions of the our approach with those of its pre-
cise probability counterpart. The results are encouraging:
they show that the tree can be used for real applications,
and that the imprecision it originates is justified.

Due to lack of space, we must assume the reader has a
working knowledge of the basics of Walley’s [15] theory
of coherent lower previsions. We also refrain from giving
proofs of technical results for the same reason, and rather
stress motivation, simple justifications and examples.

2 Credal trees under epistemic irrelevance

Basic notions and notation. We consider a rooted and
directed discrete tree with finite width and depth. We call
T the set of its nodes s, and we denote the root, or initial,
node by �. Consider any node s, then we denote the set of
its parents by P(s). Of course, P(�) = /0, and for s 6=� we
have that P(s) = {m(s)} where m(s) is the mother node of
s. Also, for each node s, we denote the set of its children by
C(s), and the set of its siblings by S(s). Clearly, S(�) = /0,
and if s 6= � then S(s) = C(m(s)) \ {s}. If C(s) = /0, then
we call s a leaf, or terminal node.

For nodes s and t, we write sv t if s precedes t, i.e., if there
is a directed segment in the tree from s to t. The relationv
is a special partial order on the set T . A(s) := {t ∈ T : t @ s}
denotes the set of ancestors of s, and D(s) := {t ∈ T : s@
t} its set of descendants. Here s @ t means that s v t and
s 6= t. We also use ↑s := A(s)∪{s}, ↓s := D(s)∪{s}, ↑S :
=
⋃{↑s : s ∈ S} and ↓S :=

⋃{↓s : s ∈ S} for any subset
S⊆ T .

With each node s of the tree, there is associated a vari-
able Xs assuming values in a finite non-empty set Xs. We
denote the set of all real-valued maps (gambles) on Xs
by L (Xs). We extend this notation to more complicated

situations as follows. If S is any subset of T , then we de-
note by XS the tuple of variables whose components are
the Xs for all s ∈ S. This new joint variable assumes val-
ues in the finite set XS :=×s∈SXs, and the corresponding
set of gambles is denoted by L (XS). Generic elements of
Xs are denoted by xs or zs. Similarly for xS and zS in XS.
Also, if we mention a tuple zS, then for any t ∈ S, the cor-
responding element in the tuple will be denoted by zt . We
assume all variables in the tree to be logically independent.

Local uncertainty models. We now add a local uncer-
tainty model to each of the nodes s. If s is not the root node,
i.e., has a mother m(s), then this local model is a (separ-
ately coherent) conditional lower prevision Qs(·|Xm(s)) on
L (Xs): for each possible value zm(s) of the variable Xm(s)
associated with its mother m(s), we have a coherent lower
prevision Qs(·|zm(s)) for the value of Xs, conditional on
Xm(s) = zm(s). In the root, we have an unconditional local
uncertainty model Q� for the value of X�; Q� is a co-
herent lower prevision on L (X�). We use the common
generic notation Qs(·|XP(s)) for all these local models.

Global uncertainty models. In this and the follow-
ing two sections, we show how all these local models
Qs(·|Xm(s)) can be combined into global uncertainty mod-
els. If we generically denote by the symbol Ps lower pre-
visions on L (X↓s), representing information about X↓s,
then this means we want to end up with an unconditional
joint lower prevision P := P� on L (XT ) for all variables
in the tree, as well conditional lower previsions Ps(·|Xm(s))
on L (X↓s) for all non-initial nodes s. Ideally, we want
these global (conditional) lower previsions to be coherent
with one another, and to reflect the conditional irrelevan-
cies (or Markov-type conditions) that we want the graph-
ical structure of the tree to encode. In addition, we want
them to be as conservative (small) as possible.

The interpretation of the graphical model. Consider
any node s in the tree, and its parent set P(s) [either
empty or equal to {m(s)}]. We also consider the set s :=
T \ [D(s)∪P(s)] of its non-parent non-descendants. Then
conditional on the parent variables XP(s), the non-parent
non-descendant variables Xs are assumed to be epistemic-
ally irrelevant to the variables X↓s associated with s and its
descendants. This interpretation turns the tree into a credal
tree under epistemic irrelevance, and we shall also use the
term imprecise Markov tree (IMT) for it.

In terms of the global models, this means that for all s∈ T ,
for all S⊆ s and for all zS∪P(s) ∈XS∪P(s):

Ps(·|zP(s)) = Ps(·|zS∪P(s)). (1)

We discuss the separation properties that accompany
this interpretation in some detail in Sec. 5. For now,
we focus on one immediate consequence that will help
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us go from local to global models in Sec. 4. Con-
sider some non-initial node s. The interpretation of the
graphical structure of the tree tells us that for each
sibling c ∈ S(s) of s, the variable Xc is epistemic-
ally irrelevant to the variable Xs, conditional on Xm(s).

Xm(s)

Xs . . . Xc

It even tells us that for any
non-empty set S ⊆ S(s) of
siblings of s, the variable XS
is epistemically irrelevant to
Xs, conditional on Xm(s). We
conclude that all children of
a node are not just epistem-
ically irrelevant to each other: they are even epistemically
independent [15, Chapter 9], in some very specific sense.

3 Net-independent natural extension

This leads us to the following small digression. We con-
sider the following problem, the solution of which will
help us in our discussion further on. Suppose we have a
number of marginal lower previsions Pn representing be-
liefs about the values that each of a finite number of (lo-
gically independent) variables Xn assume in the respective
finite sets Xn, n ∈ N, where N is some finite set.

Net-independent products. We now want to construct
a joint lower prevision PN on L (XN), where XN =
×n∈NXn, that coincides with the marginals Pn on their re-
spective domains L (Xn), and such that this joint reflects
the following structural assessments: for each o ∈ N and
each non-empty I ⊆ N \{o}, the variables XI are epistem-
ically irrelevant to the variable Xo. In other words, learning
the value of any number of these variables does not affect
beliefs about any single other variable amongst them. We
then call the variables Xn, n ∈ N net-independent.

Such irrelevance assessments are useful because they al-
low us to turn marginal into conditional lower previsions.
Indeed, for each o∈N and each I ⊆N \{o}we can use the
epistemic irrelevance of XI to Xo to infer from the marginal
lower prevision Po a conditional lower prevision Po(·|XI)
on L (Xo) given by:

Po(h|xI) := Po(h) for all gambles h on Xo.

So we can use the assessment of net-independence of the
variables Xn, n ∈ N to infer from the marginals a family of
conditional lower previsions:

N (Pn,n ∈ N) := {Po(·|XI) : o ∈ N and I ⊆ N \{o}}.

Definition 1. A coherent joint lower prevision PN on
L (XN) that coincides with the marginal lower previ-
sions Pn on their domains L (Xn), n ∈ N and that is
coherent with the family of conditional lower previsions
N (Pn,n∈N) is called a net-independent product of these
marginals. If it exists, then the point-wise smallest such

net-independent product is called the net-independent nat-
ural extension of these marginals, and denoted by⊗n∈NPn.

Conditioning factorising lower previsions. The fol-
lowing notion of factorisation is intimately linked with that
of a net-independent product. It will also play a crucial part
in our development of an algorithm for treating an impre-
cise Markov tree as an expert system.

Definition 2. We call a coherent lower prevision PN on
L (XN) factorising if for all o ∈ N and all non-empty I ⊆
N \{o}, all g∈L (Xo) and all non-negative fi ∈L (Xi),
i ∈ I, PN( f g) = PN( f PN(g)), where f := ∏i∈I fi.

As an important example, the so-called strong product [3]
×n∈NPn of the marginal lower previsions Pn is factorising.
But for any coherent factorising joint lower prevision PN ,
we see that for any non-empty subset I of N:

PN(×i∈IAi) = ∏
i∈I

PN(Ai) and PN(×i∈IAi) = ∏
i∈I

PN(Ai),

(2)
where Ai ⊆Xi for all i ∈ I. Let us call any real functional
Φ on L (X) strictly positive if Φ(I{x}) > 0 for all x ∈X.
Then the following result is immediate from Eq. (2).

Proposition 1. A factorising coherent lower prevision PN
on L (XN) is strictly positive if and only if all its mar-
ginals are, and its conjugate upper prevision PN is strictly
positive if and only if all its marginals are.

As a next step, suppose we want to condition a coherent
and factorising joint PN on an observation XI = xI , where
I is some proper subset of N. To this end, we calculate the
regular extension [15, Appendix J]: when PN(I{xI}) > 0,

R(h|xI) := max{µ ∈ R : PN(I{xI}[h−µ])≥ 0},

where h is any gamble on XO and O is any non-empty
subset of N \I. Otherwise R(·|xI) is vacuous. Then because
PN is factorising:

PN(I{xI}[h−µ]) = PN(I{xI}PN(h−µ))

=

{
PN({xI})(PN(h)−µ) if PN(h)≥ µ
PN({xI})(PN(h)−µ) if PN(h)≤ µ,

so we conclude that, quite interestingly,

R(h|xI) = PN(h) as soon as PN({xI}) > 0. (3)

Because we are working in a finitary context [XN is a fi-
nite set], the regular extension R(·|XI) is guaranteed to be
coherent with the joint lower prevision PN [15, Sec. J3].
This, together with an interesting recent coherence result
by Enrique Miranda [11, Theorem 5], leads us to the fol-
lowing conclusion.
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Proposition 2. Any coherent joint lower prevision PN on
L (XN) that is factorising and strictly positive,1 is a net-
independent product of its marginals.

As an immediate consequence, the strong product×n∈NPn
of a collection of strictly positive marginals Pn, n ∈ N,
is also a net-independent product of these marginals, and
is therefore coherent with the associated family of condi-
tional lower previsions N (Pn,n ∈ N). So this family is it-
self always guaranteed to be coherent, and because all the
sets Xn are finite, we can invoke Walley’s Finite Exten-
sion Theorem [15, Theorem 8.1.9] to conclude that there
always is a point-wise smallest joint lower prevision that is
coherent with the family N (Pn,n ∈ N). This provides the
most important step in the proof of the following result.
Another crucial step is provided by the fact that, since the
strong product is a net-independent product of the mar-
ginals Pn, n ∈ N, it has to dominate the net-independent
natural extension: ×n∈NPn ≥⊗n∈NPn.

Proposition 3. For any collection of strictly positive and
coherent marginal lower previsions Pn on L (Xn), n ∈
N, their net-independent natural extension ⊗n∈NPn exists,
and it is a factorising and strictly positive coherent lower
prevision on L (XN).

4 Constructing the most conservative joint

We now show how to construct specific global models for
the variables in the tree, and argue that these are the most
conservative coherent models that extend the local models
and express all conditional irrelevancies (1) encoded in the
imprecise Markov tree. In the next section, we will use
these global models to construct and justify an algorithm
for treating the imprecise Markov tree as an expert system.

The crucial step lies in the recognition that any tree can be
constructed recursively from the leaves up to the root, by
using basic building blocks of the following type:

Xm(s)

Xs

Xc1 Xc2
. . . Xcn

Qs(·|Xm(s))

Pck
(·|Xs))

The global models are then also constructed in a recurs-
ive manner, following the same pattern. Consider a node
s and suppose that, in each of its children c ∈ C(s), we
already have a global conditional lower prevision Pc(·|Xs)

1We strongly suspect that this proposition, and a number of further
results that build on it, such as Proposition 3, can be extended to the case
that not PN but PN is strictly positive. We have no proof yet, however.

on L (X↓c). We construct a global conditional lower pre-
vision Ps(·|XP(s)) on L (X↓s) by backwards recursion:

Ps(·|Xs) :=⊗c∈C(s)Pc(·|Xs) (4)

Ps(·|XP(s)) := Qs(Ps(·|Xs)|XP(s))

= Qs(⊗c∈C(s)Pc(·|Xs)|XP(s)), (5)

the conditional lower prevision Ps(·|Xs) on L (X↓C(s)) be-
ing the net-independent natural extension of the condi-
tional lower previsions Pc(·|Xs) on L (X↓c), c ∈ C(s). If
we start in leaves t with the ‘boundary condition’

Pt(·|XP(t)) := Qt(·|XP(t)) for all leaves t, (6)

then the recursion relations (4) and (5) eventually lead to
a global model Ps(·|Xm(s)) in all nodes s of the tree, and
in particular to a joint model P := P� on L (XT ). These
are the global (conditional) lower previsions we have been
looking for, as the following theorem tells us. Its proof
proceeds in a recursive fashion, similar to the construction
of the global models. It relies rather heavily on the fact
that the net-independent natural extension is factorising,
and on the coherence result by Miranda [11, Theorem 5],
already mentioned before Proposition 2.

Theorem 4. If all local models Qs(·|XP(s)) on L (Xs), s∈
T are strictly positive, then the global models Ps(·|XP(s))
on L (X↓s), s ∈ T obtained through Eqs. (4)–(6), con-
stitute the point-wise smallest coherent family of (condi-
tional) lower previsions that (i) extend the local models,
and (ii) satisfy the epistemic irrelevance conditions (1) en-
coded in the graphical structure.

5 Some separation properties

Without going into too much detail, we would like to point
out one of the more striking differences between the separ-
ation properties in imprecise Markov trees under epistemic
irrelevance, and the more usual ones for Bayesian nets [12]
and credal nets under strong independence [3].

It is clear from the interpretation of the graphical model
described in Sec. 2 that we have the following simple sep-
aration results:

Xi1 Xi2 Xt Xi2Xi1 Xt

where in both cases, Xi2 separates Xt from Xi1 : when the
value of Xi2 is known, additional information about the
value of Xi1 does not affect beliefs about the value of Xt . In
this figure, between i1 and i2, and between i2 and t, there
may be other nodes, but the arrows along the path segment
through these nodes should all point in the indicated dir-
ections. The underlying idea is that t is a (descendant of
some) child c of i2, and conditional on the mother i2 of
c, the non-parent non-descendant i1 of c is epistemically
irrelevant to c and all of its descendants.
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On the other hand, and in contradistinction with what we
are used to in Bayesian nets, we will not generally have
separation in the following configuration:

Xi1 Xi2 Xt

where Xi2 does not necessarily separate Xt from Xi1 . We
will come across a simple counterexample in Sec. 7.
Where does this difference with the case of Bayesian nets
originate? It is clear from the reasoning above that Xi2
separates Xi1 from Xt : conditional on Xi2 , Xt is epistemic-
ally irrelevant to Xi1 . For precise probability models, irrel-
evance generally implies symmetrical independence, and
therefore this will generally imply that conditional on Xi2 ,
Xi1 is epistemically irrelevant to Xt as well. But for impre-
cise probability models no such symmetry is guaranteed
[2], and we therefore cannot infer that, generally speak-
ing, Xi2 will separate Xi1 from Xt . As a general rule, we
can only infer separation if the arrows point from the ‘sep-
arating’ variable Xi2 towards the ‘target’ variable Xt .

6 Algorithm for treating the imprecise
Markov tree as an expert system

We now consider the case where the imprecise Markov
tree is treated as an expert system: we are interested in
making inferences about the value of the variable Xt in
some target node t, when we know the values xE of the
variables XE in a set E ⊆ T \{t} of evidence nodes.

The formulation of the problem. If we assume that the
values of the remaining variables are missing at random,
then we can do this by conditioning the joint P obtained
above on the available evidence ‘XE = xE ’. We will ad-
dress this problem by updating the lower prevision P to
the lower prevision Rt(·|xE) on L (Xt) using regular ex-
tension [15, Appendix J]:

Rt(g|xE) = max{µ ∈ R : P(I{xE}[g−µ])≥ 0} (7)

for all gambles g on Xt , assuming that P({xE}) > 0.
Consider the map ρg : R→ R : µ 7→ P(I{xE}[g− µ]). By
coherence of P, |ρg(µ1)− ρg(µ2)| ≤ |µ1 − µ2|P({xE}),
which implies that ρg is continuous. Coherence of P also
guarantees that ρg is concave and non-increasing. Hence
{µ ∈ R : ρg(µ) ≥ 0} = (−∞,Rt(g|xE)], which shows that
the supremum that we should have a priori used in (7)
is indeed a maximum. Rt(g|xE) is the right-most zero of
ρg, and it is, again by coherence of P, guaranteed to lie
between infg and supg. If moreover P({xE}) > 0, then it
is the unique zero. It appears that any algorithm for cal-
culating Rt(g|xE) will benefit from being able to calculate
the values of ρg, or at least check their signs, efficiently.

Calculating the values of ρg recursively. Recall that
the joint P can be constructed recursively from leaves to

root. The idea we now use is that calculating ρg(µ) =
P(I{xE}[g−µ]) becomes easier if we graft the structure of
the tree onto the argument gµ := I{xE}[g− µ] as follows.
Define gµ

e := I{xe} for all e ∈ E, gµ
t := g− µ , and gµ

s := 1
for s ∈ T \ (E ∪{t}), whence gµ = ∏s∈T gµ

s . Also define,
for any s ∈ T , the gamble φ µ

s on X↓s by φ µ
s := ∏u∈↓s gµ

u .
Then φ µ

� = gµ , φ µ
s ≥ 0 if s 6v t, and for any s ∈ T :

φ µ
s = gµ

s ∏
c∈C(s)

φ µ
c , (8)

where we use the convention that ∏u∈ /0 αu = 1. Eq. (8) is
the argument counterpart of Eq. (5). Also, if s 6v t then gµ

s
and φ µ

s do not depend on µ , nor on g.

First, let us consider any node s 6v t. We define the mes-
sages πs and πs recursively by

πs := Qs

(
gµ

s ∏
c∈C(s)

πc|Xm(s)

)
πs := Qs

(
gµ

s ∏
c∈C(s)

πc|Xm(s)

)
,

(9)
summarised by the self-explanatory shorthand notation:
πs = Qs(gµ

s ∏c∈C(s) πc|Xm(s)). There are two possibilities:

πs =





Qs

(
{xs}|Xm(s)

)
∏

c∈C(s)
πc(xs) if s ∈ E

Qs

(
∏

c∈C(s)
πc|Xm(s)

)
if s /∈ E.

The messages πs and πs can be seen as tuples of real num-
bers, with as many components as there are elements in
Xm(s): one for each of the possible values of Xm(s). As
their notation suggests, they do not depend on the choice
of g or µ , but only (at most) on which nodes are instan-
tiated, i.e., belong to E, and on which values xE the vari-
ables for these instantiated nodes assume. It then follows
from Eqs. (5) and (8) and the factorisation property2 of the
local product lower previsions that:

Ps(φ µ
s |Xm(s)) = πs and Ps(φ µ

s |Xm(s)) = πs. (10)

Next, we turn to nodes sv t. Define the messages πµ
s by

πµ
s := Qs(ψµ

s |XP(s)), (11)

where the gambles ψµ
s on Xs are given by the recursion

relations:

ψµ
t := max{g−µ,0}∏

c∈C(t)
πc + min{g−µ,0}∏

c∈C(t)
πc, (12)

and for each � 6= sv t, so m(s) exists,

ψµ
m(s) := gµ

m(s)

[
max{πµ

s ,0}∏
c∈S(s)

πc + min{πµ
s ,0}∏

c∈S(s)
πc

]
.

(13)
2This shows that the results of updating the tree (and the algorithm we

are deriving) in this way will be exactly the same for any way of forming
a product of the local models for the children of s, provided only that
this product is factorising. For instance, using the strong product and the
net-independent natural extension will lead to the same inferences.
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The messages πµ
s are again tuples of real numbers, with

one component for each of the possible values of Xm(s).3

They depend on the choice of g or µ , as well as on which
nodes are instantiated and on which values xE the variables
for these instantiated nodes assume. It then follows from
Eqs. (5) and (8) and the factorisation property that

Ps(φ µ
s |XP(s)) = πµ

s , (14)

and of course ρg(µ) = πµ
�. We conclude that we can find

the value of ρg(µ) by a backwards recursion method con-
sisting in passing messages up to the root of the tree, and
in transforming them in each node using the local uncer-
tainty models; see Eqs. (9) and (11)–(13).

There is a further simplification, because we are not ne-
cessarily interested in the actual value of ρg(µ), but rather
in its sign. It arises whenever there are instantiated nodes
above the target node: E ∩A(t) 6= /0. Let in that case et be
the greatest element of the chain E ∩A(t), i.e., the instan-
tiated node closest to t, and let st be its successor in the
chain ↑t. If we let λg(µ) be the real number

max{πµ
st (xet ),0}∏

c∈S(st )
πc(xet )+ min{πµ

st (xet ),0}∏
c∈S(st )

πc(xet ),

then it follows from Eq. (12) that ψµ
et = I{xet }λg(µ). If we

now continue to use Eqs. (12) and (13) until the root of the
tree, we eventually find that

ρg(µ) =

{
P(I{xet })λg(µ) if λg(µ)≥ 0
P(I{xet })λg(µ) if λg(µ)≤ 0.

Since we assumed that P(I{xE}) > 0, it readily follows that
P(I{xet }) > 0, so we gather from Eq. (7) that Rt(g|xE) =
max{µ ∈ R : λg(µ) ≥ 0}. In fact, under the assumption
that P(I{xE}) > 0, λg(µ) ≥ 0 can be replaced in this ex-
pression by πµ

st (xet ) ≥ 0. We conclude that in order to do
expert system inference of the type described above, we
can perform all calculations on the subtree ↓st , where the
new root st has local model Qst

(·|xet ). This is also borne
out by the discussion of the separation properties in Sec. 5.

An algorithm. We now convert these observations into a
workable algorithm. Using regular extension and message
passing, we are able to compute Rt(g|xE); we (i) choose
a µ ∈ [ming,maxg]; (ii) calculate the value of λg(µ) by
sending messages from the terminal nodes towards the
root; and (iii) look for the maximal µ that will make this
λg(µ) zero. But we have seen above that this naive ap-
proach can be sped up by exploiting the separation proper-
ties of the tree, and the independence of µ for some of the
messages. For a start, as we are only interested in the sign
of ρg(µ), which is determined by πµ

st (xet ), we only have to
take nodes into consideration that strictly follow et .

3Of course, if s is the root node, then P(s) = /0 and πµ
s is just a single

real number, which by Eq. (14) is equal to ρg(µ).

�

X1

x2

X3

x4

X5

X6

X7
X8

X9

X10

X11

X12

X13

x14

x15

X16
x17

X18

x19

x20

x21

X22

x23
X24

πµ
12

πµ
13

πµ
st (xet )

π14

π15

π17

π19

π20 π21

t

st

et

: observed node
: queried node

: unobserved node

The next thing a smarter implementation of the algorithm
can do is determine the trunk T̃ of the tree: those nodes that
precede the queried node t and strictly follow the greatest
observed element et preceding t. For the tree above for in-
stance, where X13 (in grey) is the queried node and the
light grey nodes {X2,X4,X14,X15,X17,X19,X20,X21,X23}
are instantiated, the trunk consists of T̃ = {X5,X12,X13}.
The start of the algorithm can be implemented with
the piece of pseudo-code on the left. Here, the queried

st := t
T̃ := {t}

while m(st) 6∈ E
do:

T̃ := T̃ ∪m(st)
st := m(st)

end while
et := m(st)

node t is known in advance and be-
sides the trunk T̃ , also the nodes st
and et are computed. We are espe-
cially interested in the nodes that
constitute the trunk, because only
these nodes will send messages to
their parents that depend on µ . As
a consequence, we can summarise
all the µ-independent messages by
propagating all messages until they

reach the trunk, which means that they have to be calcu-
lated only once.

The following piece of pseudocode does the trick. Both πc

for n ∈ T̃ do:
for c ∈C(n) do:

if c 6∈ T̃ then:
calculate πc

end if
end for
Πn := ∏

c∈C(s)\T̃
πc

end for

and πc can be calculated in
the recursive manner outlined in
Eq. (10), where the recursion
starts at the leaves and moves
up to (but stops right before) the
trunk. In the leaves, the local
lower and upper previsions of the
indicator of the evidence are sent
upwards if the leaf is instantiated;
if not the constant 1 is sent up,
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which is equivalent to deleting the node from the tree. We
could envisage removing barren nodes (all of whose des-
cendants are uninstantiated, such as X6, . . . , X11, X16, X18,
X22 in the example tree above) from the tree beforehand,
but we believe the computational overhead created by the
search for them will void the gain.

At this point we can calculate πµ
st (et). If we assume that

t, st , g, Πn and Πn for n ∈ T̃ are stored as global vari-
ables, the following function will do the job. Now that

function getJoint(µ)
s := t
while s 6= st do:

calculate ψµ
s

πµ
s := Qs(ψµ

s |Xm(s))
s := m(s)

end while
calculate ψµ

st

πµ
st (et) := Qst

(ψµ
st |xet )

return πµ
st (et)

we have the code to calcu-
late πµ

st (et), we can tackle
the final problem: find
the maximal µ for which
πµ

st (et) = 0. In principle, a
secant root-finding method
could be used, but consid-
ering the computational
complexity of the getJoint
function, and using that
πµ

st (et) is concave, we can
speed up the calculation of

the maximal root drastically as shown in the figure below.

If a, b, c, and d are distributed in such a way that ρg(a)≥
ρg(b) ≥ 0 ≥ ρg(c) ≥ ρg(d), then the root of ρg is in the
interval [smin,smax] := [p,min{p,r}].

µ

Rt(g|xE)

a b

c

d

p q r

function concaveRoot(a,b,c,d,smin,smax)
µ := 1

2 (smin + smax)
f (µ) := getJoint(µ)

if f (µ) > 0 then:
a := b
b := (µ, f (µ))
smax = min{bx− bx−ax

by−ay
by,smax}

else
d := c
c := (µ, f (µ))
smax = min{dx− dx−cx

dy−cy
dy,smax}

end if
smin = bx− bx−cx

by−cy
by

if smax− smin < tolerance then:
return smin

else
return concaveRoot(a,b,c,d,smin,smax)

end if
Here, smin is prefered over smax as return value to stay on
the conservative (small) side. If by−ay = 0, then we define
min{bx− bx−ax

by−ay
by,smax} to be equal to smax and similarly

for dy− cy = 0. Keeping this in mind, we can finalise our
algorithm by invoking a call to the following function.

function getLowerPrevisionGivenEvidence(g)
a := (min(g), getJoint(ax))
dx := (max(g), getJoint(ad))
return concaveRoot(a,a,d,d,ax,dx)

The complexity of our algorithm is something that should
be investigated further. But we can say something tak-
ing into account that for a fixed µ each node makes a
single local computation and then propagates the result to
the mother node: this implies that, with µ fixed, the al-
gorithm is linear in the number of nodes. The iterations
on µ create some additional complexity, but the number
of iterations is usually small: a quick graphical investiga-
tion shows that the computational complexity of our root-
finding algorithm must be lower than for the secant and
bisection algorithms. We even have some experimental
evidence that our root finder can outperform the Newton-
Raphson method. Therefore, we can reasonably take the
number of iterations to be a small constant for all prac-
tical applications, and conclude that the complexity of the
algorithm is essentially linear in the number of nodes.

7 A simple example involving dilation

We present a very simple example that allows us to (i) fol-
low the expert system inference method discussed above
in a step-by-step fashion; (ii) see that there are separation
properties for credal nets under strong independence that
fail for credal trees under epistemic irrelevance; and (iii)
see that in that case we will typically observe dilation.

Consider the following imprecise Markov chain:

X1 X2 X3

? x2 x3

To make things as simple as possible, we suppose that
X1 = {a,b} and that Q1 is a linear model Q1 with mass
function q. We also assume that Q2(·|X1) is a linear model
Q2(·|X1) with conditional mass function q(·|X1). We make
no such restrictions on the local model Q3(·|X2). We also
use following simplifying notational device: if we have
three real numbers κ , κ and γ , we let

κ〈γ〉 := κ max{γ,0}+ κ min{γ,0}.

We observe X2 = x2 and X3 = x3, and want to make in-
ferences about the target variable X1: for any g ∈L (X1),
we want to know R1(g|x{2,3}). Letting r := R1({a}|x{2,3})
and r := R1({a}|x{2,3}), we infer from coherence that it
suffices to calculate r and r, because

R1(g|x{2,3}) = g(b)+ r〈g(a)−g(b)〉.

We let gµ = [I{a} − µ]I{x2}I{x3}, and apply the approach
of the previous section. We see that the trunk T̃ = {1},
and the instantiated leaf node 3 sends up the messages
π3 = Q3({x3}|X2) to the instantiated node 2, who trans-
forms them into the messages

π2 = Q2({x2}|X1)π3(x2) = q(x2|X1)q.
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These are sent up to the (target) root node t = 1, which
transforms them into the message πµ

1 = Q1(ψµ
1 ) with

ψµ
1 = q(x2|X1)q〈I{a}− µ〉. If we also use that 0 ≤ µ ≤ 1,

this leads to

P1(gµ) = πµ
1 = q(a)q(x2|a)q[1−µ]+ q(b)q(x2|b)q[−µ],

so we find after applying regular extension that

r = R1({a}|x{2,3}) =
q(a)q(x2|a)q

q(a)q(x2|a)q + q(b)q(x2|b)q

r = R1({a}|x{2,3}) =
q(a)q(x2|a)q

q(a)q(x2|a)q + q(b)q(x2|b)q
.

When q = q, which happens for instance if the local model
for X3 is precise, then we see that, with obvious notations,

r = r =
q(a)q(x2|a)

q(a)q(x2|a)+ q(b)q(x2|b)
=: p(a|x2) (15)

and therefore X2 indeed separates X3 from X1. But in gen-
eral, letting α := q(a)q(x2|a) and β := q(b)q(x2|b), we get

r− r =
αβ (q2−q2)

(α2 + β 2)qq + αβ (q2 + q2)

r− p(a|x2) =
αβ

α + β
q−q

αq + βq

p(a|x2)− r =
αβ

α + β
q−q

αq + βq
.

As soon as q > q, X2 no longer separates X3 from X1, and
we witness dilation [10, 14] because of the additional ob-
servation of X3!

8 Numerical comparison

Strong independence implies epistemic irrelevance, but
the converse does not generally hold. This implies that in-
ferred probability intervals for epistemic irrelevance will
generally include the ones for strong independence [3].
Here, we report on results of a number of numerical
tests involving updating the tree. As noted in Sec. 5, the
two models have different separation properties: this is
particularly important when evidence is back-propagated
from leaves to root. For this reason, we compare posterior
(lower and upper) probabilities for the root variable of a
chain when the leaf node variable is instantiated.

We have used the algorithm in Sec. 6 to compute pos-
terior probability intervals in the irrelevance case, while
the procedure in [5] is employed in the strong independ-
ence case. Inferred intervals for the former turn out to be
clearly wider, and a mean square difference of about .2 is
observed when considering 100 chains with three or four
ternary variables and credal sets with three randomly gen-
erated extreme points. For longer chains, the updating with

strong independence is too slow and no comparison can be
made. Yet, similar results are observed in binary chains,
for which the 2U algorithm [9] can be used for efficient
update in the strong independence case. In summary, there
is a non-negligible difference between inferences based on
the two notions of ‘independence’.

9 An application: imprecise HMMs

Hidden Markov models (HMMs, [13]) are popular tools
for modelling generative sequences, characterised by an
underlying process generating an observable sequence.
They have applications in many areas of signal processing,
and more specifically in speech and text processing.

Both the generative and the observable sequence are de-
scribed by sets of variables over the same domain X, de-
noted respectively by Xs1 , . . . , Xsn and Xo1 , . . . , Xon . The
independence assumptions between these variables, which
characterise HMMs, are those corresponding to the tree
structure below. Informally, this topology states that every
element of the generative sequence depends only on its
predecessor, while each observation depends only on the
corresponding element of the generative sequence.

Xs1 Xs2
. . . Xsn

Xo1 Xo2
. . . Xon

observable sequence

generative sequence

A local uncertainty model should be defined for each vari-
able. In the more usual case of precise probabilistic assess-
ments, this corresponds to linear versions of the local mod-
els Qs1

, Qsk+1
(·|Xsk ) and Qok

(·|Xsk ), k = 1, . . . ,n, where the
conditional models are assumed to be stationary, i.e., in-
dependent of k. These model, respectively, beliefs about
the first state in the generative sequence, the transitions
between adjacent states, and the observation process.

Bayesian techniques for learning from multinomial data
are usually employed for identifying these models. But,
especially if only few data are available, other methods
leading to imprecise assessments, such as the imprecise
Dirichlet model (IDM, [16]), might offer a more realistic
model of the local uncertainty. For example, for the un-
conditional local model Qs1

, applying the IDM leads to
the following simple identification:

Qs1
({x1}) =

ns1
x1

s + ∑
x∈X

ns1
x

Qs1
({x1}) =

s + ns1
x1

s + ∑
x∈X

ns1
x

,

(16)
where ns1

x1 counts the units in the sample for which Xs1 =
x1, and s is a hyperparameter that expresses the degree of
caution in the inferences. For the conditional local models,
we can proceed similarly. This leads to the identification of

156 Gert de Cooman, Filip Hermans, Alessandro Antonucci, Marco Zaffalon



an imprecise HMM, a special credal tree under epistemic
irrelevance, like the ones introduced in Sec. 2.

Generally speaking, the algorithm described in Sec. 6 can
be used for computing inferences with such imprecise
HMMs. Below, we address the more specific problem of
on-line recognition, which consists in the identification of
the most likely value of Xsn , given the evidence for the
whole observational sequence Xo1 = xo1 , . . . , Xon = xon .
For precise local models, this problem requires the compu-
tation of the state x̃sn := argmaxxsn∈X P({xsn}|xo1 , . . . ,xon)
that is most probable after the observation. For impre-
cise local models different criteria can be adopted. We
consider maximality: we order the states by xsn > zsn iff
P(I{xsn}− I{zsn}|xo1 , . . . ,xon) > 0, and we look for the un-
dominated or maximal states under this order. This may
produce indeterminate predictions: the set of the undom-
inated states can have more than one element.

Online character recognition by imprecise HMMs.
As a very first application of the imprecise HMM, we have
considered a character recognition problem. A written text
was regarded as a generative sequence, while the observ-
able sequence was obtained by artificially corrupting the
text. This is a model for a not perfectly reliable observation
process, such as the output of an OCR device. The local
models were identified using the IDM, as in (16), by count-
ing the occurrences of single characters and the “trans-
itions” from one character to another in the generative se-
quence, and by matchings between the elements of the two
sequences. By modelling text as a generative sequence, we
obviously ignore any correlation there might be between a
character and its nth predecessor (with n ≥ 2). A better,
albeit still not completely realistic, model would resort to
using n-grams (i.e., clusters of n characters with n≥ 2) in-
stead of monograms. Such models might lead to higher
accuracy, but they need larger data sets for their quan-
tification, because of the exponentially larger number of
possible transitions for which probabilities have to be es-
timated. The figure below depicts how on-line recognition
through HMM might apply to this setup.

Original text:

OCR output:

. . .

. . .

V

V

Xs1

I

Xs2

T

Xs3

A

Xo1

I

Xo2

T

Xo3

O

The performance of the precise model can be character-
ised by its accuracy (the percentage of correct predictions)
alone. The imprecise HMM requires more indicators. We
follow [1] in using determinacy (percentage of determin-
ate predictions), set-accuracy (percentage of indetermin-
ate predictions containing the right state), single accuracy
(percentage of correct predictions computed considering

only determinate predictions), and indeterminate output
size (average number of states returned when the predic-
tion is indeterminate).

Accuracy 93.96% (7275/7743)
Accuracy (if imprecise indeterminate) 64.97% (243/374)

Determinacy 95.17% (7369/7743)
Set-accuracy 93.58% (350/374)
Single accuracy 95.43% (7032/7369)
Indeterminate output size 2.97 over 21

Table 1: Precise vs. imprecise HMMs. Test results ob-
tained by twofold cross-validation on the first two chants
of Dante’s Divina Commedia and n = 2. Quantification is
achieved by IDM with s = 2 and Perks’ prior (with the
modification suggested in [17]). The single-character out-
put by the precise model is then guaranteed to be included
in the set of characters the imprecise HMM identifies.

The recognition using our algorithm is fast: it never takes
more than one second for each character. Table 1 reports
descriptor values for a large set of simulations, and a
comparison with precise model performance. Imprecise
HMMs guarantee quite accurate predictions. In contrast
with the precise model, there are ‘indeterminate’ instances
for which they do not output a single state. Yet, this hap-
pens rarely, and even then we witness a remarkable reduc-
tion in the number of undominated states (from the 21 let-
ters of the Italian alphabet to less than three). Interestingly,
the instances for which the imprecise probability model
returns more than a single state appear to be “difficult”
for the precise probability model: the accuracy of the pre-
cise models displays a strong decrease if we focus only on
these instances, while the imprecise models here display
basically the same performance as for other instances, by
returning about three characters instead of a single one.

10 Conclusions

We have defined credal trees using Walley’s epistemic ir-
relevance and have developed an efficient exact algorithm
for updating beliefs on the tree. Like the algorithms de-
veloped for precise graphical models, our algorithm works
in a distributed fashion by passing messages along the tree.
This leads to computing lower and upper conditional pre-
visions (expectations) with a complexity that is essentially
linear in the number of nodes in the tree.

It has been unclear until recently whether an algorithm
with the features described above was at all feasible. Epi-
stemic irrelevance is most easily formulated using coher-
ent lower previsions, which have never been used before
in the context of credal networks. Moreover, epistemic ir-
relevance is not as “well-behaved” as strong independence
is with respect to the graphoid axioms for propagation of
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probability in graphical models [4]. Our results are there-
fore very encouraging, and they have the potential to open
up new avenues of research in credal nets. This is import-
ant because strong independence is not always the most
suitable notion of independence in an imprecise probabil-
ity context, and epistemic irrelevance has wider scope, as
well as a natural behavioural interpretation.

There is one more issue we would like to clarify at this
point. While our algorithm clearly is fully functional as
soon as all observations have positive upper probability,
we have only proved that it produces coherent inferences
when their lower probability is positive; see Theorem 4. At
the time of writing this, we have strong indications that our
coherence results can be extended to include observations
with zero lower but positive upper probability.

Avenues for future research seem to be many. It would
be important to extend the algorithm at least to so-called
polytrees, which are substantially more expressive graphs
than trees are. It would be interesting also to study in more
detail the separation properties induced by epistemic ir-
relevance on a graph. For applications, it would be very
important to develop statistical methods specialised for
credal nets under irrelevance that avoid introducing ex-
cessive imprecision in the process of inferring probabil-
ities from data. This could be achieved, for instance, by
using a single global IDM over the variables of the tree
rather than many local ones, as in our experiments.
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Abstract
Sets of desirable gambles constitute a quite general type
of uncertainty model with an interesting geometrical inter-
pretation. We study exchangeability assessments for such
models, and prove a counterpart of de Finetti’s finite repres-
entation theorem. We show that this representation theorem
has a very nice geometrical interpretation. We also lay bare
the relationships between the representations of updated
exchangeable models, and discuss conservative inference
(natural extension) under exchangeability.

Keywords. desirability, real desirability, weak desirability,
sets of desirable gambles, coherence, exchangeability, rep-
resentation, natural extension, updating.

1 Introduction

In this paper, we bring together desirability, an interesting
approach to modelling uncertainty, with exchangeability, a
structural assessment for uncertainty models that is import-
ant for inference purposes.

Desirability, or the theory of (coherent) sets of desir-
able gambles, has been introduced with all main ideas
present—as far as our search has unearthed—by Williams
[18, 19, 20]. Building on de Finetti’s betting framework [6],
he considered the ‘acceptability’ of one-sided bets instead
of two-sided bets. This relaxation leads one to work with
cones of bets instead of with linear subspaces of them. The
germ of the theory was, however, already present in Smith’s
work [15, p. 15], who used a (generally) open cone of ‘ex-
change vectors’ when talking about currency exchange.
Both authors influenced Walley [16, Sec. 3.7 and App. F],
who describes three variants (almost, really, and strictly de-
sirable gambles) and emphasises the conceptual ease with
which updated and posterior models can be obtained in this
framework [17]. Moral [12, 13] then took the next step
and applied the theory to study epistemic irrelevance, a
structural assessment. De Cooman and Miranda [1] made
a general study of transformational symmetry assessments
for desirable gambles.

The structural assessment we are interested in here, is ex-
changeability. Conceptually, it says that the order of the
samples in a sequence of them is irrelevant for inference pur-
poses. The first detailed study of this concept was made by
de Finetti [4], using the terminology of ‘equivalent’ events.
He proved the now famous Representation Theorem, which
is often interpreted as stating that a sequence of random
variables is exchangeable if it is conditionally independ-
ent and identically distributed. Other important work—all
using probabilities or previsions—was done by, amongst
many others, Hewitt and Savage [9], Heath and Sudderth
[8], and Diaconis and Freedman [7]. Exchangeability in
the context of imprecise-probability theory—using lower
previsions—was studied by Walley [16, Sec. 9.5] and more
in-depth by De Cooman et al. [1–3]. The first embryonic
study of exchangeability using desirability was recently
performed by Quaeghebeur [14, Sec. 3.1.1].

In this paper, we present the first results of a more matured
study of exchangeability using sets of desirable gambles.1

First, in Sec. 2, we introduce the basics of the theory of
desirable gambles. Then, in Sec. 3, we give a desirability-
based analysis of finite exchangeable sequences, presenting
a Representation Theorem and treating the issues of natural
extension and updating under exchangeability.

2 Desirability

Consider a non-empty set Ω describing the possible and
mutually exclusive outcomes of some experiment. We also
consider a subject, who is uncertain about the outcome of
the experiment.

A gamble f is a bounded real-valued map on Ω , and it
is interpreted as an uncertain reward. When the actual
outcome of the experiment is ω , then the correspond-
ing (possibly negative) reward is f (ω), expressed in units

f

f (ω)

f (ω ′)

0
of some pre-determined linear utility.
This is illustrated for Ω = {ω,ω ′}. G (Ω)
denotes the set of all gambles on Ω .

1Proofs of this paper’s results are included in Appendix A.
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We say that a non-zero gamble f is desirable to a subject
if he accepts to engage in the following transaction, where:
(i) the actual outcome ω of the experiment is determined,
and (ii) he receives the reward f (ω), i.e., his capital is
changed by f (ω). The zero gamble is not considered to be
desirable.2

2.1 Sets of desirable gambles

We try and model the subject’s beliefs about the outcome
of the experiment by considering which gambles are desir-
able for him. Suppose the subject has a set R ⊆ G (Ω) of
desirable gambles.3

Definition 1 (Avoiding non-positivity and coherence). We
say that a set of desirable gambles R avoids non-positivity
if f 6≤ 0 for all gambles f in coni(R).4 Let K be a linear
subspace of G (Ω) such that R ⊆K . Then we say that
R is coherent relative to K if it satisfies the following
rationality requirements, for all gambles f1 and f2 in K
and all real λ > 0:

D1. if f = 0 then f /∈R;
D2. if f > 0 then f ∈R [accepting partial gain];
D3. if f ∈R then λ f ∈R [scaling];
D4. if f1, f2 ∈R then f1 + f2 ∈R [combination].

If R is coherent relative to G (Ω), then we simply say
that R is coherent. We denote the set of coherent sets of
desirable gambles by D(Ω).

G +
0 (Ω)

G−(Ω)

Requirements D3 and D4 make R a
cone: coni(R) = R. Due to D2, it in-
cludes the positive gambles G +

0 (Ω);
due to D1, D2 and D4, it excludes the
non-positive gambles G−(Ω):

D5. if f ≤ 0 then f /∈R.

R R
We give two illustrations, the first
is a general one and the second
models certainty about ω happen-
ing. The dashed line indicates a non-included border.

2The nomenclature in the literature regarding desirability is somewhat
confusing, and we have tried to resolve some of the ambiguity here. Our
notion of desirability coincides with Walley’s later [17] notion of desirab-
ility, initially also used by Moral [12]. Walley in his book [16, App. F]
and Moral in a later paper [12] use another notion of desirability. The
difference between the two approaches resides in whether the zero gamble
is assumed to be desirable or not. We prefer to use the non-zero version
here, because it is better behaved in conjunction with our notion of weak
desirability in Definition 2.

3We use this convention throughout: subscripting a set with zero cor-
responds to removing zero (or the zero gamble) from the set, if present.
For example R+ (R+

0 ) is the set of non-negative (positive) real num-
bers including (excluding) zero. Further notational conventions: f ≥ g iff
f (ω)≥ g(ω) for all ω in Ω ; f > g iff f ≥ g and f 6= g. The conical hull
operator coni generates the set of (strictly!) positive linear combinations
of elements of its argument set.

4A related, but weaker condition, is that R avoids partial loss, meaning
that f 6< 0 for all gambles f in coni(R). We need the stronger condition
because we have excluded the zero gamble from being desirable.

The intersection
⋂

i∈I Ri of an arbitrary non-empty family
of sets of desirable gambles Ri, i ∈ I, is still coherent. This
is the idea behind the following result.

Theorem 1 (Natural extension). Consider an assessment,
a set A of gambles on Ω , and define its natural extension

E (A ) :=
⋂
{R ∈ D(Ω) : A ⊆R} (1)

= coni
(
G +

0 (Ω)∪A
)

(2)

Then the following statements are equivalent:

(i) A avoids non-positivity;
(ii) A is included in some coherent set of desirable

gambles;
(iii) E (A ) 6= G (Ω);
(iv) E (A ) is a coherent set of desirable gambles;
(v) E (A ) is the smallest coherent set of desirable

gambles that includes A .

A E (A )A
With a small illustration, we can visualise
natural extension as a conical hull opera-
tion:

2.2 Weakly desirable gambles, previsions &
marginally desirable gambles

We now define weak desirability: a useful modification of
Walley’s [16, Section 3.7] notion of almost-desirability. Our
conditions for a gamble f to be weakly desirable are more
stringent than Walley’s for almost-desirability: he only re-
quires that adding any constant strictly positive amount of
utility to f should make the resulting gamble desirable. We
require that adding anything desirable (be it constant or
not) to f should make the resulting gamble desirable. Weak
desirability is better behaved under updating: we shall see
in Proposition 12 that it makes sure that the exchangeability
of a set of desirable gambles, whose definition hinges on
the notion of weak desirability, is preserved under updating
after observing a sample. This is not necessarily true if
weak desirability is replaced by almost-desirability in the
definition of exchangeability, as was for instance done in
our earlier work [1].

Definition 2 (Weak desirability). Consider a coherent set
R of desirable gambles. Then a gamble f is called weakly
desirable if f + f ′ is desirable for all desirable f ′, i.e., if
f + f ′ ∈ R for all f ′ in R. We denote the set of weakly
desirable gambles by DR:

DR = { f ∈ G (Ω) : f +R ⊆R} . (3)

In particular, every desirable gamble is also weakly desir-
able, so R ⊆DR .

Proposition 2. Let R be a coherent set of desirable
gambles, and let DR be the associated set of weakly desir-
able gambles. Then DR has the following properties, for
all gambles f1 and f2 in G (Ω) and all real λ ≥ 0:
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WD1. if f < 0 then f /∈DR [avoiding partial loss];5

WD2. if f ≥ 0 then f ∈DR [accepting partial gain];
WD3. if f ∈DR then λ f ∈DR [scaling];
WD4. if f1, f2 ∈DR then f1 + f2 ∈DR [combination].

DR DR

Like R, DR is a cone, but it al-
ways includes all cone surface
gambles (excluding those that in-
cur a partial loss). We have applied this to the earlier illus-
trations; take note of border changes.

With a set of gambles A , we associate a lower prevision
PA and an upper prevision PA by letting

PA ( f ) = sup{µ ∈ R : f −µ ∈A } (4)

PA ( f ) = inf{µ ∈ R : µ− f ∈A } (5)

for all gambles f . Observe that PA and PA always satisfy
the conjugacy relation PA (− f ) =−PA ( f ). We call a real
functional P on G (Ω) a coherent lower prevision if and
only if there is some coherent set of desirable gambles R
on G (Ω) such that P = PR .
Theorem 3. Let R be a coherent set of desirable gambles.
Then PR is real-valued, PR = PDR

, PR( f ) ≥ 0 for all
f ∈DR . Moreover, a real functional P is a coherent lower
prevision iff it satisfies the following properties, for all
gambles f1 and f2 in G (Ω) and all real λ ≥ 0:

P1. P( f )≥ inf f [accepting sure gain];
P2. P( f1 + f2)≥ P( f1)+ P( f2) [super-additivity];
P3. P(λ f ) = λP( f ) [non-negative homogeneity].

Finally, we turn to marginal desirability. Given a coherent
set of desirable gambles R, we define the associated set of
marginally desirable gambles as

MR := { f −PR( f ) : f ∈ G (Ω)} . (6)

The set of marginally desirable gambles MR is completely
determined by the lower prevision PR . The converse is also
true:
Proposition 4. Let R be a coherent set of desirable
gambles. Then PMR

= PR and

MR = MPR
:= { f ∈ G (Ω) : PR( f ) = 0} . (7)

MR
MR

The set of marginally desirable
gambles MR is the entire cone
surface of R and DR , possibly in-
cluding gambles that incur a partial (but not a sure) loss.

2.3 Updating sets of desirable gambles

Consider a set of desirable gambles R on Ω . With a non-
empty subset B of Ω , we associate an updated set of desir-
able gambles on Ω , as defined by Walley [17]:

R‖B := { f ∈ G (Ω) : IB f ∈R} . (8)
5Compare this to the less stringent requirement for almost-desirability

[16, Section 3.7.3]: if f ∈DR then sup f ≥ 0 [avoiding sure loss].

We find it more convenient to work with the following,
slightly different but completely equivalent, version:

R|B :={ f ∈R : IB f = f}= R ∩G (Ω)|B, (9)

which completely determines R‖B: for all f ∈ G (Ω),

f ∈R‖B⇔ IB f ∈R|B. (10)

In our version, updating corresponds to intersecting the
cone R with the linear subspace G (Ω)|B, which results in
a cone R|B of lower dimension. And since we can uniquely
identify a gamble f = IB f in G (Ω)|B with a gamble on B,
namely its restriction fB to B, and vice versa, we can also
identify R|B with a set of desirable gambles on B:

RcB := { fB : f ∈R|B}= { fB : f ∈R‖B}⊆G (B). (11)

Proposition 5. If R is a coherent set of desirable gambles
on Ω , then R|B is coherent relative to G (Ω)|B, or equival-
ently, RcB is a coherent set of desirable gambles on B.

Our subject takes R|B (or RcB) as his set of desirable
gambles contingent on observing the event B.

3 Finite exchangeable sequences

Now that we have become better versed in the theory of sets
of desirable gambles, we are going to focus on the main
topic: reasoning about finite exchangeable sequences. We
first show how they are related to count vectors (Sec. 3.1).
Then we are ready to give a desirability-based definition of
exchangeability (Sec. 3.2) and treat natural extension and
updating under exchangeability (Secs. 3.3 and 3.4). After
presenting our Finite Representation Theorem (Sec. 3.5),
we can show what natural extension and updating under
exchangeability look like in terms of the count vector rep-
resentation (Secs. 3.6 and 3.7).

Consider random variables X1, . . . , XN taking values in a
non-empty finite set X ,6 where N ∈ N0, i.e., a positive
(non-zero) integer. The possibility space is Ω = X N .

3.1 Count vectors

We denote by x = (x1, . . . ,xN) an arbitrary element
of X N . PN is the set of all permutations π of the in-
dex set {1, . . . ,N}. With any such permutation π , we as-
sociate a permutation of X N , also denoted by π , and
defined by (πx)k = xπ(k), or in other words, π(x1, . . . ,xN) =
(xπ(1), . . . ,xπ(N)). Similarly, we lift π to a permutation π t

of G (X N) by letting π t f = f ◦π , so (π t f )(x) = f (πx).

6A lot of functions and sets introduced below will depend on the
set X . We do not indicate this explicitly, not to overburden the notation
and because we do not consider different sets of values in this paper.
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The permutation invariant atoms [x] := {πx : π ∈PN} are
the smallest permutation invariant subsets of X N . We in-
troduce the counting map

T N : X N →N N : x 7→ T N(x) (12)

where T N(x) is the X -tuple with components

T N
z (x) := |{k ∈ {1, . . . ,N} : xk = z}| for all z ∈X , (13)

and the set of possible count vectors is given by

N N :=
{

m ∈ NX : ∑
x∈X

mx = N
}

. (14)

If m = T N(x), then [x] =
{

y ∈X N : T N(y) = m
}

, so the
atom [x] is completely determined by the count vector m of
all its the elements, and is therefore also denoted by [m].

3.2 Defining exchangeability

If a subject assesses that X1, . . . , XN are exchangeable, this
means that for any gamble f and any permutation π , he
finds exchanging π t f for f weakly desirable,7 because he
is indifferent between them [cf. 16, Sec. 4.1.1]. Let

DPN :=
{

f −π t f : f ∈ G (X N) and π ∈PN
}

, (15)

then we should have that DPN ⊆DR . Before we give use-
ful alternative characterisations of exchangeability, we in-
troduce a few notions that will prove crucial further on.

We begin by defining a special linear transformation exN

of the linear space of gambles G (X N):

exN : G (X N)→ G (X N) : f 7→ exN( f ) :=
1

N! ∑
π∈PN

π t f .

(16)
Observe that for all gambles f and all permutations π:

exN(π t f ) = exN( f ) and π t(exN( f )
)

= exN( f ). (17)

So exN( f ) is permutation invariant and therefore constant
on the permutation invariant atoms [m], and it assumes the
same value for all gambles that can be related to each other
through some permutation. What is the value that exN( f )
assumes on [m]? It is not difficult to see that

exN = ∑
m∈N N

MuHyN(·|m)I[m], (18)

where we let

MuHyN( f |m) :=
1
|[m]| ∑

y∈[m]
f (y) (19)

|[m]|=
(

N
m

)
:=

N!
∏z∈X mz!

. (20)

7Note that the gambles in DPN cannot be assumed to be desirable,
because DPN does not avoid non-positivity.

MuHyN(·|m) is the linear expectation operator associated
with the uniform distribution on the invariant atom [m]. It
characterises a multivariate hyper-geometric distribution
[10, Sec. 39.2], associated with random sampling without
replacement from an urn with N balls of types X , whose
composition is characterised by the count vector m. If we
also observe that exN ◦exN = exN , we see that exN is the
linear projection operator of G (X N) to the linear space

GPN (X N) :=
{

f ∈ G (X N) : (∀π ∈PN)π t f = f
}

(21)
of all permutation invariant gambles. We also let

DUN := span(DPN ) (22)

=
{

f − exN( f ) : f ∈ G (X N)
}

(23)

=
{

f ∈ G (X N) : exN( f ) = 0
}

, (24)

where ‘span’ denotes linear span. The linear space DUN is
the kernel of the linear projection operator exN .
Definition 3 (Exchangeability). A coherent set R of desir-
able gambles on X N is called exchangeable if any (and
hence all) of the following equivalent conditions is (are)
satisfied:

(i) any gamble in DPN is weakly desirable: DPN ⊆DR;
(ii) DPN +R ⊆R;

(iii) any gamble in DUN is weakly desirable: DUN ⊆DR;
(iv) DUN +R ⊆R;

We call a lower prevision P on G (X N) exchangeable
if there is some exchangeable coherent set of desirable
gambles R such that P = PR .

The conditions (iii)–(iv) of this definition are quite closely
related to the desirability version of a de Finetti-like rep-
resentation theorem for finite exchangeable sequences in
terms of sampling without replacement from an urn. They
allow us talk about exchangeability without invoking per-
mutations. This is what we will address in Section 3.5.

A number of useful results follow from this definition:
Proposition 6. Let R be a coherent set of desirable
gambles. If R is exchangeable then it is also permutable:
π t f ∈R for all f ∈R and all π ∈PN .
Proposition 7. Let R be a coherent and exchangeable set
of desirable gambles. For all gambles f and f ′ on X N:

(i) f ∈R⇔ exN( f ) ∈R;
(ii) If exN( f ) = exN( f ′), then f ∈R⇔ f ′ ∈R.

It follows from this last proposition and Eq. (24) that for
any coherent and exchangeable set of desirable gambles R:

R ∩DUN = /0. (25)

Theorem 8. Let P be a coherent lower prevision on
G (X N). Then the following statements are equivalent:8

8This shows that the exchangeability of a lower prevision can also be
expressed using marginally desirable gambles [see 14, Sec. 3.1.1].
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(i) P is exchangeable;
(ii) P( f ) = P( f ) = 0 for all f ∈DPN ;

(iii) P( f ) = P( f ) = 0 for all f ∈DUN .

3.3 Exchangeable natural extension

Let us denote the set of all coherent and exchangeable sets
of desirable gambles on X N by

Dex(X N) :=
{
R ∈ D(X N) : DUN +R ⊆R

}
. (26)

This set is closed under arbitrary non-empty intersections.
We shall see further on in Corollary 11 that it is also non-
empty, and therefore has a smallest element.

Suppose our subject has an assessment, or in other words, a
set A of gambles on X N that he finds desirable. Then we
can ask if there is some coherent and exchangeable set of de-
sirable gambles R that includes A . In other words, we want
a set of desirable gambles R to satisfy the requirements:
(i) R is coherent; (ii) A ⊆ R; and (iii) DUN + R ⊆ R.
Clearly, the intersection

⋂
i∈I Ri of an arbitrary non-empty

family of sets of desirable gambles Ri, i ∈ I that satisfy
these requirements, will satisfy these requirements as well.
This is the idea behind the following results.
Proposition 9. We say that a set A of gambles on X N

avoids non-positivity under exchangeability if the set of
gambles [G +

0 (X N) ∪ A ] + DUN avoids non-positivity.
Then: (i) /0 avoids non-positivity under exchangeability;
and (ii) if A is non-empty, then A avoids non-positivity
under exchangeability iff A +DUN avoids non-positivity.
Theorem 10 (Exchangeable natural extension). Consider
a set A of gambles on X N , and define its exchangeable
natural extension E N

ex(A ) by

E N
ex(A ) :=

⋂{
R ∈ Dex(X N) : A ⊆R

}
(27)

= coni
(
DUN +[G +

0 (X N)∪A ]
)

(28)
= DUN +E (A ). (29)

Then the following statements are equivalent:

(i) A avoids non-positivity under exchangeability;
(ii) A is included in some coherent and exchangeable set

of desirable gambles;
(iii) E N

ex(A ) 6= G (X N);
(iv) E N

ex(A ) is a coherent and exchangeable set of desir-
able gambles;

(v) E N
ex(A ) is the smallest coherent and exchangeable

set of desirable gambles that includes A .
Corollary 11. The set Dex(X N) is non-empty, and has a
smallest element

RN
ex,v := E N

ex( /0) = DUN +G +
0 (X N). (30)

3.4 Updating exchangeable models

Consider an exchangeable and coherent set of desirable
gambles R on X N , and assume that we have observed the

values x̌ = (x̌1, x̌2, . . . , x̌ň) of the first ň variables X1, . . . , Xň,
and that we want to make inferences about the remaining
n̂ := N− ň variables. To do this, we simply update the set
R with the set Cx̌ = {x̌}×X n̂, to obtain the set R|Cx̌, also
denoted as R|x̌ =

{
f ∈R : f ICx̌ = f

}
. As we have seen in

Section 2.3, this set can be identified with a coherent set of
desirable gambles on X n̂, which we denote by Rcx̌. With
obvious notations:9

Rcx̌ =
{

f ∈ G (X n̂) : f ICx̌ ∈R
}

. (31)

We already know that updating preserves coherence. We
now see that this type of updating on an observed sample
also preserves exchangeability.

Proposition 12. Consider x̌ ∈X ň and a coherent and ex-
changeable set of desirable gambles R on X N . Then Rcx̌
is a coherent and exchangeable set of desirable gambles
on X n̂.

We also introduce another type of updating, where we ob-
serve a count vector m̌ ∈ N ň, and we update the set R
with the set Cm̌ = [m̌]×X n̂, to obtain the set R|Cm̌, also
denoted as R|m̌ =

{
f ∈R : f ICm̌ = f

}
. This set can be

identified with a coherent set of desirable gambles on X n̂,
which we also denote by Rcm̌. With obvious notations:

Rcm̌ =
{

f ∈ G (X n̂) : f ICm̌ ∈R
}

. (32)

Proposition 13 (Sufficiency of observed count vectors).
Consider x̌, y̌ ∈X ň and a coherent and exchangeable set
of desirable gambles R on X N . If y̌ ∈ [x̌], or in other
words if T ň(x̌) = T ň(y̌) =: m̌, then Rcx̌ = Rcy̌ = Rcm̌.

3.5 Finite representation

We now introduce the linear map MuHyN from the linear
space G (X N) to the linear space G (N N), as follows:

MuHyN : G (X N)→ G (N N) :

f 7→MuHyN( f ) := MuHyN( f |·), (33)

so MuHyN( f ) is the gamble on N N that assumes the value
MuHyN( f |m) in the count vector m ∈N N . We also define
the linear map TN from the linear space G (N N) to the
linear space GPN (X N) as follows:

TN : G (N N)→ GPN (X N) : g 7→ TN(g) := g◦T N , (34)

so TN(g) is the permutation invariant gamble on X N that
assumes the constant value g(m) on the invariant atom [m].
For all f ∈ G (X N), exN( f ) = TN(MuHyN( f )

)
, and sim-

ilarly, for all g ∈ G (N N), MuHyN(TN(g)
)

= g. Hence:

exN = TN ◦MuHyN and MuHyN ◦TN = idG (N N) . (35)

9Here and further on we silently use cylindrical extension on gambles,
i.e., let them ‘depend’ on extra variables whose value does not influence
the value they take.
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If we invoke Eq. (17) we find that

MuHyN(π t f ) = MuHyN( f ). (36)

Also taking into account the linearity of MuHyN and
Eq. (16), this leads to

MuHyN(exN( f )) = MuHyN( f ). (37)

The relationships between the three important linear maps
we have introduced above are clarified by the commutative
diagram in Fig. 1.

G (X N) GPN (X N)

G (N N)

exN

MuHyN TN

Figure 1: Single sequence length commutative diagram.
Double arrows indicate a linear isomorphism.

For every gamble f on X N , f = exN( f )+[ f −exN( f )], so
it can be decomposed as a sum of a permutation invariant
gamble exN( f ) and an element f − exN( f ) of the kernel
DUN of the linear projection operator exN . Since we know
that MuHyN is a linear isomorphism between the spaces
GPN (X N) and G (N N), we now investigate whether we
can represent coherent and exchangeable R by some set of
desirable count gambles on N N .

Theorem 14 (Finite Representation). A set of desirable
gambles R on X N is coherent and exchangeable iff there
is some coherent set S of desirable gambles on N N such
that

R = (MuHyN)−1(S ), (38)

and in that case this S is uniquely determined by

S =
{

g ∈ G (N N) : TN(g) ∈R
}

= MuHyN(R). (39)

Corollary 15. A lower prevision P on G (X N) is coherent
and exchangeable iff there is some coherent lower prevision
Q on G (N N) such that P = Q◦MuHyN . In that case Q is
uniquely determined by Q = P◦TN .

We call the set S and the lower prevision Q the count rep-
resentations of the exchangeable set R and the exchange-
able lower prevision P, respectively. Our Finite Represent-
ation Theorem allows us to give an appealing geometrical
interpretation to the notions of exchangeability and repres-
entation. The exchangeability of R means that it is com-
pletely determined by its count representation MuHyN(R),
or what amounts to the same thing since TN is a linear
isomorphism: by its projection exN(R) on the linear space

of all permutation invariant gambles. This turns count vec-
tors into useful sufficient statistics (compare with Propos-
ition 13), because the dimension of G (N N) is typically
much smaller than that of G (X N).

3.6 Exchangeable natural extension and
representation

The exchangeable natural extension is easy to calculate
using natural extension in terms of count representations,
and the following simple result therefore has important
consequences for practical implementations of reasoning
and inference under exchangeability.

Theorem 16. Let A be a set of gambles on X N , then

(i) A avoids non-positivity under exchangeability iff
MuHyN(A ) avoids non-positivity.

(ii) MuHyN(E N
ex(A )) = E (MuHyN(A )).

3.7 Updating and representation

Suppose, as in Section 3.4, that we update a coherent and
exchangeable set of desirable gambles R after observing
a sample x̌ with count vector m̌. This leads to an up-
dated coherent and exchangeable set of desirable gambles
Rcx̌ = Rcm̌ on X n̂. Here, we take a closer look at the
corresponding set of desirable gambles on N n̂, which we
denote (symbolically) by S cm̌ (but we do not want to sug-
gest with this notation that this is in some way an updated
set of gambles!). The Finite Representation Theorem 14
tells us that S cm̌ = MuHyn̂(Rcm̌), but is there a direct
way to infer the count representation S cm̌ of Rcm̌ from
the count representation S = MuHyN(R) of R?

To show that there is, we need to introduce two new notions:
the likelihood function

Lm̌ : N n̂→ R : m̂ 7→ Lm̌(m̂) :=
|[m̌]| |[m̂]|
|[m̌ + m̂]| , (40)

associated with sampling without replacement, and the lin-
ear map +m̌ from the linear space G (N n̂) to the linear
space G (N N) given by

+m̌ : G (N n̂)→ G (N N) : g 7→+m̌g (41)

where

+m̌ g(M) =

{
g(M− m̌) if M ≥ m̌
0 otherwise.

(42)

Proposition 17. Consider a coherent and exchangeable
set of desirable gambles R on X N , with count repres-
entation S . Let S cm̌ be the count representation of the
coherent and exchangeable set of desirable gambles Rcm̌,
obtained after updating R with a sample x̌ with count vec-
tor m̌. Then

S cm̌ =
{

g ∈ G (N n̂) : +m̌ (Lm̌g) ∈S
}

. (43)
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4 Conclusions

We have shown that modelling an exchangeability assess-
ment using sets of desirable gambles is not only possible,
but also elegant.

Our results indicate that, using sets of desirable gambles,
it is conceptually easy to reason about exchangeable se-
quences. Calculating the natural extension and updating are
but simple geometrical operations: taking unions, sums and
conical hulls and taking intersections, respectively. This
approach has the added advantage that the exchangeability
assessment is preserved under updating, also when the con-
ditioning event has lower probability zero, which does not
hold when using (lower) previsions (although this might be
remedied by using full conditional measures).

Moreover, using our Finite Representation Theorem, reas-
oning about exchangeable sequences can be reduced to
reasoning about count vectors. Working with this repres-
entation automatically guarantees that exchangeability is
satisfied. The representation for the natural extension and
for updated models can be derived directly from the rep-
resentation of the original model, without having to go
back to the (more complex) world of sequences. We have
also looked at the problem of representation for infinite
sequences, but will report this elsewhere.

The conceptual techniques employed in this paper are not
restricted in use to a treatment of exchangeability. They
could be applied to other structural assessments, e.g., in-
variance assessments, as long as this assessment allows us
to identify a characterising set of weakly desirable gambles
that is sufficiently well-behaved (cf. the first paragraph of
Sec. 3.2). This idea was briefly taken up by one of us in
another paper [1], but clearly merits further attention.

Thinking in even broader terms, we feel that using sets
of desirable gambles can provide a refreshing and fruitful
approach to many problems in uncertainty modelling, not
only those related to structural assessments.
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A Proofs

We provide proofs for the more involved results.

Proof of Proposition 4. Since it follows from Theorem 3
that PR( f − PR( f )) = PR( f ) − PR( f ) = 0 for all
gambles f , it follows that MR ⊆{ f ∈ G (Ω) : PR( f ) = 0}.
For the converse inequality, assume that PR( f ) = 0 holds;
then f = f −PR( f ) ∈MR .

This also means that PR(g) = 0 iff g ∈MR , so for every
gamble f we can write:

PMR
( f ) = sup{µ ∈ R : f −µ ∈MR} (44)

= sup{µ ∈ R : PR( f −µ) = 0} (45)
= sup{µ ∈ R : µ = PR( f )}= PR( f ), (46)

which proves the equality of PMR
and PR .

Proof of Proposition 5. We need to prove that D1–D4
hold for R|B. For D1, consider f ∈ G (Ω)|B and assume
that f = 0. Then by coherence f 6∈R and hence f 6∈R|B.
For D2, consider f ∈ G (Ω)|B and assume that f > 0. Then
by coherence f ∈R and hence f ∈R|B. The proof for D3
is similar to the one for D4. For D4, consider f1, f2 ∈R|B,
then on the one hand f1, f2 ∈R and therefore f1 + f2 ∈R
by coherence; and on the other hand f1, f2 ∈ G (Ω)|B
and therefore f1 + f2 = IB f1 + IB f2 = IB( f1 + f2), so
f1 + f2 ∈ G (Ω)|B and hence f1 + f2 ∈R|B.

Proof of the equivalences in Definition 3. That (i)⇔(ii)
and (iii)⇔(iv) is an immediate consequence of the defin-
ition of weak desirability. We continue to show that
(i)⇔(iii). For the ‘⇒’ part, observe that f − exN( f ) =
1

N! ∑π∈PN [ f −π t f ] ∈ DR , since DR is a convex cone by

Proposition 2. For the ‘⇐’ part, consider any f ∈ G (X N)
and π ∈PN . Consider any f ′ ∈R. Then by assumption
both f−exN( f )+ f ′/2 and π t(− f )− exN(π t(− f ))+ f ′/2
belong to R. Hence, because R is closed under addition,
their sum f −π t f + f ′, obtained using Eq. (17), also be-
longs to R. Hence f −π t f is weakly desirable.

Proof of Proposition 6. Consider f ∈R. Since π t f − f =
(− f )−π t(− f ) ∈ DPN , we see that π t f = f + π t f − f ∈
R + DPN ⊆ R, using the exchangeability condition of
Def. 3(ii).

Proof of Proposition 7. The first statement is a con-
sequence of the second, with f ′ = exN( f ), because then
exN( f ′) = exN(exN( f )) = exN( f ). For the second state-
ment, consider arbitrary gambles f and f ′ on X N such that
exN( f ) = exN( f ′), and assume that f ∈R. We prove that
then also f ′ ∈R. Since exN( f )− f = (− f )− exN(− f ) ∈
DR and f ′− exN( f ′) ∈DR , we see that f ′− f ∈ DR by
WD4, and therefore f ′ = f + f ′− f ∈R +DR ⊆R.

Proof of Theorem 8. We give a circular proof. We first
show that (ii) holds if P is exchangeable, i.e., if there is
some coherent and exchangeable R such that P = PR . We
already know from Theorem 3 that P = PR satisfies P1–
P3, because R is coherent. Consider any f ∈DPN . Since
DPN ⊆DR , it also follows from Theorem 3 that PR( f )≥ 0
and similarly −PR( f ) = PR(− f )≥ 0 because also − f ∈
DPN . Hence indeed 0 ≤ PR( f ) ≤ PR( f ) ≤ 0, where the
second inequality is a consequence of P1 and P2.

That (ii) implies (iii) follows the super-additivity of P and
the sub-additivity of P.

Finally, we show that (iii) implies that P is exchangeable.
The standard argument in [17, Section 6] tells us that
R ′ :=

{
f ∈ G (X N) : f > 0 or P( f ) > 0

}
is a coherent set

of desirable gambles such that PR′ = P. Now consider the
set R := R ′+DUN . We show that this R is a coherent and
exchangeable set of desirable gambles, and that PR = P.
It is clear from its definition that R satisfies D2, D3 and
D4, so let us assume ex absurdo that 0 ∈R, meaning that
there is some f ∈ R ′ such that f ′ := − f ∈ DUN . There
are two possibilities. Either f > 0, so f ′ < 0, which con-
tradicts Lemma 18. Or P( f ) > 0. But it follows from the
coherence of the lower prevision P and the assumption that
0 = P( f + f ′) = P( f ) > 0, a contradiction too. So R sat-
isfies D1 as well, and is therefore coherent. It is obvious
that R is exchangeable: R +DUN = R ′+DUN +DUN =
R ′+DUN = R. The proof is complete if we can show that
P = PR . Fix any gamble f . Observe that f −α ∈ R iff
there are f ′ ∈R and f ′′ ∈DUN such that f −α = f ′+ f ′′.
But then it follows from the coherence of P and the as-
sumption that P( f ) = α + P( f ′+ f ′′) = α + P( f ′) ≥ α ,
and therefore PR( f ) ≤ P( f ) = PR′( f ). For the converse
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inequality, we infer from 0 ∈DUN that R ′ ⊆R, and there-
fore PR′ ≤ PR .

Lemma 18. For all f in DUN , f 6< 0.

Proof. First of all, observe that for any gamble f ′ on X N ,
if f ′ > 0 then also exN( f ′) > 0. Now consider f ∈DUN and
assume ex absurdo that f < 0. Then − f > 0 and therefore
−exN( f ) = exN(− f ) > 0, whence exN( f ) < 0. But since
f ∈DUN we also have that exN( f ) = 0, a contradiction.

Proof of Proposition 9. For the first statement, we have to
prove that G +

0 (X N)+DUN avoids non-positivity. Consider
any f ′ ∈ DUN and any f ′′ ∈ G +

0 (X N), then we have to
prove that f := f ′+ f ′′ 6≤ 0. There are two possibilities.
Either f ′ = 0 and then f = f ′′ > 0. Or f ′ 6= 0, and then
Lemma 18 tells us that f ′ 6< 0, whence f ′ 6≤ 0 and therefore
a fortiori f 6≤ 0.

For the second statement, it clearly suffices to prove the ‘if’
part. Assume therefore that A +DUN avoids non-positivity.
Consider any f in coni([G +

0 (X N)∪A ]+DUN ), so there
are n ≥ 1, λk ∈ R+, f ′ ∈ DUN , fk ∈ G +

0 (X N)∪A such
that f = f ′+ ∑n

k=1 λk fk. Let I := {k ∈ {1, . . . ,n} : fk > 0}
then f` ∈A for all ` /∈ I. By assumption f ′+∑`/∈I λ` f` 6≤ 0,
and therefore a fortiori f 6≤ 0.

Proof of Theorem 10. It is immediately clear from the fact
that Dex(X N) is closed under arbitrary non-empty intersec-
tions, the definition of E N

ex(A ), and the fact that G (X N)
is not a coherent set of desirable gambles, that the last four
statements are equivalent. We now prove (i)⇔(ii).

First, assume that A , and therefore also G +
0 (X N)∪A ,

is included in some coherent and exchangeable set of de-
sirable gambles R. By exchangeability, [G +

0 (X N)∪A ]+
DUN ⊆ R + DUN ⊆ R. Since coni(R) = R avoids non-
positivity, so does any of its subsets, and therefore in par-
ticular [G +

0 (X N)∪A ]+DUN . This means that A indeed
avoids non-positivity under exchangeability.

Conversely, assume that A avoids non-positivity under ex-
changeability. For the sake of convenience, denote the set
on the right-hand side of Eq. (28) by R∗. It is clear that
R∗ satisfies D2, D3 and D4. Consider any f ∈R∗, then
f 6≤ 0, precisely because A avoids non-positivity under ex-
changeability. Hence R∗ also satisfies D1, and is therefore
coherent. To show that R∗ is exchangeable, again con-
sider any f ∈R∗, so there are n≥ 1, λk ∈ R+, f ′ ∈DUN ,
fk ∈ G +

0 (X N)∪A such that f = f ′+∑n
k=1 λk fk. Then for

any f ′′ ∈ DUN we see that f ′+ f ′′ ∈ DUN and therefore
indeed f + f ′′ = ( f ′+ f ′′)+ ∑n

k=1 λk fk ∈R∗.

Since A ⊆R∗, the proof of the equivalences is complete.
We now turn to the proof of Eq. (28), i.e., we prove that
E N

ex(A ) = R∗. It is clear that any coherent and exchange-
able set of desirable gambles that includes A , must also
include R∗, by the axioms D2, D3, and D4. Since we have

just proved that R∗ is coherent and exchangeable, it is
the smallest coherent and exchangeable set of desirable
gambles that includes A . The desired equality now follows
because we have assumed that (i) holds, and we have just
proved that (i) implies (v).

Eq. (29) follows from Eq. (28) and Theorem 1, since DUN
is a cone.

Proof of Corollary 11. This is an immediate consequence
of Proposition 9(i) and Theorem 10.

Proof of Proposition 12. The coherence of Rcx̌ is guar-
anteed by Proposition 5. We show that Rcx̌ is exchange-
able. Consider arbitrary f ∈G (X n̂), π̂ ∈Pn̂ and f1 ∈Rcx̌.
Then we must show that f1 + f − π̂ t f ∈Rcx̌, or in other
words that ICx̌ [ f1 + f − π̂ t f ] ∈R. But since f1 ∈Rcx̌, we
know that ICx̌ f1 ∈R. And if we consider the permutation
π ∈PN defined by

π(k) :=

{
k 1≤ k ≤ ň
ň + π̂(k− ň) ň + 1≤ k ≤ N,

(47)

then clearly ICx̌ π̂ t f = π t(ICx̌ f ) and therefore
ICx̌ [ f1 + f − π̂ t f ] = ICx̌ f1 + ICx̌ f − π t(ICx̌ f ) and this
gamble belongs to R because R is exchangeable.

Proof of Proposition 13. Consider π̌ ∈ Pň and any
gamble f on X n̂. Assume that ICx̌ f ∈R.

We first prove that ICπ̌ x̌ f ∈ R. Consider the permutation
π ∈PN defined by

π(k) :=

{
π̌−1(k) 1≤ k ≤ ň
k ň + 1≤ k ≤ N,

(48)

then clearly π t(ICx̌ f ) = (ICx̌ f )◦π = (ICx̌ ◦ π̌−1) f = ICπ̌ x̌ f ,
so it follows from Proposition 6 that indeed ICπ̌ x̌ f ∈R. This
already implies that Rcx̌ = Rcπ̌ x̌, and therefore also that
Rcx̌ = Rcy̌.

Since R is coherent, it also follows from ICx̌ f ∈ R and
the reasoning above that ICm̌ f = ∑y̌∈[m̌] ICy̌ f ∈R, whence
Rcx̌ ⊆ Rcm̌. To prove the converse inequality, assume
that ICm̌ f ∈ R. We know that [m̌] = {π̌ x̌ : π̌ ∈Pň}, and
therefore for any y̌ ∈ [m̌] we can pick a π̌y̌ ∈Pň such that
π̌y̌x̌ = y̌. With this π̌y̌ we construct a permutation πy̌ ∈PN
in the manner described above, which satisfies π t

y̌(ICx̌ f ) =
ICy̌ f . But then the exchangeability and coherence of R tell
us that

ICm̌ f + ∑
y̌∈[m̌]

[(ICx̌ f )−π t
y̌(ICx̌ f )] = ICm̌ f + f ∑

y̌∈[m̌]
[ICx̌ − ICy̌ ]

= |[m̌]| f ICx̌ (49)

belongs to R, whence also ICx̌ f ∈R, by coherence.
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Proof of Theorem 14. We begin with the sufficiency part.
Assume that there is some coherent set S of desirable
gambles on N N such that R = (MuHyN)−1(S ). We
show that R is coherent and exchangeable, and that S =
MuHyN(R).

We first show that R is coherent. For D1, consider f ∈
G (X N) with f = 0. Then obviously also MuHyN( f ) = 0
and therefore MuHyN( f ) 6∈S . Hence f /∈R. For D2, let
f > 0. Then obviously also MuHyN( f ) > 0, and there-
fore MuHyN( f ) ∈ S . Hence f ∈ R. The proof for D3
is similar to the one for D4. For D4, let f1, f2 ∈R. Then
g1 := MuHyN( f1) ∈S and g2 := MuHyN( f2) ∈S . This
implies that MuHyN( f1 + f2) = g1 + g2 ∈ S , so again
f1 + f2 ∈R.

To show that R is exchangeable, consider any f ∈R and
f ′ ∈ DUN . We have to show that f + f ′ ∈ R. It is clear
that MuHyN( f + f ′) = MuHyN( f )+0 = MuHyN( f )∈S .
Hence f + f ′ ∈ (MuHyN)−1(S ), so indeed f + f ′ ∈R.

We show that S = MuHyN(R). Consider any g∈G (N N),
then using Eq. (35), MuHyN(TN(g)) = g. Since by assump-
tion R = (MuHyN)−1(S ), we see that

g ∈S ⇔MuHyN(TN(g)) ∈S ⇔ TN(g) ∈R. (50)

This shows that S =
{

g ∈ G (N N) : TN(g) ∈R
}

. We
show that also S = MuHyN(R). Let g ∈ S , then we
have just proved that TN(g) ∈ R, and therefore, using
Eq. (35), g = MuHyN(TN(g)) ∈MuHyN(R). Conversely,
let g ∈MuHyN(R). Then there is some f ∈R such that
g = MuHyN( f ) and therefore TN(g) = TN(MuHyN( f )) =
exN( f ), where the last equality follows from Eq. (35). Now
Proposition 7 tells us that exN( f ) ∈R, because f ∈R and
R is exchangeable. Hence TN(g)∈R and therefore g∈S .

Next, we turn to the necessity part. Suppose that R is co-
herent and exchangeable. It suffices to prove that S :=
MuHyN(R) is a coherent set of desirable gambles on N N ,
and that Eq. (38) is satisfied for this choice of S .

We begin with the coherence of MuHyN(R). For D1, con-
sider g ∈ G (N N) with g = 0. Assume ex absurdo that
g ∈MuHyN(R), meaning that there is some f ∈R such
that 0 = g = MuHyN( f ), or in other words f ∈DUN . This
is impossible, due to Eq. (25). For D2, let g ≥ 0. Then
obviously also f := TN(g)≥ 0. Therefore f ∈R and, be-
cause of Eq. (35), g = MuHyN(TN(g)) = MuHyN( f ) ∈
MuHyN(R). The proof for D3 is similar to the one for D4.
For D4, let g1,g2 ∈ MuHyN(R), so there are f1, f2 ∈ R
such that g1 = MuHyN( f1) and g2 = MuHyN( f2). Then by
coherence of R, f1 + f2 ∈R, and therefore, by linearity of
MuHyN ,

g1 + g2 = MuHyN( f1)+ MuHyN( f2)

= MuHyN( f1 + f2) ∈MuHyN(R). (51)

Finally, we show that R = (MuHyN)−1(MuHyN(R)).
Consider f ∈ R, then MuHyN( f ) ∈ MuHyN(R) and

therefore f ∈ (MuHyN)−1(MuHyN(R)). Conversely,
consider f in (MuHyN)−1(MuHyN(R)). Then g :=
MuHyN( f ) ∈MuHyN(R), so we infer that there is some
f ′ ∈R such that g = MuHyN( f ) = MuHyN( f ′). Hence
MuHyN( f − f ′) = 0, so f − f ′ ∈ DUN and therefore f =
f ′+ f − f ′ ∈R +DUN . This implies that f ∈R, since R
is exchangeable.

Proof of Corollary 15. This result can be easily proved as
an immediate consequence of Theorem 14 and Eq. (4). As
an illustration, we give a more direct proof of the necessity
part, based on Theorem 8. This theorem, together with
Eq. (35), tells us that for any gamble f on X N , P( f ) =
P
(
exN( f )

)
= P

(
TN(MuHyN( f ))

)
= Q

(
MuHyN( f )

)
.

Proof of Theorem 16. We begin with the second state-
ment. Recall that E N

ex(A ) = DUN + E N
ex(A ) from The-

orem 10. Since MuHyN is a linear operator, it commutes
with the coni operator, and therefore:

MuHyN(E N
ex(A ))

= MuHyN(DUN )+ MuHyN(E N
ex(A ))

= MuHyN(E N
ex(A ))

= coni(MuHyN(G +
0 (X N)∪A ))

= coni(MuHyN(G +
0 (X N))∪MuHyN(A ))

= coni(G +
0 (N N)∪MuHyN(A ))

= E (MuHyN(A )),

where the second equality follows from MuHyN(DUN ) =
{0}, the third from Theorem 10, and the last from The-
orem 1. The first statement is an immediate consequence
of the second and Theorems 1, 10 and 14.

Proof of Proposition 17. Recall that g ∈S cm̌ iff there is
some f ∈G (X n̂) such that at the same time g = MuHyn̂( f )
and IC[m̌] f ∈R, or in other words MuHyN(IC[m̌] f ) ∈S . We
therefore consider M ∈N N and observe that

MuHyN(IC[m̌] f |M) =
1
|[M]| ∑

x∈[M]
(IC[m̌] f )(x) (52)

=
1
|[M]| ∑

x̌∈[m̌],x̂∈X n̂

(x̌,x̂)∈[M]

f (x̂), (53)

so this value is zero unless M ≥ m̌. In that case we can
write M = m̌ + m̂, where m̂ := M− m̌ is a count vector in
N n̂; so we find that

MuHyN(IC[m̌] f |m̌ + m̂) =
1

|[m̌ + m̂]| ∑
x̌∈[m̌],x̂∈[m̂]

f (x̂) (54)

=
|[m̌]| |[m̂]|
|[m̌ + m̂]| MuHyn̂( f |m̂). (55)

Hence indeed g ∈S cm̌ iff +m̌(Lm̌g) ∈S .
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Abstract

This paper investigates Factored Markov Decision
Processes with Imprecise Probabilities; that is,
Markov Decision Processes where transition probabil-
ities are imprecisely specified, and where their speci-
fication does not deal directly with states, but rather
with factored representations of states. We first define
a Factored MDPIP, based on a multilinear formula-
tion for MDPIPs; then we propose a novel algorithm
for generation of Γ-maximin policies for Factored MD-
PIPs. We also developed a representation language
for Factored MDPIPs (based on the standard PPDDL
language); finally, we describe experiments with a
problem of practical significance, the well-known Sys-
tem Administrator Planning problem.

Keywords. Imprecise Markov Decision Processes
(MDPIPs), Probabilistic Planning and PPDDL,
Knowledge Representation Languages, Multilinear
programming.

1 Introduction

Sequential decision making is an essential activity in
many domains, ranging from operations research [22]
to robotics [29]. The last forty years have seen steady
interest in Markov Decision Processes with Imprecise
Probabilities (MDPIPs), since the seminal work by
Satia and Lave Jr. [24]. Several algorithms have been
developed for “flat” representations of MDPIPs, that
is, representations that explicitly deal with individual
states and transitions between states [13, 28, 34].

In this paper we focus on factored representations for
MDPIPs. A factored representation deals with state
variables that compactly encode a possibly large set

of states. Factored versions of Markov Decision Pro-
cesses (MDPs), where all probabilities are precisely
specified, have received considerable attention [3],
particularly in connection with large planning prob-
lems that arise in artificial intelligence. In fact, the
leading representation language for probabilistic plan-
ning, PPDDL, is essentially a fragment of first-order
logic that can specify Factored MDPs by using predi-
cates to encode states [35]. In our previous work [28],
we have briefly discuss Factored MDPIPs as we ex-
amined algorithms for “flat” MDPIPs. In the present
paper we aim to: (1) give a definition of a factored
MDPIP; (2) present an algorithm for policy genera-
tion; (3) propose a language for compact specification
of factored MDPIP and (4) show some experiments
with a well-known practical problem.

In Section 2 we review basic concepts on Factored
MDPs. In Section 3, we describe the theory of
“flat” MDPIPs and the relevant literature. In Sec-
tion 4 we define factored representations and the
PDL1 language, a variant on PPDDL. In Section 5 we
present an algorithm, which we call FactoredMPA
(Factored Multilinear programming-based approxi-
mation), that produces Γ-minimax policies by re-
sorting to Approximate Nonlinear Programming, and
we show the performance of this algorithm in a
well-known sequential decision problem described in
PDL1, the System Administrator Planning problem.

2 Markov Decision Processes and
their Factored Representations

In this section we review basic facts about MDPs and
the high-level representation language PPDDL.
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Markov Decision Processes (MDPs) encode possibly
infinite sequences of decisions under uncertainty [1,
22]. We are interested in MDPs that consist of (i)
a countable set T of stages, such that a decision is
made at each stage; (ii) a finite set S of states; (iii)
a finite set of actions A(s) for each state s; (iv) a
conditional probability distribution Pt that specifies
the probability of transition from state s to state s′

given action a at stage t, such that probabilities are
stationary (do no depend on t) and written P (s′|s, a);
(v) a reward function Rt that indicates how much is
gained (or lost, by using a negative value) when action
a is selected in state s at stage t, such that the reward
function is stationary and written R(s, a).

The state obtained at stage t is denoted st; the action
selected at stage t is denoted at. The history ht of
an MDP at stage t is the sequence of states and ac-
tions visited by the process, [s1, a1, . . . , at−1, st].
The Markov assumption for MDPs adopts
P (st|ht−1, at) = P (st|st−1, at). The main con-
sequence of the Markov condition is that P (ht|s1)
factorizes as P (st|st−1, at−1)P (st−1|st−2, at−2) . . . ×
P (s3|s2, a2)P (s2|s1, a1). A decision rule dt(s, t)
indicates the action that is to be taken in state s at
stage t. A policy π is a sequence of decision rules,
one for each stage. A policy may be deterministic
or randomized; that is, it may prescribe actions with
certainty, or rather it may just prescribe a proba-
bility distribution over the actions. A policy may
be history-dependent or not; that is, it may depend
on all states and actions visited in previous stages,
or just on the current state. A policy that is not
history-dependent is called Markovian. A Markovian
policy induces a unique probability distribution
over histories. Moreover, a Markovian policy needs
only specify the prescribed action for each state:
π : S → A(s), where π(s) is the action recommended
by the policy π for the state s.

To compare different policies we adopt the discounted
expected reward with infinite horizon [22]; in this case
the solution is given by the Bellman equation as fol-
lows. First, introduce the concept of value function
Vπ : S → R, that defines the value of state s based on
the values of the possible successor states s′ ∈ S:

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S

P (s′|s, π(s))Vπ(s′).

The factor γ in this expression is called the discount
factor of the MDP [22, p. 125].

For MDPs the optimal value function, represented by
V ∗, is the value function associated with any optimal
policy. Then, the Bellman equation is [14]:

V ∗(s) = max
a∈A(s)

{R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)}.

The Bellman equation can be also formulated as a
linear program [18]:

min
V ∗

:
∑

s

V ∗(s) (1)

s.t. : V ∗(s) ≥ R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′),

∀s ∈ S, a ∈ A(s).

Basically, we force V ∗(s) to be greater than or equal
to maxa{R(s, a) + γ

∑
s′∈S P (s′|s, a)V ∗(s′)}; by min-

imizing
∑

s V ∗(s), we obtain the maximum value of
the righthand side.

We now consider factored representations of MDPs;
that is, MDPs where states are compactly specified
using variables/predicates. In a Factored MDP, states
~x are represented by a set Λ = {X1, X2, ..., Xn} of
variables. Thus, a state ~x ∈ S is represented as a
tuple {x1, x2, ..., xn} where xi is the value of the state
variable Xi. Note that the size of S is exponential
in the number n of variables.1. Recent results have
shown that it is possible to solve a Factored MDP
with billions of states [12, 3].

In a Factored MDP, the reward function R(~x, a) can
be defined by the sum of local-rewards Ri(~x, a).

R(~x, a) =
kR∑

j=1

Rj(~x, a). (2)

The scope of each local-reward function Rj is typ-
ically restricted to some subset of variables Dj ⊂
Λ = {X1, ..., Xn}, defined for each pair ~x ∈ S and
a ∈ A(~x).

The next step is to encode the transition probabili-
ties. For each action a we define probabilities using
a Dynamic Bayesian Network (DBN); that is, a di-
rected acyclic graph with two layers: one represent-
ing the actual state and other representing the next
state (Figure 1a). The nodes are denoted by Xi and
X ′

i for variables in the actual state and next state, re-
spectively. Edges are allowed from nodes in the first
layer into the second layer, and also between nodes in
the second layer. We denote by pa(X ′

i) the parents
of X ′

i in the graph. The graph is assumed endowed
with the following Markov condition: a variable X ′

i is
conditionally independent of its nondescendants given
its parents. This implies the following factorization of
transition probabilities:

P (~x′|~x, a) =
n∏

i=1

P (x′i|pa(X ′
i), a); (3)

1Although the complexity of an MDP is P-Complete, i.e, an
MDP problem is solved in a polynomial time in the size of the
state space, it is exponential in the number of variables [20, 21].
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Figure 1: a) A DBN for an action a; b) a conditional
probability table for the state variable X ′

2.

that is, the probability to go to ~x′ ∈ S, given the agent
is in state ~x ∈ S and executes the action a ∈ A(~x), is
the product of the conditional probability of the agent
being in a state where X ′

i = x′i given the parents of
X ′

i and the action a ∈ A(~x) (Figure 1 b). We call Pa

the set of conditional probability tables of a DBN for
action a.

There are many methods to generate exact and
approximate optimal policies for MDPs and Fac-
tored MDPs, including value and policy iteration.
The technique of Approximate Linear Programming
(ALP) [25] has recently been revisited as one of the
most promising methods for solving complex Factored
MDPs. Refinements for the ALP approach, geared to-
wards Factored MDPs, have been developed over the
past few years. The basic idea is to solve an MDP,
formulated as Problem (1), by defining a set of ba-
sis functions and by using them to construct an ap-
proximation of the optimal value function, denoted by
V̂ (~x). Basis functions are provided by domain experts
or automatically generated [21, 17]. Given ~x ∈ S and
a set of of basis functions H = {h1, ..., hk}, V ∗(~x) can
be approximated using a linear combination of H :

V̂ (~x) =
k∑

j=1

wjhj(~x). (4)

The quality of the approximation depends on the algo-
rithm used to find w = (w1, ..., wk), such that Equa-
tion (4) is a good approximation for V ∗(~x). Thus, the
ALP formulation of an MDP, given (1), (2) and (4),
is the linear program:

min
w

:
∑

~x

k∑

i=1

wihi(~x) (5)

s.t. :
k∑

i=1

wihi(~x) ≥
kR∑

j=1

Rj(~x, a) +

γ
∑

~x′∈S

P (~x′|~x, a)
k∑

i=1

wihi(~x′),

∀~x ∈ S, a ∈ A(~x).

The number of variables in the linear program (5)
can be smaller than |S|, depending on the number
of basis functions we have. However, the number of
constraints does not change. ALP does not provide
computational gains if we do not exploit the factored
structure. In Section 5 we will discuss this fact in
more detail.

In the last few years, many knowledge representa-
tion languages have been proposed for specifying fac-
tored MDPs. The most popular such language is
Probabilistic Planning Domain Description Language
(PPDDL)[35], a language based on first-order logic
that has been applied to practical planning problems.
In Section 4 we extend PPDDL to factored MDPIPs,
and there we present the language in more detail.

3 Markov Decision Processes with
Imprecise Probabilities

An MDPIP is simply an MDP where transition prob-
abilities may be imprecisely specified. Note that the
term MDPIP was proposed by White III and Eldeib
[34], while Satia and Lave Jr. [24] adopt instead the
term MDP with Uncertain Transition Probabilities.

To specify an MDPIP, one must specify all elements
of an MDP except the transition probabilities; now
one must specify a set of probabilities for each tran-
sition between states. We refer to these sets as tran-
sition credal sets. We assume stationarity for the
transition credal sets K(s′|s, a). We also assume
that each history ht is associated with stationary
probability distributions P (st|st−1, at−1) that them-
selves satisfy the Markov condition (and of course
P (st|st−1, at−1) ∈ K(st|st−1, at−1)). That is, our
MDPIPs are elementwise-stationary [28].

A few definitions are needed. We adopt elementwise
conditioning: K(X |A) is obtained from K(X) by con-
ditioning every distribution in the credal set K(X) on
the event A. The notation K(X |Y ) represents a set
of credal sets: there is a credal set K(X |Y = y) for
each nonempty event {Y = y}. Given a credal set
K(X), we can compute lower and upper probabili-
ties respectively as P (A) = infP∈K P (A) and P (A) =
supP∈K P (A). We can also compute lower and
upper expectations for any bounded function f(X)
as E[f ] = infP∈K E[f ] and E[f ] = supP∈K E[f ],
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and likewise for conditional lower/upper probabili-
ties/expectations. We assume all credal sets to be
closed, so infima and suprema can be replaced by min-
ima and maxima.

There are several criteria of choice for selecting poli-
cies in a given MDPIP, even if we fix a single util-
ity and focus on discounted infinite horizon. The
Γ-maximin criterion selects a policy that yields the
supremum of lower expected reward. In the context
of discounted infinite horizon, there is always a de-
terministic stationary policy that is Γ-maximin [24];
moreover, this policy induces a value function that is
the unique solution of

V ∗(s) = sup
a

inf
P

(
R(s, a)+γ

∑

s′

P (s′|s, a)V ∗(s′)

)
,

(6)
subject to the fact that probabilities must belong to
given transition credal sets. Given our assumption
that sets of actions are finite and credal sets are closed,
we can replace sup and inf respectively by max and
min in this expression.

A few other criteria of choice are worth mention-
ing. The Γ-maximax criterion [24] selects a pol-
icy that yields the supremum of upper expected re-
ward [33], while the Γ-maximix criterion selects a
policy that yields the maximum of α(maxP Vπ) +
(1 − α)(minP Vπ), for some α ∈ (0, 1). Other crite-
ria seek sets of admissible policies, such as the Inter-
val Dominance, Maximality and E-admissible criteria
[15]. There are strong foundational reasons to side
with the most restrictive of the last three criteria;
that is, to adopt E-admissibility [26]. However, in
this paper we adopt the Γ-maximin criterion due to
its popularity in the existing literature on MDPIPs.
We certainly hope to examine other criteria in our
future work on Factored MDPIPs.

There are algorithms for solving flat MDPIPs based
on dynamic programming [24, 34]. Additional algo-
rithms have been proposed to solve special cases of
MDPIPs [10, 31].

4 Defining and representing Factored
MDPIPs

We define a Factored MDPIP, intuitively enough, as
an MDPIP where states are compactly specified us-
ing variables/predicates. Thus we have a Factored
MDP where transition probabilities are not unique,
but rather given by transition credal sets. The chal-
lenge then is to specify such transition credal sets in
a manner that is itself compact. We suggest that
Dynamic Credal Networks (DCNs) offer the adequate
language to express transition credal sets.

A DCN has the same structure as a DBN (Figure
1), but now each variable X is associated with a
set of conditional credal sets; that is a credal set
K(X |pa(X) = k) for each value k of pa(X). In this
paper we assume that every DCN represents a joint
credal set over all of its variables, and this joint credal
set is exactly the strong extension of the credal net-
work [5, 6]. That is, the DCN represents a joint credal
set where each distribution satisfies the following ex-
pression:

P (~x′|~x, ~p, a) =
n∏

i=1

P (x′i|pa(X ′
i), ~p, a); (7)

where each P (x′i|pa(X ′
i), ~p, a) comes from an appro-

priate credal set associated with the DCN.

Consider the generation of Γ-maximin policies; that
is, solution of Equation (6). It does not seem pos-
sible to produce a linear programming solution like
the linear programming for MDP (Problem 1). How-
ever in our previous work [28] we have shown that it
is possible to generate solutions using well know pro-
gramming problems. First, the Equation (6) can be
reduced to a bilevel programming problem:

min
V ∗

:
∑

s

V ∗(s) (8)

s.t. : V ∗(s) ≥ R(s, a) +

γ
∑

s′∈S

P (s′|s, a)V ∗(s′), ∀s ∈ S, a ∈ A;

P ∈ arg min
∑

s′∈S

P (s′|s, a)V ∗(s′),

s.t. : P (s′|s, a) ∈ Ka(s′|s)

Then, the bilevel problem (8) can be transformed in
an equivalent multilinear programming problem:

min
V ∗,P

:
∑

s

V ∗(s) (9)

s.t. : V ∗(s) ≥ R(s, a) +

γ
∑

s′∈S

P (s′|s, a)V ∗(s′),

∀s ∈ S, a ∈ A(s), P (s′|s, a) ∈ Ka(s′|s, a).

Note that the solution of multilinear programs is far
from trivial, thus our previous solution can only deal
with relatively small flat MDPIPs.

We now specialize Problem (9) for Factored MDPIPs.
The factored value function of a Factored MDPIP is
given by Equation (4) restricting the scope of each
basis function to some small subset of state variables
Ci ⊂ Λ = {X1, ..., Xn}. We can use the factored value
function (4), the reward function (2), the transition
probabilities (7) and replace them in Problem (9) in
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order to obtain the factored multilinear programming
problem:

min
w,~p

:
∑

s

∑

i

wihi(~x) (10)

s.t. :
∑

i

wihi(~x) ≥
kR∑

j=1

Rj(~x, a) +

γ
∑

~x′∈S

P (~x′|~x, ~p, a)
∑

i

wihi(~x′),

∀~x ∈ S, a ∈ A(~x).
P (~x′|~x, ~p, a) ∈ Ka(~x′|~x)

where:

P (~x′|~x, ~p, a) =
n∏

i=1

P (x′i|pa(X ′
i), ~p, a)

This particular nonlinear program will be studied in
the next section; the main contribution of this paper is
an algorithm for the generation of Γ-maximin policies
in Factored MDPIPs that solves Problem (10). Be-
fore we plunge into that, we spend the remainder of
this section discussing the representation of Factored
MDPIPs.

As we have mentioned before, the Probabilistic Plan-
ning Domain Description Language (PPDDL) [2] is
a high-level language for the specification of Factored
MDPs, with a relatively simple syntax. Every plan-
ning problem is expressed in two parts: the domain
contains directives, constants, and descriptions of ac-
tions; the problem basically contains a description of
the initial state and the desired goal. We wish to fo-
cus on the syntax and semantics of domains, so we
present the relevant pieces of the syntax here. The
basic BNF for domains is:
<domain> ::= (define (domain <NAME>)

(:requirements :adl)

[<types>][<constants>][<predicates>]

<action>*)

<action> ::= (:action <NAME>

[<param>] [<prec>] [<effect>])

<prec> ::= (:precondition <p-formula>)

<effect> ::= (:effect {<nd-eff>|<det-eff>})
<nd-eff> ::= <prob>|<one-of>

<prob> ::= (probabilistic <p-eff>+)

<p-eff> ::= <RATIONAL> <det-eff>

<one-of> ::= (oneof <det-eff>+),

where: <types>, <constants>, <predicates> and
<param> refer to lists of names or logical variables
(possibly typed); <RATIONAL> denotes a rational num-
ber; <p-formula> is a formula containing either
atoms, or conjunction of p-formulas, or universal
quantification over p-formulas, or inequality of two
given names as (not (= <NAME> <NAME>)); and a

<det-eff> is a formula containing either atoms, or
negation of atoms, or conjunction of det-effs, or uni-
versal quantification over det-effs, or the conditional
operator when. This conditional operator has syntax
(when <p-formula> <simple-eff>),
where simple-eff is a formula containing ei-
ther atoms, or negations of atoms, or conjunc-
tion of det-effs, or universal quantification over
simple-effs.

In PPDDL, a probabilistic action is understood as a
probabilistic transition given by a Dynamic Bayesian
Network [35]. PPDDL also allows an action to con-
tain oneof elements, where a nondeterministic choice
is made and one of the effects listed in the scope of
the oneof element is selected and pursued. There
are no probabilities attached to such nondeterminis-
tic choices. We call these conventions the standard
semantics of PPDDL. Note that the standard seman-
tics of PPDDL takes us beyond Markov Decision Pro-
cesses (MDPs) given the presence of nondeterminism;
however the expressivity of PPDDL is still far from
general MDPIPs, because in PPDDL each action may
contain either a probabilistic effect or a nondetermin-
istic effect. For instance, a domain may contain two
actions, one with probabilistic effects, and the other
with nondeterministic effects. What is not allowed in
PPDDL is the mixture of probabilistic and nondeter-
ministic effects in the same action.

In a previous publication we have explored the facili-
ties of PPDDL to express planning problems where
probabilistic and nondeterministic choices (in the
PPDDL sense) are mixed, but only allowing that
all probabilistic choices precede all nondeterministic
choices in an action [30]. The reason for this re-
striction is that the ensuing planning problems are
instances of MDPIPs were all transition credal sets
are given by infinitely monotone Choquet capacities.
We refer to PPDDL with this added flexibility as
PDL2, and we refer to PPDDL with no restrictions
on the combination of probabilistic and nondetermin-
istic choices as PDL1. We note that PDL1 can specify
Factored MDPIPs with clear syntax; to illustrate this
fact, we consider the well-known System Administra-
tor Problem [12].2

Example 1 Consider the problem of optimizing the
behavior of a system administrator that works with a
network of computers. There are many possible con-
figurations; for example, the cycle network where com-

2This example is actually a variant on the original Factored
MDP for the System Administrator problem, because some ad-
ditive aspects cannot be encoded in PPDDL [23]. The way
we solve this limitation was to start with a high reward value
and decrease every time the action reboot was executed (effect
(decrease (reward) 1) from Figure 2).

ISIPTA’09: Representing and Solving Factored Markov Decision Processes with Imprecise Probabilities 173



puter i is connected to computer i + 1. One of these
computers is designated as server, while the rest are
clients. Each computer is associated to a binary vari-
able Xi, the value of a variable indicates whether the
respective machine is up (1) or down (0). At each
time step the administrator receives a payment (re-
ward) for each machine that is working. Since the
server is the most important computer in the network
it is given a greater reward if it is working. The job
of the system administrator is deciding which of the
machines should reboot. So, there are n+1 possible
actions at each step: reboot one of the n machines or
not reboot any machine. After executing the action
reboot the machine i, the probability of machine i to
be working on the next step is high. At each step each
computer has a low probability to stop working, which
grows dramatically if their neighbors are not working.
The machines can begin working spontaneously with a
small probability.

In the original PPDDL for the System Administra-
tor Domain [23], the probability of a computer i
start working in the next state, given that the action
reboot(i) was executed, is 0.9; and with the prob-
ability 0.1 the state remains unchanged. Also, with
probability 0.6 the state variable xi (computer i) be-
comes false in the next state, when it is connected
with other computer that it is not working (and the
computer i has not been rebooted); and with proba-
bility 0.4 the state remains unchanged.

Figure 2 presents a PDL1 specification of a Factored
MDPIP that represents the System Administrator
Problem, where experts disagree on the probability
distributions. With probability between 0.6 and 0.8
the state variable xi (computer i) becomes false in the
next state, if it is connected with other computer that
it is not working (and the computer i has not been
rebooted). Considering an instance of the domain de-
scribed in Figure 2 with 3 state variables, which im-
plies 8 states and 3 actions: a1 for reboot computer 1,
a2 for reboot computer 2 and a3 for reboot computer 3,
the corresponding factored MDPIP have the following
set of constraints:

P (X′
i = 1|X1 = 0, ai) = 0.9

P (X′
i = 1|X1 = 1, ai) = 1

And for i 6= j we have:

P (X′
i = 0|Xi−1 = 0, Xi = 0, aj) = 1

0.6 <= P (X′
i = 0|Xi−1 = 0, Xi = 1, aj) <= 0.8

P (X′
i = 0|Xi−1 = 1, Xi = 0, aj) = 1

P (X′
i = 0|Xi−1 = 1, Xi = 1, aj) = 0

Instances such these are solved by the algorithm pre-
sented in the next section.

(define (domain sysadmin)

(:requirements :adl)

(:types comp)

(:predicates (up ?c)(conn ?c ?d))

(:action reboot

:parameters (?x - comp)

:effect

(and (decrease (reward) 1)

(probabilistic 0.9 (up ?x))

(oneof

(forall (?d - comp)

(probabilistic

0.6 (when (exists (?c - comp)

(and (conn ?c ?d)

(not (up ?c))

(not (= ?x ?d))))

(not (up ?d))

)))

(forall (?d - comp)

(probabilistic

0.8 (when (exists (?c - comp)

(and (conn ?c ?d)

(not (up ?c))

(not (= ?x ?d))))

(not (up ?d))

)))))

)

(define

(problem sysadmin-3)

(:domain sysadmin)

(:objects x1 - comp x2

- comp x3

- comp)

(:init (conn x1 x2)

(conn x2 x3)

(conn x3 x1))

(:goal (forall (?c - comp)

(up ?c)))

(:goal-reward 500)

)

Figure 2: The System Administrator domain in
PDL1, with action reboot (probabilistic and nonde-
terministic). This domain defines a Factored MDPIP
(adapted from [23]). One limitation of this language
is do not allow to express local-reward and basis func-
tions for approximated solutions of MDPs and MD-
PIPs.
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5 FactoredMPA: Solving a Factored
MDPIP

Koller and Parr [16] show that if we are working with
a Factored MDP (Problem 5), a necessary condition
to efficiently apply the ALP technique is to restrict
the scope of each basis function to some small subset
of state variables Ci ⊂ Λ = {X1, ..., Xn} and also to
assume small dependency in the DBN3. Guestrin et
al. [12] then exploited these conditions and developed
an efficient algorithm for Factored MDPs. The suc-
cess of their FactoredLPA algorithm is due to: (i)
the use of a method to simplify the computation of
each constraint of the ALP problem, named Backpro-
jection algorithm [16]; and (ii) the FactoredLP algo-
rithm that creates a new and smaller set of equivalent
constraints for the linear programming problem (5).
There are other efficient algorithms that use general
techniques to solve linear problems with large number
of constraints [21, 8, 9] (e.g., constraints generation),
and that somehow, have improved the approach pro-
posed by Guestrin [12].

Based on those ideas, we want to solve a Factored
MDPIP formulated as an Approximated Multilinear
Programming (Problem 10). First, the same efficient
and general techniques that solve linear problems with
large number of constraints [21, 8, 9] cannot be ap-
plied directly on the multilinear problem. However,
the FactoredLPA algorithm can be adapted to solve
a factored MDPIP as we show in this section. The
new algorithm we will name as FactoredMPA.

Shortly, FactoredMPA first simplifies the computa-
tion of each constraint applying the same Backprojec-
tion algorithm used by Guestrin for factored MDP,
then it calls the FactoredMP algorithm to create a
new and smaller equivalent set of constraints for the
Multilinear Programming (Problem 10). Finally, in
order to obtain wi and ~p, it calls a nonlinear solver
with the new equivalent problem.

5.1 Simplifying the computation of each
constraint

We can also take advantage of the fact that the tran-
sition model for MDPIPs is factored and the basis
functions have scope restricted to a small set of vari-
ables in order to efficiently compute the constraints.

From problem (10), given ~x ∈ S and a ∈ A(~x), we
have the following constraint:

X

i

wihi(~x) ≥
kRX

j=1

Rj(~x, a) + γ
X

~x′∈S

P (~x′|~x, ~p, a)
X

i

wihi(~x
′)

3Although this assumption seems too restrictive, there is a
large set of applications that it can be done [11].

Now, we can reorder the sum and obtain:

X

i

wihi(~x) ≥
kRX

j=1

Rj(~x, a) + γ
X

i

wi

X

~x′∈S

P (~x′|~x, ~p, a)hi(~x
′)

| {z }

Let the underbrace term be renamed as ga
i (~x, ~p). Note

that, for MDPIPs, ga
i (~x, ~p) is a polynomial expression,

i.e. it is described in terms of probability variables
and has the following canonical form (with d0 = 0
and di a constant):

d0 +
∑

i

di

∏
pij (11)

This term can be precomputed in a efficient way us-
ing the Backprojection algorithm [16]. For a further
computation improvement, the set of constraints can
be rewritten as:

0 ≥
kRX

j=1

Rj(~x, a) +
X

i

wi

 
γga

i (~x, ~p)− hi(~x)| {z }

!

Again, let the underbrace term be renamed as
ca
i (~x, ~p). This term can be precomputed resulting also

in the polynomial form (11). Finally ∀~x ∈ S, a ∈ A(~x)
we obtain:

0 ≥
kRX

j=1

Rj(~x, a) +
X

i

wic
a
i (~x, ~p) (12)

Even with this simplified form to rewrite constraints
for the Approximate Multilinear Programming, we
are still working with the complete set of constraints
(|S|∗|A|+m2), where m2 is the number of constraints
related to the probabilities pij . Since the direct use
of general non-linear solvers [19], geometric solvers [4]
or multilinear solvers [27] for Problem (10), can only
solve problems with small state space, we have to find
a way to reduce the number of constraints.

5.2 The FactoredMP algorithm

We extend the FactoredLP technique proposed by
Guestrin [12] in order to obtain a new and smaller
equivalent multilinear program for Problem (10). We
call this new algorithm FactoredMP.

The basic idea is to replace the set of constraints
in (12) by an equivalent set of non-linear constraints
∀a ∈ A(~x), given by:

0 ≥ max
~x

8
<
:

kRX

j=1

Rj(~x, a) +
X

i

wic
a
i (~x, ~p)

9
=
;

So, for an action a, we have to compute the following
maximization:

0 ≥ max
~x

8
<
:

kRX

j=1

Rj(~x) +
X

i

wici(~x, ~p)

9
=
; (13)
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Note that Rj(~x) and ci(~x, ~p) are functions of ~x and we
want to do max over ~x. Now we can, instead of adding
all terms and do the maximization, do the maximiza-
tion over state variables one by one. To do so we
use a modification of the general variable elimination
algorithm proposed by Guestrin [12].

For example, if we want to eliminate variable X1 we
do as following. If R1 is the only local-reward function
that depends on X1 and c1 is a function that depends
on (X1, X4) and there is no other function ci that
depends on X1, we can push the maximization over
X1 inwards to obtain:

0 ≥ max
X2...Xn

8
<
:

kRX

j=2

Rj(~x) +
X

i=2

wici(~x, ~p)+

max
X1

{R1(X1) + w1c1(X1, X4, ~p)}
ff

For each variable Xl we want to eliminate, Fac-
toredMP selects L relevant functions, renamed as
ue1 ... ueL . A relevant function is the one whose scope
contains Xl. We can now replace the maximization
over the relevant functions for Xl by the following new
function:

uenew

Z = max
Xl

L∑

j=1

uej (14)

Where Z is the union of all variables in func-
tions ue1 ... ueL minus Xl. In the above exam-
ple, the relevant functions are ue1

X1
= R1(X1) and

ue2
X1,X4

= w1c1(X1, X4, ~p). The term uenew

Z is uenew

X4
=

maxX1

{
ue1

X1
+ ue2

X1,X4

}
, resulting in the following

constraint:

0 ≥ max
X2...Xn

8
<
:

kRX

j=2

Rj(~x) +
X

i=2

wici(~x, ~p) + uenew
X4

9
=
;

In order to enforce the definition of uenew

Z as the max-
imum over Xl (Eq. 14), FactoredMP introduces the
following set of constraints for any assignment z to Z:

uenew

Z ≥
L∑

j=1

uej∀xl

In the example we need to introduce four constraints:
one constraint for each configuration of X4 and for
each configuration of X1.

This procedure is repeated until all variables have
been eliminated. At the end, all the remaining func-
tions uei will have empty scope and the following con-
straint must be added:

0 ≥
∑

j=i

uei
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Figure 3: The number of constraints for the System
Administrator domain, with imprecise probabilities,
for problems with n computers; there are 2n number
of states and n + 1 actions in this problem.

Notice that, the same process must be applied for all
actions a ∈ A. The FactoredMP algorithm reduces
a structured multilinear programming problem (10)
with exponentially many constraints to a new smaller
equivalent set of constraints. This property is inher-
ited from the FactoredLP procedure.

5.3 Experimental Results

In order to analyze the scalability of the proposed al-
gorithm, we have calculated the original number of
constraints and the number of constraints after ap-
plying the algorithm FactoredMPA for the prob-
lem (10). In order to do this, we consider the System
Administrator domain (described in the previous sec-
tion). Figure 3 shows the result for problems varying
the number of computers from 2 to 40. The graph
shows the original number of constraints grows expo-
nentially while the constraints generated by the Fac-
toredMPA algorithm grows quadratically with the
number of computers.

We have implemented the FactoredMPA algorithm
using Matlab as frontend, and MINOS as the non-
linear solver (to handle the reduced multilinear pro-
grams). In Figure 4 we show the running times for
the System Administrator domain described as in Fig-
ure 2 using a simple set of basis functions: the con-
stant function h0 = 1 and hi(Xi = 1) = 1 and
hi(Xi = 0) = 0. These results show that with the
FactoredMPA algorithm it is possible to solve large
problems, e.g. we solve in 300 seconds a problem with
40 computers which in the original AMP formulation
would have more than 240 ∗ 41 constraints.
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6 Conclusion

In this paper we have investigated Markov Decision
Processes with Imprecise Probabilities, a class of mod-
els that adds considerable flexibility and realism to the
popular Markov Decision Processes. We have defined
a Factored MDPIP problem based on a multilin-
ear formulation for MDPIPs [28] and Factored MDPs
[12]. We also developed a representation language to
specify Factored MDPIPs, named PDL1, which ex-
tends PPDDL by allowing free mixtures of probabilis-
tic and nondeterministic operators. Although PDL1

does not allow to specify basis and local-reward func-
tions, it is an original and practical high-level lan-
guage to express factored MDPIPs. Further, we can
take advantage of the fact the PPDDL language has
largely been used as a benchmark language to solve
probabilistic planning problems and, with a simple
modification on those problems to obtain a PDL1

specification, we can have a variety of MDPIP prob-
lems.

Our main contribution is a new algorithm, named
FactoredMPA, to find Γ-maximin policies for Fac-
tored MDPIPs. The algorithm is an adaptation of
the FactoredLPA (Factored Linear Programming-
based Approximation) algorithm used to solve Fac-
tored MDPs [12, 21]. To evaluate the Fac-
toredMPA algorithm, we have modified the System
Administrator problem by introducing imprecision in
probability values. We thus obtain Factored MDPIPs
with varying sizes. Our experiments show that by
exploiting the factored representation of a sequential
decision problem, and by making the assumption of
a restrict scope for variable dependences, relatively
large problems can be solved (note that the number
of constraints and cpu-time grows quadratically with
the number of variables).
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Abstract
Recently, we have introduced an uncertainty represen-
tation generalising imprecise cumulative distributions
to any (pre-)ordered space as well as possibility distri-
butions: generalised p-boxes. This representation has
many attractive features, as it remains quite simple
while having an interesting interpretation in terms of
lower and upper confidence bounds over nested sets.
However, the merits of this representation in various
uncertainty processing tasks still have to be evaluated.
This is the topic of this paper, in which the handling of
information modelled by generalised p-boxes is stud-
ied, from the point of view of elicitation, propagation,
conditioning and fusion.

Keywords. Generalized p-boxes, comonotonic
clouds, fusion, conditioning, propagation.

1 Introduction

When modelling and processing uncertainty in the
presence of imprecision and incompleteness, it is of-
ten desirable to use approaches whose complexity re-
mains low rather than full-fledged generic models.
The benefits of using the former is that their ma-
nipulation is often easier, implying a lower compu-
tational cost. They can also be easier to explain to
non-experts, thus being useful at the elicitation and
post-processing stages. The disadvantage of such sim-
ple models is that in some situations they may not be
sufficient to represent the available knowledge nor to
faithfully address a given problem.

Recently, we have introduced an uncertainty represen-
tation generalising imprecise cumulative distributions
to any (pre-)ordered space as well as possibility distri-
butions [5]: generalised p-boxes. We showed that this
representation is quite simple, can be modeled by ran-
dom sets and has strong connections with many other
recent uncertainty representations such as clouds [16].
The interpretation of generalised p-boxes as collec-

tion of nested sets with associated lower and upper
confidence bounds makes them promising for uncer-
tainty elicitation. Note that general clouds, of which
generalized p-boxes constitute a subfamily, are more
complex, hence less attractive, in this respect [5].

However, for a given representation to be useful in
uncertainty analysis, one has to study its stability
across computations, and their computational com-
plexity. Such a study has already partially been done
for generalised p-boxes, whose propagation through a
model and use in optimisation procedures under un-
certainty have been considered previously [4, 11]. In
this paper, we recall some of these previous results and
complete this study by investigating other aspects of
generalised p-boxes manipulation, such as condition-
ing or merging. When possible, we link our results
with other ones originating from the frameworks of
probability sets [18], belief functions [17] and possibil-
ity theory [7]. Since generalised p-boxes constitute a
subfamily of Neumaier’s clouds [5,16], this study also
provides some answers to questions regarding the ma-
nipulation of these clouds (in particular with respect
to their merging).

Section 2 recalls basics about generalised p-boxes and
their links with other uncertainty representations and
frameworks. In the following sections, we explore the
problems of computing probability bounds, informa-
tion elicitation, propagation, conditioning and merg-
ing with generalised p-boxes. We conclude that their
main practical interest lies in their simplicity for in-
formation representation and elicitation.

2 Preliminaries

Let X be a variable taking its value on a finite space
X having N elements. First recall that two mappings
f and f ′ from a finite indexed set X = {x1, . . . , xN}
to the real line R are said to be comonotonic if there
is a common permutation σ of {1, 2, . . . , N} such that
f(xσ(1)) ≥ f(xσ(2)) ≥ · · · ≥ f(xσ(N)) and f ′(xσ(1)) ≥
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f ′(xσ(2)) ≥ · · · ≥ f ′(xσ(N)). In other words, f and f ′
are comonotonic if and only if for any pair of elements
x, y ∈ X , f(x) < f(y) ⇒ f ′(x) ≤ f ′(y) (and f ′(x) <
f ′(y) ⇒ f(x) ≤ f(y)). Note that comonotonicity
is not a transitive relation1. We consider here that
uncertainty about X is modelled by a generalised p-
box [F , F ], defined as follows:
Definition 1. A generalised p-box [F , F ] over a finite
space X is a pair of comonotonic mappings F , F , F :
X → [0, 1] and F : X → [0, 1] from X to [0, 1] such
that F is pointwise less than F (i.e. F ≤ F ) and
there is at least one element x in X for which F (x) =
F (x) = 1,

These limit conditions ensure that [F , F ] character-
izes a so-called coherent lower probability. To make
notations easier, we introduce an additional element
x0 to X , such that F (x0) = F (x0) = 0. As many ap-
plications involve variables taking values on the real
line R, we also consider generalised p-boxes defined on
this space or on one of its product spaces. We limit
ourselves to Borel sets and to discrete generalised p-
boxes (i.e., when F , F only takes a finite number of
values), other situations being seldom encountered in
practice. This allows us, by a proper partition, to
come back to the finite space case.

A generalised p-box [F , F ] induces a particular weak
order ≤[F,F ] between elements of X , such that
x ≤[F,F ] y iff F (x) ≤ F (y) and F (x) ≤ F (y). In
the sequel, for sake of clarity, we assume that each
distribution F , F takes distinct values for each ele-
ment x ∈ X , and we consider that these elements
are indexed in agreement with the ordering induced
by the generalised p-box representing the uncertainty
about the value of X. That is, elements x1, . . . , xN
are indexed such that i < j → F (xi) ≤ F (xj) and
F (xi) ≤ F (xj). Given a generalised p-box [F , F ] over
X , we define [F , F ]-connected subsets and v[F,F ]-
ordering as follows:
Definition 2. Given a generalised p-box [F , F ] over
X , a subset C ⊆ X is called [F , F ]-connected if it
can be expressed as a union of consecutive elements
xk, that is

C = {xk ∈ X |0 < i ≤ k ≤ j ≤ N}.
Definition 3. Let A = {xi, . . . , xj}, B =
{xi′ , . . . , xj′} ⊆ X be two [F , F ]-connected sets. The
v[F,F ]-ordering between these sets if defined as follows

A v[F,F ] B if and only if
{

i ≤ i′
j ≤ j′.

When A v[F,F ] B and B 6v[F,F ] A, we denote it by
A @[F,F ] B.

1Otherwise all mappings would be comonotonic, since all
mappings are comonotonic with the constant mapping.

2.1 Link with convex sets of probability

Convex sets of probabilities constitute one of the most
general uncertainty model available nowadays. Their
use has been popularised by Walley [18] and stud-
ied by numerous authors (see Miranda [13] for a re-
cent review). In this paper, we will restrict ourselves
to sets of probabilities PP induced by lower proba-
bilities. Given a probability set P, its lower proba-
bility P on an event A ⊆ X is defined as P (A) =
infP∈P P (A). Upper probability can be defined sim-
ilarly (i.e., P (A) = supP∈P P (A)) and the two mea-
sures are dual, in the sense that, for any event A ⊆ X ,
P (A) = 1−P (Ac), where Ac is the complement of A.
Then PP = {P ≥ P}. The lower probability P is
called coherent if P (A) = inf{P (A), P ∈ PP },∀A.
The probability set PP is then called a credal set.

A generalised p-box [F , F ] induces a particular credal
set P[F,F ] such that

P[F,F ] = {P ∈ PX |F (xi) ≤ P ({x1, . . . , xi}) ≤ F (xi)}

with PX the set of all probability measures over X .
When X is the real line (X = R) and when sets Ai
are of the type (−∞, xi] with xi < xj when i ≤ j, we
retrieve classical p-boxes [10].

2.2 Link with random sets

Formally, a random set [2] is a mapping from a prob-
ability space to the power set of another space. In
the discrete case [17], a random set can also be con-
structed as a mass assignment m : ℘(X ) → [0, 1] s.t.∑
E∈℘(X )m(E) = 1. In this case, subsets E having

a strictly positive mass are called focal sets. We de-
note the set of focal sets by F , and a random set by
(m,F). From a random set, we can define two uncer-
tainty measures, respectively the belief and plausibil-
ity functions, which reads, for all A ⊆ X:

Bel(A) =
∑

E,E⊆A
m(E); Pl(A) =

∑

E,E∩A 6=∅
m(E).

The belief function quantifies our credibility in event
A, by summing all the masses that surely support
A, while the plausibility function measures the maxi-
mal confidence that can be given to event A, by sum-
ming all masses that could support A. They are dual
measures, in the sense that for all events A, we have
Bel(A) = 1 − Pl(Ac). The belief function can be
interpreted as a lower probability, and in this case in-
duces a credal set P(m,F) = {P ∈ PX |P ≥ Bel}, and
Bel(A) = P (A), Pl(A) = P (A) for any event A ⊆ X .
A generalised p-box [F , F ] also induces a particular
random set [5]. This random set can be built by the
following procedure: consider a threshold θ ∈ [0, 1].
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When F (xi+1) > θ ≥ F (xi) and F (xj+1) > θ ≥
F (xj), then, the corresponding focal set is Ai+1 \Aj ,
with weight

m(Ai+1 \Aj) = min(F (xi+1), F (xj+1))

−max(F (xi), F (xj)). (1)

This allows to apply results concerning random sets to
generalised p-boxes. Let us note (m,F)[F,F ] the ran-
dom set induced by a generalised p-box [F , F ]. The
focal sets of (m,F)[F,F ] have very specific features,
which can be summarised as follows:

[F , F ]-connectedness: If A ∈ F[F,F ], then A is
[F , F ]-connected.

[F , F ]-ordered: focal sets are completely ordered
with respect to ordering v[F,F ], i.e., for any two
distinct sets A,B ∈ F[F,F ], either A @[F,F ] B or
B @[F,F ] A.

2.3 Link with possibility distributions and
clouds

A possibility distribution [7] is a mapping π : X →
[0, 1] from a space X to the unit interval such that
π(x) = 1 for at least one element x in X . Formally,
a possibility distribution is equivalent to the mem-
bership function of a fuzzy set. From this possibil-
ity distribution are defined two uncertainty measures,
respectively the possibility and necessity functions,
which reads, for all A ⊂ X:

Π(A) = sup
x∈A

π(x); N(A) = 1−Π(Ac).

Given a possibility distribution π and a degree α ∈
[0, 1], the strong and regular α-cuts are subsets respec-
tively defined as the sets Eα = {x ∈ X |π(x) > α} and
Eα = {x ∈ X |π(x) ≥ α}. These α-cuts are nested,
since if α > β, then Eα ⊆ Eβ . In the finite case,
a possibility distribution takes at most N values.
Let us denote these N values by α0 = 0 < α1 <
. . . < αN = 1. We denote the set of probabilities
Pπ = {P ∈ PX |P ≥ N} associated to a possibility dis-
tribution π by Pπ.
Possibility distributions can also be interpreted as
particular random sets: they are equivalent to ran-
dom sets whose focal elements are nested. A belief
function (resp. a plausibility function) is a necessity
measure (resp a possibility measure) if and only if it
derives from a mass function with nested focal sets.
Such a random set is called consonant by Shafer [17].
Given a possibility distribution π, the corresponding
random set will have the following focal sets Ei with
masses m(Ei), i = 1, . . . , N :

{
Ei = {x ∈ X|π(x) ≥ αi} = Eαi

m(Ei) = αi − αi−1.
(2)

Uncertainty modelled by a generalised p-box [F , F ]
can also be modelled by a pair of possibility distribu-
tions πF , πF such that, for i = 1, . . . , N ,

πF (xi) = F (xi), (3)
πF (xi) = 1− F (xi−1), (4)

in the sense that P[F,F ] = PπF
∩ PπF

. The random
sets with mass assignments mπF

and mπF
modeling

the uncertainty of distributions πF , πF are such that,
for i = 0, . . . , N − 1,

mπF
(Aci ) = F (xi+1)− F (xi)

mπF
(Ai+1) = F (xi+1)− F (xi).

If we denote the M distinct values taken by F , F by
0 = γ0 < γ1 < . . . < γM = 1, then the following
random set, defined for j = 1, . . . ,M as
{
Ej = {xi ∈ X|(πF (xi) ≥ γj) ∧ (1− πF (xi) < γj)},

m(Ej) = γj − γj−1.
(5)

is the same as the random set given by Eq. (1).

Due to their links with possibility distributions, gen-
eralised p-boxes also have strong connections with
clouds, an uncertainty representation introduced by
Neumaier [16]. A cloud [π, δ] is a pair of distributions
δ, π from X to [0, 1] such that δ ≤ π, π(x) = 1 for
at least one x ∈ X and δ(y) = 0 for at least one ele-
ment y ∈ X . A cloud [π, δ] induces a set of probabili-
ties P[π,δ] = {P ∈ PX |P (δα) ≤1− α≤ P (πα)}, with
δα = {x|δ(x) ≥ α} and πα = {x|π(x) > α}. It
can be shown that clouds whose distributions δ, π are
comonotonic are equivalent to generalised p-boxes [5],
in the sense that they model exactly the same fam-
ily of probability sets. A so-called comonotonic cloud
[π, δ] models the same uncertainty as the generalised
p-box [F , F ] for which πF = π and πF = 1 − δ,
and conversely. That is, for any cloud [π, δ], we
have P[π,δ] = Pπ ∩ P1−δ, with π, 1 − δ possibility
distributions. Using the fact that clouds [π, δ] and
[1 − δ, 1 − π] represent the same uncertainty, in the
sense that P[π,δ] = P[1−δ,1−π], it is immediate that a
generalised p-box [F , F ] represents the same uncer-
tainty as the generalised p-box [F ∗, F ∗], where, for
i = 1, . . . , N

F ∗(xi) = 1− F (xi−1) and F ∗(xi) = 1− F (xi−1)

with the ordering ≤[F∗,F∗]
being the reverse of ≤[F,F ].

3 Computing probability bounds

Given a generalised p-box [F , F ], computing lower
and upper probabilities over any event A ⊆ X is
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rather easy. First, we consider events forming [F , F ]-
connected sets C = {xk ∈ X |0 < i ≤ k ≤ j ≤ N}
where xi, xj are respectively the two elements of C
with least and greatest index with respect to ordering
≤[F,F ]. The lower probability of such a set is clearly
obtained as [5]

P (C) = max{0, F (xj)− F (xi−1)}.

Now the focal sets induce, via their intersections, a
partition of X . Any subset E ∈ X in the Boolean
sub-algebra H induced by this partition is made of
a disjoint union of [F , F ]-connected sets Ck : E =
C1 ∪ . . . ∪ CM . Then [5]:

P [F,F ](E) =
M∑

k=1

P [F,F ](Ck).

Now we can compute the lower and upper probabil-
ities of any event A ⊆ X . Namely, let A∗ be the
lower approximation of A in H (i.e. the maximal
subset A∗ ⊆ A in H). It can be proved [5, 14] that
P (A) = P (A∗), hence, if A∗ = C1 ∪ . . . ∪ CM and
Ci = {xi, xi+1, . . . , xi}, that

P (A) =
M∑

i=1

max{0, F (xi)− F (xi−1)}.

Upper probabilities are easily retrieved by duality. In
particular, if C = {xk ∈ X |0 < i ≤ k ≤ j ≤ N} is a
[F , F ]-connected subset, then

P (C) = F (xj)− F (xi−1). (6)

Note that these bounds always coincide with the lower
envelope of P[F,F ], contrary to other conservative
bounds using the relations between possibility distri-
butions and ordinary p-boxes [1] or clouds and pos-
sibility distributions [16] in their respective computa-
tions.

4 Elicitation of generalised p-boxes

To shorten notations, we adopt, from now on, the
following notation: for i = 1, . . . , N , let αi := F (xi)
and βi := F (xi) be the lower and upper probability
bounds of sets {x1, . . . , xi}, themselves denoted by Ai.
A generalised p-box can then be described as a set of
N probabilistic constraints on nested sets

i = 1, . . . , N, αi ≤ P (Ai) ≤ βi.

Hence, generalised p-boxes can be elicited by ask-
ing an expert to provide upper and lower uncertainty
bounds over a finite set of nested sets or intervals.
There are many situations where asking information

1

a

β

α

bA

F = πF
F

1− πF

Figure 1: Illustration of [F , F ] and associated cloud
[πF , 1− πF ] of Example 1

under this form is more natural than asking for a set
of (imprecise) quantiles, as would be done for ordi-
nary p-boxes. A typical situation is when a parame-
ter or physical quantity θ can be assumed to have an
unknown but constant value: in such cases, it sounds
natural to ask for confidence bounds around a best es-
timate θ̂. Other situations where generalised p-boxes
may prove interesting is: (1) when working with cat-
egorical variables for which a natural ordering does
exist and; (2) when θ ∈ Rn and when sets Ai are con-
vex nested regions of Rn, in which case generalised
p-boxes may fit in, while ordinary p-boxes does not.

Example 1. Given a parameter θ ∈ [a, b], with
[a, b] ⊆ R, an expert provides an interval A as a
best guess about the value of θ, together with upper
and lower confidence estimates whether θ is in A.
This answer (which can be given, for example, as a
level on a symbolic scale) is translated into confidence
bounds α, β such that α ≤ P (A) ≤ β. Define X as
{A, [a, b]\A}. This information can be translated into
a generalised p-box taking values F (x) = F (x) = 1
if x ∈ [a, b] \ A(= x2) and F (x) = β, F (x) = α if
x ∈ A(= x1). Note that this is a generalisation of the
so-called simple support function [17], where an upper
confidence bound (β) is given in addition to a lower
one. Figures 1 and 2 provides a graphical illustra-
tion of this simple generalised p-box, while its induced
random set is such that

m(A) = α; m([a, b]) = β − α; m([a, b] \A) = 1− β.

Note that, from a purely practical viewpoint, the cloud
πF , 1− πF on figure 2 looks more self-explanatory, at
least graphically.

The next example is more complex, illustrating how
p-boxes can help in uncertainty elicitation.

Example 2. Consider an expert having to assess a
pH value in a certain situation. His best guess is
pH ∈ [4.5, 5.5]. He is not very certain about these
bounds and only judges them fairly plausible. He pro-
vides another wider interval [4, 6] about which he feels
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a

1− β

1− α

bA

F ∗ = πF
F ∗
1− πF

Figure 2: Illustration of , F ∗, F ∗ and associated cloud
[πF , 1− πF ] of Example 1
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Figure 3: πF , 1−πF of generalised p-box of Example 2

more confident. He is however absolutely sure that pH
values outside [3, 7] are impossible. His opinion can
be modelled as follows:

• 0.3 ≤ P (pH ∈ [4.5, 5.5]) ≤ 0.6,

• 0.7 ≤ P (pH ∈ [4, 6]) ≤ 0.9,

• 1 ≤ P (pH ∈ [3, 7]) ≤ 1.

The resulting distributions πF , 1 − πF of this gener-
alised p-box are pictured in Figure 3.

5 Propagating generalised p-boxes

Let f be a function of variableX such that f(X) = Y ,
with Y a variable taking values on a space Y. Recall
that X can be any pre-ordered space (e.g., the dis-
cretization of a multi-dimensional continuous space).
First recall that the propagation of a random set
(m,F), and of its induced set of probabilities P(m,F),
comes down to computing, for every focal set A ∈ F ,
the image f(A) and to assigning the same mass to
this set as to A in the original random set (m,F).
In a previous paper [4], we studied how to propagate
a generalised p-box [F , F ] on X , defined by the con-
straints αi ≤ P (Ai) ≤ βi for i = 1, . . . , N , through
the model f . We compared three different methods:

• by computing the image of each focal set of
(m,F)[F,F ], ending up with the random set de-

noted by (m,F)f((m,F)) and such that to any
threshold θ ∈ [0, 1] corresponds the focal set

αi+1 > θ ≥ αi
βj+1 > θ ≥ βj

}
m(f(Ai+1 \Aj)) =
min(αi+1, βj+1)−max(αi, βj);

• by considering constraints αi ≤ P (f(Ai)) ≤ βi
on the probabilities of images of sets Ai. Sets
f(Ai) being still nested, these constraints again
correspond to a generalized p-box, inducing the
random set denoted by (m,F)f([F,F ]) and such
that to any threshold θ ∈ [0, 1] corresponds the
focal set

αi+1 > θ ≥ αi
βj+1 > θ ≥ βj

}
m(f(Ai+1) \ f(Aj)) =
min(αi+1, βj+1)−max(αi, βj).

Note that f(Ai+1) \ f(Aj) ⊆ f(Ai+1 \ Aj) the
former possibly being empty ;

• by separately propagating the focal sets of each
possibility distributions πF , πF , ending up with
two propagated random sets (m,F)f(πF ) and
(m,F)f(πF ) which respectively have, for i =
0, . . . , N − 1, mass assignments m(f(Aci )) =
βi+1 − βi and m(f(Ai+1)) = αi+1 − αi. Re-
arranging them as in the original generalised p-
box, we end up with the random set denoted by
(m,F)f(πF ,πF ) and such that to any threshold
θ ∈ [0, 1] corresponds the focal set

αi+1 > θ ≥ αi
βj+1 > θ ≥ βj

}
m(f(Ai+1) \ f(Acj)

c) =
min(αi+1, βj+1)−max(αi, βj).

Here, f(Ai+1 \Aj) ⊆ f(Ai+1) \ f(Acj)
c).

If we respectively denote the probability sets, in-
duced by the three propagated random sets, by
Pf((m,F)),Pf(πF ,πF ), and Pf([F,F ]), we have the fol-
lowing inclusion relations:

Pf([F,F ]) ⊆ Pf((m,F)) ⊆ Pf(πF ,πF ),

with the inclusions being usually strict. The above
relations turn into equalities when f is an injective
function, however restricting oneself to such functions
is very limiting. When f is not injective, only the
second set Pf((m,F)) provides the correct result.

6 Conditioning with generalised
p-boxes

Since the lower probability P [F,F ] induced by a gen-
eralised p-box is also a belief function, there are two
main ways of conditioning P [F,F ] when uncertainty on
X is modelled by a generalised p-box [F , F ]: the first
is Dempster’s rule of conditioning, while the second
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is Walley’s rule of conditioning. Both extend clas-
sical Bayes conditioning, but correspond to different
interpretations of conditioning [8]. In this section, we
study whether the conditional uncertainty measures
obtained by both conditionings can still be modelled
by generalised p-boxes.

6.1 Dempster conditioning

Given a random set (m,F) and a conditioning event
B = {xb1 , . . . , xbM

}, we denote the conditional (plau-
sibility and belief) measures obtained by Dempster
conditioning [2]by P [B], P [B]. These conditional mea-
sures, which are still belief and plausibility measures,
can be obtained by computing, for each event A ⊆ X

P [B](A) =
P (A ∩B)
P (B)

,

where P is the plausibility measure of (m,F). Since
P [B] is a plausibility function, it has positive mass
assignment m[B], which can also be built from the
initial distribution m, by transferring it to subsets of
B, computing for every subset A ∈ X ,

m[B](A) =





∑
C⊆{X\B}m(A ∪ C)
1−∑A⊆Bc m(A) , if A ⊆ B

0, otherwise.

This means that the massm(A) is transferred to A∩B
if A∩B 6= ∅, and that the masses given to non-empty
sets are then normalised (so that

∑
A⊆X m[B](A) =

1). Now, the question is to know whether the upper
and lower measures P [B], P [B] are still induced by a
generalised p-box? The answer is yes, as the following
proposition indicates.
Proposition 1. Let P [F,F ] be the lower probability
induced by a generalised p-box, and B a condition-
ing event, then the lower measure P [B] obtained by
Dempster’s conditioning stems from a generalised p-
box [F , F ][B] defined on X ∩ B and yielding the re-
striction of weak order ≤[F,F ] of the original p-box to
elements x ∈ B.

Proof. Since P [B] is still induced by a random set, it
suffices to shows thatm[B] remains a mass assignment
induced by a generalised p-box, that is that focal sets
of m[B] are [F , F ]-connected and [F , F ]-ordered on B
with pre-ordering ≤[F,F ].

First, as we consider the weak ordering ≤[F,F ] re-
stricted to elements of B, and as any focal set A =
{xi, . . . , xj} is transformed after conditioning to the
focal set A ∩ B, thus retaining all elements in A and
B, A∩B is still [F , F ]-connected if the (pre)-ordering
is restricted to elements of B.

We have then to show that two distinct focal sets
A,A′ remain [F , F ]-ordered after conditioning on B.
Assume A = {xi, . . . , xj} @[F,F ] A

′ = {xk, . . . , xl},
meaning that i ≤ k and j ≤ l, with at least one of
the two inequalities strict. Let us consider an element
xbi ∈ B and the sets A \ xbi ,A′ \ xbi . If xbi ∈ A ∩A′,
then k ≤ bi ≤ j, and A \ xbi @[F,F ] A

′ \ xbi . If xbi ∈
A\A′, then i ≤ bi < k, and either A\xbi = A′ \xbi or
A \ xbi @[F,F ] A

′ \ xbi , as A,A′ are [F , F ]-connected,
thus we have A \ xbi v[F,F ] A

′ \ xbi . As we can do it
repeatedly for each element x ∈ B, this finishes the
proof.

The above proposition indicates that all the infor-
mation contained in conditional measures P [B], P [B]

is captured by a generalised p-box. If B =
{xb1 , . . . , xbM

}, with elements indexed accordingly to
≤[F,F ], and if we let Bi = {xb1 , . . . , xbi

}, then it
is sufficient to compute P [B](Bi), P [B](Bi) for i =
1, . . . ,M and to consider the induced generalised p-
box [F , F ][B] to model all the conditional information.
Let us consider the case (which is the most likely
to happen in practice) of conditioning on a [F , F ]-
connected set B = {xbi

|b1 ≤ bi ≤ bM}, then the
conditioned generalised p-box is easy to compute, as
we have, for i = 1, . . . ,M (Using Eq. (6))

P [B](Bi) =
P (Bi ∩B)
P (B)

=
P ({xb1 , . . . , xbi})
P ({xb1 , . . . , xbM

})

=
F (xbi

)− F (xb1−1)
F (xbM

)− F (xb1−1)
= F [B](xbi

),

P [B](Bi) = P [B](Bi) = 1− P [B](Bci ) = 1− P (Bci ∩B)
P (B)

= 1− P ({xbi+1, . . . , xbM
})

P ({xb1 , . . . , xbM
})

=
F (xbi

)− F (xb1−1)
F (xbM

)− F (xb1−1)
= F [B](xbi).

6.2 Walley’s conditioning

Let us now study Walley’s conditioning [18]. Given
a set of probabilities P, its associated lower and up-
per probabilities P , P and a conditioning event B for
which P (B) > 0,2 we denote the (dual) measures ob-
tained after applying Walley’s conditioning by P |B
and P |B . For any event A ⊆ X , P |B(A) is

P |B(A) = inf
P∈P

P (A ∩B)
P (B)

.

2We avoid dealing with the case where there are P ∈ P such
that P (B) = 0, which requires more caution (See Miranda [13]
for an introduction)
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x1 x2 x3 x4

F 0.3 0.5 0.9 1
F 0.1 0.4 0.7 1

Table 1: Generalised p-box [F , F ] of Example 3

When lower probabilities are belief functions, P |B(A)
can be computed by the following formula:

P |B(A) =
P (A ∩B)

P (A ∩B) + P (Ac ∩B)
.

We can then ask ourselves the same question as for
Dempster’s conditioning: can the information of P |B ,
which is known to still be a belief function [12], be
totally captured by a generalised p-box? The next
example shows that this is not the case.
Example 3. Consider the space X = {x1, x2, x3, x4}
and the p-box [F , F ] summarized in Table 1. Consider
now the conditioning event B = {x1, x2, x4}. Com-
puting the conditional measure P |B for {x1}, {x4}
and {x1, x4}, we get

P |B({x1}) = 1/8;P |B({x4}) = 1/6;P |B({x1, x4}) = 2/6.

Were P |B induced by a generalised p-box, it would
satisfy P |B({x1, x4}) = P |B({x1})+P |B({x4}) (after
Section 3), since {x1} and {x4} are disjoint [F , F ]-
connected sets. It is not the case here, hence P |B
cannot be modelled by a generalised p-box

This example shows that generalised p-box models are
not preserved under Walley’s conditioning. However,
lower conditional probabilities remain easy to com-
pute. Also, conditional probabilities P |B , P |B should
not be further used in iterated procedures (contrary
to P [B], P [B]). Indeed this type of conditioning is tai-
lored to question-answering of statistical knowledge
modelled by credal sets, on the basis of singular in-
formation B [8]. If additional singular information C
comes up, one has to compute P |B∩C , P |B∩C directly
from P , P , therefore the non-preservation of gener-
alised p-boxes under this kind of conditioning is not
really an issue.

7 Merging generalised p-boxes

In this section, we assume that S different generalised
p-boxes [F , F ]1, . . . , [F , F ]S are available to model our
uncertainty about X. They can be provided by dif-
ferent experts, sensors, or any other source of infor-
mation. In such cases, it is desirable to provide rules
to merge uncertain information, possibly taking into
account source dependencies. In the following, we say
that generalised p-boxes [F , F ]1, . . . , [F , F ]S form a

comonotonic set if F i, F i, i = 1, . . . , S, are all comono-
tonic (i.e. all orderings ≤[F,F ]i

are the same).

7.1 Idempotent merging rules

When dependencies between sources are not well
known, it is usual to use merging rules satisfy-
ing the property of idempotence, as this ensures
that the merging of two identical information items
[F , F ]1, [F , F ]2 will result in the same representation
(thus not adding unwarranted information). Given
the strong connections between generalised p-boxes,
p-boxes and possibility distributions, it appears nat-
ural to define idempotent merging rules as follows:

Conjunction: we define the conjunctively merging
[F , F ]∩ of generalised p-boxes, for any x ∈ X as the
following pair of mappings

F∩(x) = max
i=1,S

F i(x) and F∩(x) = min
i=1,S

F i(x). (7)

We say that the conjunction is empty when F∩(x) >
F∩(x) for at least one x ∈ X
Disjunction: we define the conjunctively merging
[F , F ]∪ of generalised p-boxes as the pair of mappings
F∩, F∩ such that, for any x ∈ X

F∪(x) = min
i=1,S

F i(x) and F∪(x) = max
i=1,S

F i(x). (8)

Convex combination: Let λ1, . . . , λS be non neg-
ative weights summing up to one (

∑S
i=1 λi = 1)

and associated to sources. We then define the arith-
metic weighted mean [F , F ]Σ as the pair of mappings
FΣ, FΣ such that, for any x ∈ X

FΣ(x) =
S∑

i=1

λiF i(x) and FΣ(x) =
S∑

i=1

λiF i(x). (9)

One can check that, when generalised p-boxes are re-
stricted to ordinary p-boxes, idempotent fusion rules
proposed by Ferson’s et al. [10] are retrieved. The
merging results [F , F ]∪, [F , F ]Σ and [F , F ]∩ are not
guaranteed to be generalised p-boxes (as comono-
tonicity can be lost), but they can still be inter-
preted as clouds (thus offering a possible answer as
how to merge clouds [16]). However, when gener-
alised p-boxes form a comonotonic set, the fact that
the maximum, minimum and mean operators are non-
decreasing in their arguments ensures that the result
will still be a generalised p-box with the same induced
ordering.

It is also useful to notice that the possibility distri-
bution pairs induced by [F , F ]∪, [F , F ]∩ and [F , F ]Σ
are such that
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• πF∪ = maxi=1,S πF i
and πF∪ = maxi=1,S πF i

,

• πF∩ = mini=1,S πF i
and πF∩ = mini=1,S πF i

,

• πFΣ
=
∑
i=1,S λiπF i

and πFΣ
=
∑
i=1,S λiπF i

.

The proposed idempotent merging rules are there-
fore equivalent to applying the classical idempotent
rules of possibility theory twice (those rules are re-
trieved when p-boxes reduce to single possibility dis-
tributions).

With regard to sets of probabilities, these merging
rules can be used as approximations of exact com-
putations. Let [πF∪ , 1 − πF∪ ], [πF∩ , 1 − πF∩ ] de-
note the clouds resulting from disjunctions, conjunc-
tions of generalised p-boxes [F , F ]1, . . . , [F , F ]S , and
P[F,F ]∪

,P[F,F ]∩
their induced sets of probabilities

(possibly empty). The following proposition holds:

Proposition 2. Let P[F,F ]1
, . . . ,P[F,F ]S

be the sets
of probabilities induced by [F , F ]1, . . . , [F , F ]S. Then,
the following inclusions hold

P[F,F ]∩
⊆

S⋂

i=1

P[F,F ]i
,

P[F,F ]∪
⊇

S⋃

i=1

P[F,F ]i
,

the first inclusion turning into an equality when gen-
eralised p-boxes form a comonotonic set.

Proof. First recall that, if π1, π2 are two possibility
distributions, min{π1, π2}, (max{π1, π2}) their min-
imum (maximum) and P1,P2,Pmin12 (Pmax12) their
induced sets of probabilities, then Pmin12 ⊆ P1 ∩ P2

(P1 ∪ P2 ⊆ Pmax12).

Using the relation between clouds and sets of proba-
bilities, we have, for conjunction:

P[F,F ]∩
= PπF∩

∩ PπF∩
,

and since πF∩ = mini=1,S πF i
and πF∩ =

mini=1,S πF i
, we have

S⋂

i=1

(
PπF i

∩ PπF i

)
⊇
(
Pmini=1,S πF i

∩ Pmini=1,S πF i

)

and since PπF i
∩PπF i

= P[F,F ]i
, this shows the inclu-

sion relation for the conjunction. If we consider now
the case where generalised p-boxes form a comono-
tonic set, then it means that all constraints bear on
the same events Ai, i = 1, . . . , N, and are of the kind
αi,j ≤ P (Ai) ≤ βi,j , where αi,j , βi,j are the lower and
upper bounds of p-box [F , F ]j for the set Ai. Thus,

the intersection ∩Si=1P[F,F ]i
is induced by the set of

following constraints:

max
i=1,S

αi ≤ P (Ai) ≤ min
i=1,S

βi,

and these constraints exactly describe the generalised
p-box [F , F ]∩. So, P[F,F ]∩

=
⋂S
i=1 P[F,F ]i

.

To see the inclusion relation for disjunction, it is suf-
ficient to note that ∪Si=1(PπF i

∩PπF i
) ⊆ (∪Si=1PπF i

)∩
(∪Si=1PπF i

), for any i = 1, . . . , S. The first probability
set is sometimes not convex even in the comonotonic
case.

In particular, Proposition 2 indicates that the con-
junction of sets of probabilities induced by ordinary
p-boxes or of sets of comonotonic possibility distribu-
tions is induced by the result of the proposed merging
rule. The conjunctive and disjunctive merging rules
can also be interpreted in terms of random sets, as
the next proposition indicates. It shows that merging
rules can be associated to a random set merging ap-
plying a commensuration process [9], with a hypothe-
sis of level-wise merging (i.e. correlation between the
sources).
Proposition 3. Consider the set {γ1, . . . , γM} =⋃S
i=1 {F i(x), F i(x)|x ∈ X} of distinct values taken by

the generalised p-box [F , F ]i, i = 1, . . . , S, and in-
dexed such that 0 = γ0 < γ1 < . . . < γM = 1. Assume
[F , F ]∩ and [F , F ]∪ are generalised p-boxes, then they
respectively induce the random sets (m,F)∩,(m,F)∪
having, for j = 1, . . . ,M , the following focal sets:

m∩(∩Si=1Ei,j) = γj − γj−1 (10)

and
m∪(∪Si=1Ei,j) = γj − γj−1, (11)

with Ei,j = {x ∈ X |(πF i
(x) ≥ γj) ∧ (1− πF i

(x) < γj)}
the set obtained by Eq. (5) for [F , F ]i.

Proof. Again, we provide only the proof for [F , F ]∪. If
we consider [F , F ]∪ and the induced pair of possibility
distributions πF∪ , πF∪ , the induced random (m,F)
have, for j = 1, . . . ,M , masses m(Ej) = γj − γj−1

assigned to focal sets such that

Ej = {x|πF∪(x) ≥ γj ∧ (1− πF∪(x) < γj)}

=
{
x| max
i=1,S

πF i
(x) ≥ γj ∧(1− max

i=1,S
πF i

(x) < γj)
}

=
{
x| max
i=1,S

πF i
(x) ≥ γj

}
∩
{
x| max
i=1,S

πF i
≥ 1− γj

}

= ∪i=1,S

{
x|πF i

(x) ≥ γj
}
∩ ∪i=1,S

{
x|πF i

≥ 1− γj
}

=
⋃

i=1,S

{
x|πF i

(x) ≥ γj ∧ πF i
≥ 1− γj

}
=
⋃

i=1,S

(Ei,j).
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This ends the proof. The fourth equality following
from known relation between possibilistic disjunction
with maximum rule and random sets combination
(namely, that the maximum of a set of possibility dis-
tributions boils down to computing level-wise unions
of their α-cuts [9]).

Note that when [F , F ]∩ and [F , F ]∪ are only clouds,
the random sets in the Proposition are only inner
approximations [5]. Finding out a relation between
[F , F ]Σ and the convex mixture of sets of probabil-
ities (i.e. PΣ = {∑S

i=1 λiPi|Pi ∈ P[F,F ]i
}) or of

random sets (the two procedure inducing the same
set of probabilities) looks harder, except when gener-
alised p-boxes form a comonotonic set, in which case
[F , F ]Σ can be seen as an approximation of the re-
sult that is exact on sets Ai (due to the fact that
Pσ(Ai) =

∑S
i=1 λiP [F,F ]i

(Ai) =
∑S
i=1 λiF (xi)).

8 Other merging rules

In cases where the independence of sources or some
dependence structures between them can be assumed,
the property of idempotence can be dropped, and it
is desirable to use merging rules reflecting the known
(in)dependence structure. We are not aware of merg-
ing rules exploiting such information in settings em-
phasising the use of probability sets, but such rules do
exist in the settings of possibility theory and of ran-
dom sets. Exploiting the links between generalised
p-boxes and possibility distributions, we can there-
fore propose an extension of the idempotent merging
rules proposed in Section 7.1, such that conjunctive
and disjunctive rules respectively become

F>(x) = ⊥i=1,SF i(x); F>(x) = >i=1,SF i(x). (12)

F⊥(x) = >i=1,SF i(x); F⊥(x) = ⊥i=1,SF i(x). (13)

with > a triangular norm and ⊥ its dual triangu-
lar conorm, possibly restricted to associative copu-
las [15]3 if a probabilistic interpretation is to be pre-
served. A t-norm is a function > : [0, 1]2 → [0, 1]
that is associative, commutative, non-decreasing in
each variable and >(x, 1) = x, >(x, 0) = 0. The
dual t-conorm of a t-norm is such that ⊥(x, y) =
1 − >(1 − x, 1 − y) for any (x, y) ∈ [0, 1]2. For in-
stance, if all sources can be judged independent, it
makes sense to use the product t-norm and its associ-
ated t-conorm ⊥(x, y) = x+ y − x · y. Note that this
rule is still equivalent to a pair-wise application of the
t-norm to possibility distributions πF i

, πF i
, and that

inclusions in Proposition 2 remain valid and are, in
this case, always strict.

3t-norms > satisfying >(c, d)−>(c, b)−>(a, d)+>(a, b) ≥ 0
for any (a, b, c, d) ∈ [0, 1]4 such that a ≤ c, b ≤ d

A Ac X
B A ∩B Ac ∩B B
Bc A ∩Bc Ac ∩Bc Bc

X A B X

Table 2: Dempster’s rule allocation for Example 4.

As generalised p-boxes constitute particular instances
of random sets, it is also possible to merge their in-
duced random sets by families of rules used in this
setting [3]. For example, one can apply unnormalised
Dempster’s rule if sources can be judged indepen-
dent. Given two random sets with mass assignments
m1,m2 on X , the random set with mass assignment
m12 resulting from unnormalised Dempster’s rule is
such that, for any A ⊆ X ,

m12(A) =
∑

B∩C=A
B,C⊆X

m1(B) ·m2(C).

The disjunctive rule is obtained by replacing ∩ with
∪ in the formula. As for possibility distributions [9],
applying this rule to random sets induced by a set
of generalised p-boxes does not, in general, result in
a random set induced by a generalised p-box as the
next example indicates.
Example 4. Let us consider two generalised p-boxes
as in Example 1, such that the first source provide
bounds α1, β1 on set A and the second source provides
bounds α2, β2 for a distinct set B, such that B ∩A 6=
{A,B, ∅}. Table 2 summarises which sets receive a
positive mass for the conjunctive allocation.

Since A ∩ B, A ∩ Bc, Ac ∩ Bc, A ∩ Bc are disjoint
focal sets strictly included in X , the result is not a
generalised p-box, since there are no weak order on
elements of X such that all focal sets are connected
and ordered. The same argument holds for the dis-
junctive counterpart of Dempster’s rule.

9 Summary and Conclusions

This paper suggests that generalised p-boxes are not
very stable uncertainty representations, in the sense
that most information processing tasks (e.g. propa-
gation, conditioning), once applied to generalised p-
boxes, result in representations that are no longer gen-
eralised p-boxes. However, even in such situations,
using these representations can alleviate the compu-
tational burden (e.g., by using quick approximation).
There are also specific processing tasks (i.e. propa-
gation through injective functions, dempsterian con-
ditioning, merging of comonotonic sets of generalised
p-boxes) where the final result is still a generalised
p-box.
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Consequently, processing information solely by the
means of generalised p-boxes appears of poor interest
when one want to make exact computations, as their
expressive power remains limited (they can be, how-
ever, useful to provide quick approximations). It thus
appears that the main interest of generalised p-boxes
lies in the elicitation and post-processing stages. In-
deed, assigning lower and upper confidence bounds to
a set of nested sets is a quite natural way to charac-
terise and to represent information tainted with un-
certainty. Recent works on comonotonic clouds [11]
also show that generalised p-boxes (which have an ex-
pressive power equivalent to comonotonic clouds, as
they can model the same sets of probabilities) are con-
venient for modelling uncertainty in high-dimensional
spaces and facilitate optimisation tasks (exploiting
the convexity of confidence regions).

Concerning future works, there are still a number of
practical results concerning ordinary p-boxes and pos-
sibility distributions whose extensions to generalised
p-boxes need to be explored. Among these results are
fuzzy [6] and probabilistic [19] arithmetic, respectively
allowing easy propagation of fuzzy sets and ordinary
p-boxes under different (in)dependence assumptions.
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Abstract

In earlier work we have developed methods for
analysing decision problems based on multi-attribute
utility hierarchies, structured by mutual utility inde-
pendence, which are not precisely specified due to un-
willingness or inability of an individual or group to
agree on precise values for the trade-offs between the
various attributes. Our analysis is based on what-
ever limited collection of preferences we may assert
between attribute collections. In this paper we show
how to assess the robustness of our selected decision
using the properties of boundary linear utility.

Keywords. Robust decisions, imprecise utili-
ties, utility hierarchies, mutual utility independence,
boundary linear utility, sensitivity analysis.

1 Introduction

In two earlier papers we have developed a method-
ology for decision analysis with multi-attribute util-
ities which does not require the specification of pre-
cise trade-offs between different risks. Multi-attribute
utilities may be imprecisely specified, due to an un-
willingness or inability on the part of a client to spec-
ify fixed risk trade-offs or because of disagreement
within a group with responsibility for the decision.

In [3] we introduced our approach to constructing im-
precise multi-attribute utility hierarchies and finding
the Pareto optimal rules. We described the structure
which we use, which is based on a utility hierarchy
with utility independence at each node, explained the
notion of imprecise utility trade-offs for such a hierar-
chy, based on limited collections of stated preferences
between outcomes, and used Pareto optimality, over
the set of possible trade-off specifications, to reduce
the set of alternatives. These methods and some as-
sociated theory are summarised in Section 2 of this
paper.

We are particularly concerned with problems where

the number of alternatives among which we must
choose is large. Many real decision problems, for ex-
ample in experimental design, have very large spaces
of possible choices. Relaxing the requirement for pre-
cise trade-off specification reduces our ability to elim-
inate rules, i.e. choices, by dominance and can leave
us with a large class of rules, none of which is dom-
inated by any other over the whole range of possible
trade-offs allowed by the imprecise specification. We
are therefore faced with the need for practical ways
to reduce the decision space which are tractable even
when the decision space is very large and there is a
complicated multi-attribute utility structure to con-
sider. In [4] we described ways to reduce further the
class of alternatives that we must consider, by elimi-
nating rules which are “ε-dominated” and combining
rules which are “ε-equivalent.” We explored the ef-
fects of different values of ε and of different parts of
the hierarchy to see when and why rules are elimi-
nated.

To choose a single rule d∗ from our reduced list, we can
use the boundary linear utility approach described in
[3], or choose the rule which is the last to be elimi-
nated as we increase the value of our ε criterion as
described in [4]. We can then find the set D∗ of rules
which are “almost equivalent” to d∗ and perhaps use
secondary considerations to choose among them. We
review boundary linear utility in Section 3 of this pa-
per.

In Section 4 we describe methods, based on the
boundary linear utility, for exploring the sensitivity
of possible choices to variation in the utility trade-
offs. This helps us to find a decision which, as far
as possible, is a good choice over the whole range of
possible trade-offs.

The practical implementation of our approach is il-
lustrated throughout by an example concerning the
introduction of a new course module at a university,
which we first described in [4].
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2 Mutually utility independent
hierarchies and imprecise utility
tradeoffs

2.1 Mutually utility independent hierarchies

In [3] we proposed a general class of multi-attribute
utility functions. This uses the concept of mutual
utility independence among sets of attributes in or-
der to impose a structure on the utility function. At-
tributes Y = (Y1, ..., Yk) are utility independent of the
attributes Z = (Z1, ..., Zr) if conditional preferences
over lotteries with differing values of Y but fixed val-
ues, z, of Z, do not depend on the particular choice of
z. Attributes X = (X1, ...,Xs) are mutually utility in-
dependent if every subset of X is utility independent
of its complement. If attributes X are mutually util-
ity independent, then the utility function for X must
be given by the multiplicative form

U(X) = B−1

{
s∏

i=1

[1 + kaiUi(Xi)]− 1

}
, (1)

where B does not depend on U1(X1), . . . , Us(Xs), or
the additive form

U(X) =
s∑

i=1

aiUi(Xi), (2)

(see [6]) where Ui(Xi) is a conditional utility function
for attribute Xi, namely an evaluation of the utility
of Xi for fixed values of the other attributes. The
coefficients in (1) and (2) are the trade-off parameters;
the ai reflect the relative importance of the attributes
and k reflects the degree to which rewards may be
regarded as complementary, if k > 0, or as substitutes,
if k < 0.

The assumption of mutual utility independence,
which many people would often be prepared to make,
is enough in itself to reduce the problem to one of
considering a finite number of parameters.

Keeney and Raiffa [6] also describe the idea of a hier-
archy of utilities, as follows. We form an overall multi-
attribute utility from marginal utilities for the various
attributes by a hierarchical structure in which, at each
node, several utilities are merged into a combined util-
ity. This combined utility is merged with others at a
node in the next level until, finally, one overall utility
function is formed. If, at each node, we have mutual
utility independence for the utilities combined at that
node, then we term such a utility function a Mutually
Utility Independent Hierarchic (MUIH) utility. Thus,
in a MUIH utility, at each node we combine utilities
using either (1) or (2).

Our hierarchical structure allows us to relax the re-
quirement for overall mutual utility independence by
allowing the user to specify utility independence just
at the nodes of the hierarchy and, of course, the user
can choose this structure.

In our utility hierarchy we consider the overall util-
ity node to be at the “top” level and the predeces-
sors of a node to be at “lower” levels. We refer to
the nodes corresponding to the individual attributes,
that is nodes which have no predecessors, as marginal
nodes. We refer to a direct predecessor of a node as
a parent and a direct successor as a child. For each
node n, we denote by H(n), the sub-hierarchy under
n, where H(n) is the set of nodes containing n and all
of its predecessors. We divide the child nodes in the
hierarchy into the following three types:

1. an additive node, where utilities are combined
as in (2) with

∑s
i=1 ai ≡ 1 and ai > 0 for

i = 1, . . . , s;

2. a binary node, where precisely two utilities are
combined, where we rescale the combined utility
as

U = a1U1 + a2U2 + hU1U2 (3)

where 0 < ai < 1 and −ai ≤ h ≤ 1 − ai, for
i = 1, 2, and a1 + a2 + h ≡ 1. Note that (3) is
derived by setting s = 2 and h = ka1a2 in (1).

3. a multiplicative node, where more than two utili-
ties are combined and the parameter k in (1) may
be nonzero. We scale the utility using

B =
s∏

i=1

(1 + kai)− 1 (4)

with a1 ≡ 1, k > −1 and, for i = 1, . . . , s, we
have ai > 0 and kai > −1.

For each child node n, we denote by φ
n

=
(φn,1, . . . , φn,m(n)) the collection of trade-off parame-
ters which determine how the parent utilities at node
n are combined to give the value at the child node.
Thus, each φn,j corresponds to an ai in (2) an ai or h
term in (3), or an ai or k in (1). If there are N child
nodes, then we denote by θ = (φ

1
, . . . , φ

N
) the collec-

tion of all the trade-off parameters in the hierarchy.
If we allow imprecision in some of the elements of θ,
then we refer to the resulting utility specification as
an imprecise independence hierarchy (IIH). If the hi-
erarchy contains only additive and binary nodes, then
we refer to the specification as a simple imprecise in-
dependence hierarchy (SIIH)

The utility at each child node is determined both by
the values of the utilities at the marginal nodes and
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also by the choice of trade-off parameters. As we shall
vary the trade-off parameters, and thus the utilities
at the child nodes, we require a standard scale for
all utilities in the IIH, whose interpretation does not
depend on the choice of trade-off parameters. This is
constructed as follows.

As the marginal utility at each marginal node is ex-
pressed in a utility scale, we norm all the marginal
utilities to lie between 0, the worst outcome that we
shall consider for the problem, and 1, the best out-
come. The effect of the scalings that we have chosen
for additive, binary and multiplicative nodes is that,
at each node n in the hierarchy, the utilities of Cn

and cn are 1 and 0 respectively, where Cn is an out-
come such that all marginal predecessor nodes have
utility 1, and cn is an outcome such that all marginal
predecessor nodes have utility 0. Therefore, a utility
value of u at node n may always be interpreted as
the utility of a gamble giving Cn with probability u
and cn with probability 1−u, irrespective of the chain
of trade-off parameters in the hierarchy. This utility
scale is termed the standard scale for the hierarchy.
Throughout this paper, all utilities are assumed to be
on the standard scale.

2.2 Example: Designing a new course
module at a university

In [4] we introduced an example concerning the design
of a new course module at a university. We use the
same example here to illustrate our approach. The
module is to contain six units, or topics, each of which
may, for the purpose of this example, be considered to
be of the same size in the sense that, given the same
teaching method, they would require the same length
of time. Each topic could be taught by any one of
three teaching methods, denoted as follows:

Lect : a traditional course of lectures and tutorials.

Lab : a laboratory-based course using a computer
algebra package.

OL : an “open learning” course without lectures or
formal laboratory sessions.

Thus we have 36 = 729 possible choices of combina-
tions of teaching methods. We can denote a choice
(µ1, . . . , µ6) where µi = 1,2 or 3 according to which
method is used for unit i. (In practice there are ad-
ditional choices to be made, but we do not wish to
introduce unnecessary complexity into this example).
The attributes which we consider in our analysis are
as follows. Further details are given in [4].

• For students:
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Figure 1: Utility hierarchy for the course design ex-
ample.

S1 short term learning,
S2 longer-term learning,
S3 satisfaction,

• For the university and staff:

V1 staff satisfaction,
V2 institutional benefits,
V3 staff development,
C financial cost.

As for many decision problems, the attributes of in-
terest are in very different units and it may be difficult
to establish precise trade-offs between the attributes
in order to rank the various teaching choices.

2.3 Example: Utility hierarchy

The utility hierarchy is shown in Figure 1.

The overall utility node U is a binary node, combining
the utility UC for cost and the utility UQ for quality.
So the overall utility is

U = aUQUQ + aUCUC + hUUQUC .

The “module quality” utility UQ is formed at a binary
node and is given by

UQ = aQSUS + aQV UV + hQUSUV ,

where US and UV are the utilities for “Students” and
“University”. Each of these is an additive node which
depends on three marginal utilities:

US = aS1US1 + aS2US2 + aS3US3,

UV = aV 1UV 1 + aV 2UV 2 + aV 3UV 3.
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Vertex
φ

S1
φ

S2
φ

S3
φ

S0

aS1 0.2 0.2 0.5 0.3
aS2 0.4 0.7 0.4 0.5
aS3 0.4 0.1 0.1 0.2

Node S (Students).

Vertex
φ

V 1
φ

V 2
φ

V 3
φ

V 0

aV 1 0.05 0.05 0.20 0.10
aV 2 0.50 0.75 0.55 0.60
aV 3 0.45 0.20 0.25 0.30

Node V (University).

Vertex
φ

Q1
φ

Q2
φ

Q3
φ

Q4
φ

Q0

aS 0.890 0.500 0.890 0.500 0.695
aV 0.110 0.500 0.305 0.305 0.305
hQ 0.000 0.000 -0.196 0.195 0.000

Node Q (Module Quality).

Vertex
φ

U1
φ

U2
φ

U3
φ

U4
φ

U0

aC 0.7 0.5 0.7 0.5 0.6
aQ 0.3 0.5 0.4 0.4 0.4
hU 0.0 0.0 -0.1 0.1 0.0

Node U (Overall Utility).

Table 1: Trade-off parameter values.

The marginal utilities US1, US2, US3, UV 1, UV 2, UV 3

are associated with the attributes S1, S2, S3, V1, V2,
V3. Details of the evaluation of expected marginal util-
ities are given in [4].

The utility function is fully specified when we assign
values to all of the trade-off parameters in the above
relations. In this paper, we shall consider how to anal-
yse the problem as an SIIH, when we are unwilling to
give precise values to these trade-offs.

2.4 Using Imprecise Trade-off Parameters

One of the most difficult tasks in specifying a mutu-
ally utility independent structure is the quantification
of the various trade-off parameters in the forms (2),
(3) and (1), as this typically requires the comparison
of intrinsically different types of costs and benefits.
Therefore, it is of fundamental interest to consider
problems where we are unwilling to fix on particular
trade-off values or where a group of individuals must
make a joint decision, and there is broad agreement
on the marginal utilities, but different members of the
group have different priorities when trading risks.

Although we are unwilling to place strict values on
the trade-offs, there will be certain combinations of
outcomes over which we are prepared to state pref-
erences and these comparisons establish the region of
the space of trade-off parameters which we must con-
sider. We choose to elicit our imprecision in the values
of the trade-off parameters θ based on our stated pref-
erences over utility combinations for outcomes, as this
is usually more meaningful than considering directly
the imprecision in the elements of θ. So, for each
child node, we make a collection of pairwise compar-

isons between vectors of values of parent utilities (or,
equivalently, the corresponding vectors of attribute
values). Details are given in [3].

Some authors also consider imprecision in the
marginal utility functions. Recent examples include
[7] who describe a decision support system in which
the imprecise multi-attribute utility function is addi-
tive and [5], who allow a multiplicative function in
which a range for the value of k in (1) is determined
by considering the values implied by ranges given for
a1, . . . , as. In both cases ranges for the trade-off pa-
rameters are combined to form a rectangular space.
In this paper we only consider imprecision in trade-
offs and assume that the necessary expectations of
marginal utilities, and in some cases their products,
can be agreed. However we do not impose an arbitrary
probability distribution over ranges of imprecision, or
over attributes, nor do we assume a rectangular shape
for the space of trade-off parameters allowed by the
imprecise specification resulting from a careful elici-
tation process.

For each additive or binary child node, we state
whichever preferences we wish between pairs of utility
vectors for the parent nodes. Each stated preference
places a linear constraint on the allowable choices for
the trade-off parameters φi. We term the collection,
R, of all sets of trade-off parameters consistent with
each of the stated preferences the feasible region of
choices for the trade-off parameters. In [3] we showed
that the shape of the region of trade-off parameters re-
sulting from the above elicitation scheme for an SIIH
is as follows. At each additive or binary node n, we
obtain a convex polyhedron Rn for the allowable val-
ues of φ

n
. The regions R1, . . . , RN together define a
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d1 1, 3, 1, 1, 3, 2
d2 2, 3, 1, 3, 3, 2
d3 1, 3, 1, 3, 3, 2
d4 1, 3, 1, 1, 1, 3
d5 1, 3, 1, 1, 3, 3
d6 2, 3, 1, 1, 3, 2

Table 2: Alternatives for comparison.

region R in the combined space of parameters θ, where
θ ∈ R if and only if φ

n
∈ Rn for n = 1, . . . , N. The

vertices of Rn are denoted φ(1)

n
, . . . , φ(rn)

n
and those

of R are denoted θ(1), . . . , θ(r). Let P be the set of
vertices of R and Pn be the set of vertices of Rn.

We explained in [3] that, in the case of an IIH contain-
ing multiplicative nodes where the utilities are com-
bined using (1) and (4), we must modify the elicita-
tion procedure. We also described the shape of the
resulting feasible set. If we are willing to choose a
fixed value for k then, at each multiplicative node n,
we obtain a bounded rectangular region Rn(k), with
vertices φ(1)

n
, . . . , φ(rn)

n
, for the remaining elements of

φ
n
. The shape is somewhat more complicated if the

value of k is also treated as imprecise.

2.5 Example: Imprecise trade-offs

The specification of imprecise utility trade-offs in this
example was described in more detail in [4]. Table
1 gives the vertex set Pi for the feasible region Ri,
at each node i. For each node, a central value φ

i0
is

also listed, which is the average of the values at each
vertex.

In [4] we found that there were 50 Pareto optimal
choices in this example. Of these, 37 could be elim-
inated because they were equivalent to other choices
which were retained. We chose the value ε = 0.012
and, by applying our ideas of almost-preference with
this value of ε, reduced the list to the six alternatives
listed in Table 2. These are ordered according to our
ε-preference procedure, d6 being eliminated before d5

and so on. The last remaining choice is d1.

3 Boundary linear utility

3.1 Definitions and motivation

The feasible region for the trade-off parameters in a
SIIH is the convex hull of a finite collection of trade-
off parameters θ(i) ∈ P, i = 1, . . . , r. We now need
a way to compare non-dominated choices over this
region. Let Ui be the utility function determined by
the choice of trade-offs θ(i) ∈ P, i = 1, . . . , r. Any

function of the form

Ūλ =
r∑

i=1

λiUi (5)

where λ = (λ1, . . . , λr) are non-negative constants
such that

∑r
i=1 λi = 1 is termed a boundary linear

utility . For any such Ūλ, we may identify the rule
which maximises Ūd,λ =

∑r
i=1 λiUd,i, where Ud,i is

the utility of alternative d with trade-off θ(i).

In [3] the boundary linear form is motivated by vari-
ous axiomatic and natural requirements for the com-
bination of group preferences. In addition to such
theoretical support, the boundary linear form is easy
to interpret, gives a clear comparison between differ-
ent choices and leads to tractable procedures even for
large numbers of alternative decisions. The choice
of the λ weights can be used to emphasise or de-
emphasise the importance of a particular attribute by
putting more or less weight on vertices corresponding
to different values for a particular trade-off.

While the set of λ weights is formally equivalent to a
probability distribution over the points in P, our in-
terpretation of the λ weights is not probabilistic but is
in terms of the properties of the boundary linear util-
ity described below and as a means for exploring the
robustness of alternatives. A probability distribution
over possible sets of attribute weights is used in [1] as
a means of exploring sensitivity. In [2] a weight speci-
fication, known as a second order belief specification,
over the ranges of imprecisely specified probabilities
and expected utilities in a decision tree is used to help
make a unique choice of alternative.

3.2 Properties of the boundary linear utility

Let us consider first the case of a SIIH.

There is a natural relation between Pareto optimality
and Bayes rules for boundary linear utilities. In [3] we
showed that, for a SIIH, a decision which is either (i)
a unique Bayes decision for some Ūλ, or (ii) a Bayes
decision for some Ūλ with λi > 0 for i = 1, . . . , r, is
Pareto optimal over R.

Each weight λi corresponds to a complete parameter
specification θ(i). It is useful to be able to relate this
to weights applied to parameter specifications at in-
dividual nodes. Denote by λ(i1, . . . , iN ) the weight
applied to the combination of vertices φ(i1)

1
, . . . , φ(iN )

N
at nodes 1, . . . , N respectively. Denote by λn,i the
weight applied to vertex φ(i)

n
at node n. If we require

that the weights applied to vertices at node n should
not change if we combine this vertex with a different
vertex at another node then we require
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λ(i1, . . . , in, . . . , iN )
λ(i1, . . . , i′n, . . . , iN )

=
λn,in

λn,i′n

for two different vertices in and i′n at node n, with
λn,i′n 6= 0. It follows that λ(i1, . . . , iN ) =

∏N
n=1 λn,in

.
Such a weight specification is called a multiplicative
weighting. For such a specification, we may vary the
weights at each node separately.

It is often helpful to equate the boundary linear form
with the utility at interior trade-off values. It fol-
lows directly from the fact that Ri is a convex poly-
hedron that, for any θ in R, there exists a multi-
plicative weighting λ such that θ = θ̄λ and, for any
multiplicative weighting λ, there exists a θ in R such
that θ = θ̄λ, where θ̄λ =

∑
j λjθ

(j) and the sum is
taken over all of the vertices of R. In [3] we showed
that, in a SIIH, if λ is a multiplicative weighting
then Ūλ = U(θ̄λ). This result establishes a correspon-
dence between the elements of R and the multiplica-
tive boundary linear utilities.

From this we know that, for any θ in R, we can find
λ1, . . . , λr such that U(θ) =

∑
i λiUi. Values of θ

not on the boundary of R will give λ values satisfying
λi > 0 for i = 1, . . . , r. Rules which are Bayes for such
internal θ values will therefore be Pareto optimal over
R.

For illustration of the multiplicative weighting, con-
sider a simple example with three marginal utilities
and two additive nodes where

U0 = φ01U1 + φ02U2, U1 = φ13U3 + φ14U4

and at each of the two nodes we have two alternative
parameter specifications, corresponding to the vertex
values. The two values for φ01 are φ011 and φ012 etc.
Thus R has four vertices. Assign weight λjk to the
vertex where node 0 takes parameter specification j
and node 1 takes parameter specification k. The co-
efficient of U3 in U0 is now

Φ3 = {(λ11 + λ12)φ011 + (λ21 + λ22)φ012}
×{(λ11 + λ21)φ131 + (λ12 + λ22)φ132} .

Now introduce weights on the parameter values at
the individual nodes and calculate the overall weights
from these so that λ11 = λ⋆

01λ
⋆
11, λ12 = λ⋆

01λ
⋆
12, λ21 =

λ⋆
02λ

⋆
11, λ22 = λ⋆

02λ
⋆
12, where λ⋆

01 is the weight on the
first parameter set at node 0 etc. and the weights at
each node sum to 1. The coefficient of U3 now sim-
plifies to

Φ3 = {λ⋆
01φ011 + λ⋆

02φ012} {λ⋆
11φ131 + λ⋆

12φ132}
= λ⋆

01λ
⋆
11φ011φ131 + λ⋆

01λ
⋆
12φ011φ132

+λ⋆
02λ

⋆
11φ012φ131 + λ⋆

02λ
⋆
12φ012φ132

= λ11φ011φ131 + λ12φ011φ132 + λ21φ012φ131

+λ22φ012φ132

a weighted average of the coefficients at the four ver-
tices, as required.

3.3 Boundary linear utility in a general IIH

The boundary linear utility is easily extended to the
case where a hierarchy contains multiplicative nodes
where the utilities are combined as in (1) and (4)
provided that a precise value of the parameter k is
used. The extension to the case where k is imprecisely
specified is discussed in [3] where we showed that, in
any IIH, for any θ in R there exists a multiplicative
weighting λ such that U(θ) = Ūλ, thus generalising
the correspondence between the elements of R and
the multiplicative boundary linear utilities.

3.4 Example: Boundary linear utility

With equal λ weights on all vertices, the alternative
which maximises E(Ūλ) is rule d1 which gives E(Ūλ) =
0.5120. The central point θ0, at which U(θ) = Ūλ, is
given by the centres of each range as given in Table
1.

The λ weights could be varied to change the empha-
sis on different attributes. For example, at node U
the coefficient of financial cost varies between 0.5 and
0.7. Putting more weight on all vertices where the
coefficient was 0.7 would emphasise this attribute,
whereas more on all vertices where it was 0.5 would
de-emphasise it. For illustration we changed the
weights to 2:1 in favour of 0.7 and 2:1 in favour of
0.5. In each case rule d1 maximised E(Ūλ) giving val-
ues of 0.5096 and 0.5144 respectively. This increases
our confidence in the choice of d1.

Sometimes, we may uniquely choose a collection of
λ weights under the guidance of one of the formal
arguments in [3]. However, usually we will want to
consider the robustness of our choice to variation in
λ, which we now address more formally.

4 Exploring sensitivity

4.1 General comments

The boundary linear utility gives us an approach to
choosing between alternative rules. However, while
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any given boundary linear utility function identifies
a “best” alternative, we would usually prefer an al-
ternative which is robust in the sense that it behaves
well compared to most alternatives over most of the
range of trade-off parameters. We now consider how
such robustness may be assessed.

When we have chosen a multiplicative boundary lin-
ear utility Ūλ =

∑r
i=1 λiUi, we find the decision

d⋆ which maximises expected utility, under Ūλ. We
also define a ‘central’ parameter specification θ0 =∑r

i=1 λjθ
(j) where this sum is taken over the elements

of P. From Section 3.2 we know that, in a SIIH, when
λ is a multiplicative weighting, U(θ0) = Ūλ. Thus, we
can explore sensitivity in two ways. First, we can see
how much we must change the λ weightings in order
to alter our choice of best decision and secondly, at
least in a SIIH, we can see how far we must move
away from the central value θ0, to alter our choice.
Effectively, this establishes two separate but related
sensitivity metrics. The former is concerned solely
with the relative importance of the various vertices
of the trade-off space, irrespective of their Euclidean
values, while the latter reflects the actual Euclidean
distances between alternative trade-off parameters.

The investigations described below are designed to
assess the robustness of our decision to the choice of
trade-off. At each step, if the analysis suggests that
there are other alternatives which perform substan-
tially better than our selected rule over much of the
trade-off space, then we may repeat the steps, sub-
stituting the suggested alternatives, to see whether a
more robust choice of rule may be found.

Suppose, in what follows, that we have a set D of
alternatives for comparison with d⋆. This set may be a
subset of the Pareto optimal choices formed using the
methods in [4]. Suppose also that we have chosen a
small increment ε > 0 which we tolerate in comparing
utilities, as discussed in [4].

4.2 Volume sensitivity

A first general robustness measure is as follows. For
each alternative in D, we compute the volume of λ-
space, as a proportion of the total volume within
which

∑
λj = 1, over which the difference in util-

ity between that alternative and d⋆ is at least ε. If
this proportion is very small, then this suggests that
d⋆ is robust against that alternative.

Having assessed global sensitivity over the whole hi-
erarchy, we may repeat the analysis in any sub-
hierarchy. For any child node i, with utility Ui, we
may find the proportion of the permissible λ-space
for the vertices of the feasible region of parameters in

the sub-hierarchy under i in which the difference in
expectations of Ui between an alternative and d⋆ is at
least ε.

To do these analyses we need to be able to compute
the volume of λ-space which satisfies a condition

g(d1, d2) = Ūλ(d1)− Ūλ(d2) > x (6)

for some specified x, where d1 and d2 are two
choices. Let d = (d1, . . . , de) and Ū

(n)
λ (d) =

(Ū (n)
λ (d1), . . . , Ū

(n)
λ (de)), where Ū

(n)
λ (dj) is the bound-

ary linear utility evaluated at node n with weights λ
over the subhierarchy H(n) under n. To evaluate the
volume satisfying (6), we can make use of the follow-
ing analogy.

If we gave λ a uniform distribution over its feasible
region then the required volume would be the prob-
ability that (6) is satisfied. The utility hierarchy can
then be interpreted as a graph in which the probabil-
ity distribution of the utility difference between any
two decisions at a child node, given the values of the
parent utilities, would depend only on the distribution
of the tradeoff parameters at the child node. Thus we
can evaluate the distribution of Ū

(n)
λ (d) higher in the

hierarchy through a chain of conditional distributions.
See, e.g., [9].

Specifically, the density of Ū
(n)
λ (d), the values at a

child node n with parents n1, . . . , ns, is

fn(Ū (n)
λ (d)) =

∫
· · ·

∫ {
fn|H(n)[Ū

(n)
λ (d) | Ū (n∗)

λ (d)]

s∏

i=1

fni
(Ū (ni)

λ (d)

}
dŪ

(n∗)
λ (d) (7)

and

Pr(gn > x) =
∫
· · ·

∫ {
Pr[gn > x | Ū (n∗)

λ (d)]

s∏

i=1

fni
[Ū (ni)

λ (d)]

}
dŪ

(n∗)
λ (d) (8)

where Ū
(n∗)
λ (d) = Ū

(n1)
λ (d), . . . , Ū (ns)

λ (d) and
fn|H(n)[Ū

(n)
λ (d) | Ū

(n∗)
λ (d)] is the conditional density

given the values of the boundary linear utilities eval-
uated at the parent nodes for the elements of d.

Starting with the children of the marginal nodes, the
distribution of Ū

(n)
λ (d) is evaluated node-by-node up
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the hierarchy using (7). At a child node n with rn

vertices we have, from (5) and (6),

gn(d1, d2) =
rn∑

i=1

λn,i[U
(n)
i (d1)− U

(n)
i (d2)]

where U
(n)
i (d) is evaluated at vertex i of node n. Thus

gn(d1, d2) = x defines a plane in λ-space which may
cut the feasible region. The conditional probability
Pr[gn > x | Ū

(n∗)
λ (d)] in (8) is then a proportion of

the volume of the feasible polyhedron which can be
determined by finding where gn = x cuts the edges.

Similarly, the conditional probability Pr[Ū (n)
λ (d1) <

x | Ū
(n∗)
λ (d)] is the proportion of the volume of the

feasible polyhedron at node n cut off by Ū
(n)
λ (d1) = x,

with the parent utilities fixed. Differentiating this
probability with respect to x gives the conditional
density of Ū

(n)
λ (d1). Then fixing Ū

(n)
λ (d1) = x1 im-

poses a linear constraint on λn,1, . . . , λn,rn
and re-

duces the dimension of the feasible region by 1. By
considering the intersection of Ū

(n)
λ (d2) = x2 with

this reduced region we can find the conditional distri-
bution of Ū

(n)
λ (d2) given Ū

(n)
λ (d1) = x1. If required,

we can continue this process for d3, . . . , drn−1. For
j > rn − 1, Ū

(n)
λ (dj) is then a deterministic func-

tion of Ū
(n)
λ (d1, . . . , drn−1). In this way we can find

the conditional density fn|H(n)[Ū
(n)
λ (d) | Ū

(n∗)
λ (d)] in

(7).

4.3 Example: Volume sensitivity

We have identified the choice d1 under the utility with
equal weightings at each vertex in P . We now consider
the sensitivity of that choice, following the steps in
Section 4.

We computed the volume of λ-space, as a propor-
tion of the total volume within which

∑
λj = 1, over

which the difference in utility between alternative d1

and each of the other retained alternatives is at least
−ε, at our chosen value of 0.012. We concluded that
the volume over which the difference in favour of any
alternative over d1 is greater than ε is less than 0.01%
of the total volume and therefore that d1 is a robust
choice. (The proportion is nonzero, since we know
that the difference is greater than ε at some of the
vertices. However the region of λ space which we are
exploring is a simplex of very high dimension and the
neighbourhoods of the vertices of this simplex con-
tribute only a tiny fraction of the total volume.)

Next we computed the proportions of λ-volume over
which each alternative’s boundary linear utility ex-
ceeded that of d1 by at least ε for each of the non-
marginal nodes in the hierarchy. Table 3 gives the re-

Node
U Q S V

d2 0.000 1.000 0.103 1.000
d3 0.000 0.001 0.000 1.000

Rule d4 0.000 0.000 0.000 0.000
d5 0.000 0.000 0.000 0.000
d6 0.000 1.000 1.000 1.000

Table 3: Proportions of λ volume where the utility
difference is at least ε at non-marginal nodes.

Choice
d1 d2 d3 d4 d5 d6

C 0.484 0.416 0.476 0.544 0.536 0.424
S1 0.497 0.447 0.463 0.433 0.400 0.480
S2 0.578 0.577 0.528 0.420 0.370 0.627
S3 0.800 0.900 0.800 0.800 0.800 0.900
V1 0.533 0.467 0.433 0.500 0.400 0.567
V2 0.433 0.667 0.533 0.300 0.400 0.567
V3 0.467 0.717 0.583 0.333 0.450 0.600

Table 4: Values of expected utilities at the marginal
nodes.

sults. The results show that the challenge to d1 seems
to be based in node V. The apparent main challengers,
rules d2 and d6, differ only in Unit 4 which is given by
lectures in d6 and open learning in d2. According to
the elicited expectations, d6 thus favours the students
more.

4.4 Distances in λ-space

Next, for each alternative in D, we identify those
vertices where the difference in utility between that
choice and d⋆ is at least ε. For each of these vertices,
we find the distance, in λ-space, in the direction of
the vertex, between λ0, our original λ specification,
and the point where the difference in boundary lin-
ear utility between that choice and d⋆ first reaches
ε. Let ‖ λ ‖=

√
λ′λ, where λ′ is the transpose of λ.

We find t ‖ λv − λ0 ‖, where λv is the λ vector for a
vertex, t = {δ(λ0) + ε}/{δ(λ0) − δ(λv)} and δ(λ) is
the difference in boundary linear utility at λ. Large
values of these distances suggest robustness of d⋆. In
this metric, the distance between any two vertices is√

2.

4.5 Example: Distances in λ-space

Table 4 shows the values of the expected marginal-
node utilities for the members of D and Table 6 shows
at which marginal node each alternative is superior
to d⋆. Table 5 lists the vertices where the difference
in utility between one of the other alternatives and
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d⋆ is at least ε. The vertices are numbered for easy
reference. The vertices can be identified using the
numbering of the vertices at each node, which is the
same as in Table 1. Table 5 then gives the distances,
from the original λ specification towards these ver-
tices, to reach points where the difference in utility
between one of the other alternatives and d⋆ is at
least ε. Most of the distances are large. There are a
few exceptions, notably for rule d2 at vertices 46 and
47. Rule d2 is the retained option with the least de-
pendence on traditional lectures and at these vertices
relatively little weight is placed on financial cost but
relatively great weight is placed on institutional bene-
fit. To put the distances in context, observe that each
original λ value is approximately 0.007. The move re-
quired for vertex 46 changes λ46 to approximately 0.6
and therefore the average of the other λ values is less
than 0.003 or 0.5% of λ46. There seems to be little
reason here to change our conclusion that d1 is a ro-
bust choice. Notice also how the pattern of marginal
nodes in common between rules in Table 6 tends to
be repeated with vertices in common in Table 5.

4.6 Sensitivity in the θ-metric

We can quantify sensitivity in the θ-metric by looking
at the effect of general movement away from θ0 as
follows. Let the elements of P be θ(1), . . . , θ(r). Define
the scaled range Rt to be the convex hull of Pt, the
elements of which are given by θ

(i)
t = θ0 + t(θ(i) − θ0)

for t ≥ 0. We may think of this as expanding a volume
(in the θ-metric) centred on θ0 until a boundary of
the region of optimality of d⋆ is reached. An obvious
extension of Lemma 2 in [3] shows that this boundary
will be reached first at an element of Pt so we only
need to make comparisons at the vertices. For each
element of D we evaluate, at each of a range of values
of t up to 1, the maximum over Pt of the difference
in expected utility compared with d⋆ and plot these
values against t. This plot will serve as an indication
of over how large a range around θ0 we can judge
d⋆ to be robust. This approach may be compared
with that of [8] in which the sensitivity of a preferred
alternative is measured using the minimum distance
(in some metric) to a point in the parameter space at
which another alternative becomes preferable.

4.7 Example: Sensitivity in the θ-metric

Figure 2, shows one of the range expansion plots. The
horizontal axis is the expansion factor t. The vertical
axis is the difference in expected utility between an
alternative, in this case d2, and d⋆, in this case d1.
At each value of the expansion factor the values at
the 144 vertices of the range were calculated and the
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Figure 2: Expansion with respect to all parameters.
Maximum, quartiles and minimum of the difference
in expected utility between d2 and d1 at 144 vertices,
against expansion factor t. Reference lines are given
at zero and ±ε.

Choice Marginal Node
d2 S3 V2 V3

d3 V2 V3

d4 C
d5 C
d6 S2 S3 V1 V2 V3

Table 6: Marginal nodes at which alternatives are
superior to d1.

maximum, minimum, median and upper and lower
quartiles of these 144 values are plotted.

From Figure 2, we see that d2 does substantially worse
than d1 over most of the range but possibly better for
large t. Similar plots for the other alternatives show
that none of the other rules does much better than d1

over any of the range and some do much worse in some
of the range. Generally the maximum difference only
exceeds ε towards the end of the range. We conclude
that d2 is the only alternative to d1 worth further
consideration.

5 Conclusion

In [3], [4] and this paper we have described an ap-
proach to multi-attribute decision analysis where the
trade-offs between attributes are not precisely speci-
fied. Imposing the condition of utility independence
makes the dimensionality of the trade-off specifica-
tion finite and allows us to work in terms of ranges
for trade-off parameters. However, by imposing this
condition only at the nodes of a utility hierarchy we
can relax the requirement for mutual utility indepen-
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Vertex for Distance for Vertex for Distance for
Node Alternative Node Alternative

Vertex U Q S V d4 d5 Vertex U Q S V d2 d3 d6

1 1 1 1 1 0.591 46 2 2 1 1 0.354 0.815 0.710
2 1 1 1 2 0.591 47 2 2 1 2 0.371 0.919 0.710
3 1 1 1 3 0.567 48 2 2 1 3 0.672 0.967
7 1 1 3 1 0.954 49 2 2 2 1 0.518 0.978
8 1 1 3 2 0.954 50 2 2 2 2 0.548 0.978
9 1 1 3 3 0.906 52 2 2 3 1 0.638

10 1 2 1 1 0.698 53 2 2 3 2 0.681
11 1 2 1 2 0.732 64 2 4 1 1 0.468 0.779
12 1 2 1 3 0.843 0.867 65 2 4 1 2 0.492 0.782
16 1 2 3 1 0.994 66 2 4 1 3 0.892
19 1 3 1 1 0.654 67 2 4 2 1 0.929
20 1 3 1 2 0.656 68 2 4 2 2 0.992
21 1 3 1 3 0.605 118 4 2 1 1 0.637
28 1 4 1 1 0.942 0.809 119 4 2 1 2 0.673
29 1 4 1 2 0.938 0.840 121 4 2 2 1 0.991
30 1 4 1 3 0.782 0.983 136 4 4 1 1 0.878

137 4 4 1 2 0.930

Table 5: Distances to points where the utility difference is at least ε.

dence between all attributes. In our earlier papers we
discussed how to reduce the number of alternatives
for consideration and how to make a robust choice. In
this paper we have considered the examination of sen-
sitivity of our choice, in particular using the boundary
linear utility.

The example illustrated the use of our methods. We
gained a better understanding of the issues which are
important in making our choice and greater confi-
dence in our selection of d1. We saw that d2 posed
the most important challenge to the choice of d1 and
identified node V as the main basis for this challenge.

We believe that, in many difficult decision problems
where a range of trade-off specifications must be con-
sidered, our methods could lead to the selection of a
choice which is, in practical terms, close to optimal
everywhere in the range.
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Abstract

This article is devoted to the propagation of families
of confidence intervals obtained by non-parametric
methods through multivariate functions comprising
the semantics of confidence limits. At fixed confidence
level, local random sets are defined whose aggregation
admits the calculation of upper probabilities of events.
In the multivariate case, a number of ways of combi-
nations is highlighted to encompass independence and
unknown interaction using random set independence
and Fréchet bounds. For all cases we derive formulas
for the corresponding upper probabilities and elabo-
rate how they relate. The methods are exemplified by
means of an example from structural mechanics.

Keywords. Confidence intervals, non-parametric
models of uncertainty, random sets, fuzzy sets, up-
per probability, independence, unknown interaction,
Fréchet bounds.

1 Introduction

In order to render models of imprecise probability the-
ory operative, their semantics have to be developed.
It has been observed [5, 10, 11] that the idea of con-
fidence limits can provide a workable basis for con-
structing imprecise probability models. In particular,
it has been argued in [12, 13] that random sets con-
structed by Tchebycheff’s inequality can serve as a
non-parametric model of the variability of a param-
eter, given its mean value and variance as sole infor-
mation.

This article develops the concept of using confidence
limits for estimating upper and lower probabilities of
events. While the papers [5, 12, 13] addressed the
univariate case only, it is demonstrated in [10] how
to generate joint fuzzy sets from families of marginal
confidence intervals using the product t-norm for in-
dependence and t-norms based on Fréchet bounds for
unknown dependency. In this paper we demonstrate

how multivariate input can be treated using a local
random set approach.

Suppose we are given confidence intervals Iα of some
parameter at level α, 0 < α ≤ 1. Then the probabil-
ity of Iα is bigger than 1 − α, while the probability
of its complement is less than α. The key idea is to
define local random sets at level α, formed by Iα and
Ic
α with weights consistent with the confidence limits.

In this way, the upper probability of an event A can
be computed as the smallest α for which A lies out-
side the confidence interval Iα. This procedure gives
a conclusive interpretation of upper probabilities in
terms of confidence limits.

The plan of this paper is as follows:

In Section 2 families of non-parametric confidence in-
tervals are generated by means of Tchebycheff’s in-
equality.

In Section 3 we introduce the concept of local random
sets and its semantics.

In Section 4 it is described how to propagate this kind
of uncertainty through univariate functions and it is
shown that the local random set approach is consis-
tent with the fuzzy and random set approaches.

In Section 5 we address the multivariate case and gen-
erate local joint random sets in various ways consis-
tent with the confidence interpretation. This leads
to different estimates for the upper probabilities of
events. We derive computational formulas for all cases
and show how the results relate to each other and to
random set and fuzzy set independence and to the
case where nothing is known about how the variables
interact.

In Section 6, the method is applied to compute upper
distribution functions for the limit state of a beam
bedded on two springs where the uncertainty of the
spring constants is modelled by families of confidence
intervals.
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2 Non-parametric models of the
variability of a parameter X

In this article we model the variability of a parameter
X by a family I of non-parametric confidence intervals
Iα using Tchebycheff’s inequality, cf. [5, 13].

Let a random variable X be given with expectation
µ = E(X) and variance σ2 = V(X). Tchebycheff’s
inequality

P (|X − µ| > σ√
α

) ≤ α, α ∈ (0, 1]

leads to non-parametric confidence intervals

Iα =
[
µ− σ√

α
, µ +

σ√
α

]
, α ∈ (0, 1]

for the variability of X at confidence level 1−α, given
its expectation and variance as sole information. This
follows from the fact that the complement Ic

α of Iα is
the set used as the argument of P in Tchebycheff’s
inequality and by

P (Ic
α) ≤ α, P (Iα) = 1− P (Ic

α) ≥ 1− α. (1)

Then the confidence we have in Iα is 1−α or greater.
All these confidence intervals together are a family
denoted by I = {Iα}α∈(0,1] and they are nested, since
Iα ⊇ Iβ if α ≤ β. This property will be also impor-
tant in the multivariate case later on. A family I is
visualized by plotting in Fig. 1 the interval bounds of
Iα, α ∈ (0, 1], at levels α.

Ic
α Iα

µ− σ µ µ + σ

α
-le

ve
ls

0

0.4

1

Figure 1: Example of a family I.

3 The univariate case

Let a family I of confidence intervals Iα, α ∈ (0, 1],
generated as in the previous Section be given.

3.1 Local random sets at level α

We assume that α ∈ (0, 1] is fixed. Equipping the two
intervals Iα and Ic

α with weights m(Iα) and m(Ic
α) we

get a finite random set. The possible values of these
weights are determined by

m(Iα) = P (Iα) and m(Ic
α) = P (Ic

α)

and the inequalities (1) where the weight m(Iα) of Iα

corresponds to the confidence we have in the set Iα.
We call such a random set corresponding to a certain
level α local random set.

For an arbitrary event A there are three possibilities
for the relations to the two focal sets. These rela-
tions and the corresponding upper probabilities Pα

are shown in the following table:

Cases Pα(A) ∈
(i) A ∩ Iα = ∅ [0, α]
(ii) A ∩ Ic

α = ∅ [1− α, 1]
(iii) A ∩ Iα 6= ∅ and A ∩ Ic

α 6= ∅ 1

The local upper probability Pα(A) at level α for an
event A is obtained by

Pα(A) = m(Iα)χ(A ∩ Iα 6= ∅)+
+ m(Ic

α)χ(A ∩ Ic
α 6= ∅)

where χ : R → {0, 1} is the indicator function. Here
the upper probabilities are intervals because of the
inequalities (1) for the weights.

If A has the role of the “bad” and undesired event,
case (i) is the most interesting one, because its mean-
ing is:

If A is outside the confidence interval Iα at
confidence level 1− α, then we can say for sure that

A occurs only with probability α, at most.

To avoid interval-valued weights and upper probabil-
ities we take always the upper bounds of Pα in the
above table, that means

Pα(A) :=

{
α if A ∩ Iα = ∅,

1 otherwise.

Then we are on the safe side in all three cases.

In general we are not in the interesting case (i) for a
given A, but we can try to achieve the situation of
case (i) by increasing α. On the other hand, if we
are already in case (i), we should try to decrease α
to get a smaller upper probability Pα. This leads to
the following rule for the upper probability P (A), cf.
Fig. 2:

Find the confidence interval Iα∗ with the smallest
α∗ ∈ (0, 1] among those confidence intervals Iα with

Iα ∩A = ∅. Then P (A) = α∗. If we do not find
such an interval Ia∗ , then P (A) = 1.

With inf{∅} = 1 to encompass the case where no Ia∗

can be found, we get the following formula for the
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upper probability:

P (A) = inf{α ∈ (0, 1] : Iα ∩A = ∅} = α∗. (2)

µ − σ µ µ + σ

A P 0.7(A) = 0.7

P 0.4(A) = 0.4

P 0.15(A) = 1

↓

↑
P (A) =

0

0.15

0.4

0.7

1

Figure 2: Computation of P (A).

3.2 Interpretation of I as a random set and
fuzzy set

Together with the uniform distribution on the interval
(0, 1], the family I = {Iα}α∈(0,1] of confidence inter-
vals is an infinite random set [3, 4, 11]. Note that now
all Iα ∈ I together play the role of focal sets and not
only two sets Iα, Ic

α for fixed α as before. Then for
the upper probability P (A) (or Plausibility) we get

P (A) = Pl(A) =
∫

β: Iβ∩A 6=∅
dβ = 1−

∫

β: Iβ∩A=∅
dβ =

= 1−
∫ 1

inf{β: Iβ∩A=∅}=α∗
dβ = α∗,

because the confidence intervals Iβ are nested.

Now we interpret the family I of nested confidence
intervals Iα as fuzzy numbers [14] defined by the α-
level sets Iα. The membership function µ is given by
the endpoints of the intervals Iα as in Fig. 1. Then
the upper probability P (A) (or Possibility) is given
by

P (A) = Pos(A) = sup{µ(x) : x ∈ A} =
= sup{α ∈ (0, 1] : Iα ∩A 6= ∅} =
= inf{α ∈ (0, 1] : Iα ∩A = ∅} = α∗

where sup{∅} = 0.

So all three interpretations lead to the same result for
the upper probability P (A).

4 Propagation of uncertainty trough
a univariate function g

4.1 Preliminaries

Let a continuous function

g : D ⊆ R −→ R : x 7→ g(x)

and a family I of confidence intervals Iα be given
where we assume that Iα ⊆ D which we achieve sim-
ply by truncating Iα if necessary.

Further we are using in the following that

P (g(X) ∈ A) = P (X ∈ g−1(A)),

Iα ∩ g−1(A) = ∅ ⇐⇒ g(Iα) ∩A = ∅ and

Iα ∩ g−1(A) 6= ∅ ⇐⇒ g(Iα) ∩A 6= ∅

where g(Iα) = {g(x) : x ∈ Iα} is the image of Iα

under g and g−1(A) = {x : g(x) ∈ A} the inverse
image of A.

Now we compute P (g(X) ∈ A) for the local random
set approach and show that we get the same result as
for the random set and for the fuzzy set interpretation.

4.2 Local random set approach

For the local random set approach we have

P (g(X) ∈ A) = P (X ∈ g−1(A)) =

= inf{α ∈ (0, 1] : Iα ∩ g−1(A) = ∅} =
= inf{α ∈ (0, 1] : g(Iα) ∩A = ∅} = α∗.

The only difference to Eq. (2) is that now g(Iα) is
used instead of Iα. This motivates the definition

g(I) = {g(Iα)}α∈(0,1]

which is the family of the images of all confidence
intervals. Propagating I through a function in the
univariate case means simply replacing I by g(I) and
applying formula (2), cf. Fig. 3.

g−1(A)

Iα

I

x

−→
g

0.5 1 1.5 2
0

0.4

1

A

g(Iα)

g(I)

g(x)
0 0.5 2

Figure 3: Computation of P (g(X) ∈ A).

4.3 Random set and fuzzy set approach

By the arguments presented in the preliminaries and
in Section 3 we get for the random set interpretation

P (g(X) ∈ A) = Pl(g(X) ∈ A) =
∫

β: g(Iβ)∩A 6=∅
dβ =

= 1−
∫

β: g(Iβ)∩A=∅
dβ = 1−

∫ 1

α∗
dβ = α∗
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since again the g(Iβ) are nested. Further we get for
the fuzzy set interpretation of I with α-level sets Iα:

P (g(X) ∈ A) = Pos(g(X) ∈ A) =
= sup{α ∈ (0, 1] : g(Iα) ∩A 6= ∅}
= inf{α ∈ (0, 1] : g(Iα) ∩A = ∅} = α∗.

4.4 Summary

As we have seen the local random set approach pre-
serves the method of searching for the “best” confi-
dence interval when applying a univariate function g.

More important is, that the result is consistent with
the random set and fuzzy set interpretation of the
family of confidence intervals. But this is only true
in the univariate case. It is a wellknown fact that the
random set and the fuzzy set approach lead to dif-
ferent results in the multivariate case which will also
have consequences for the local random set version.

5 The multivariate case

Here we assume that for n random variables
X1, . . . ,Xn families I1, . . . , In of confidence intervals
are given. Then we have to determine the joint un-
certainty of all these variables which will be done by
means of local joint random sets obtained by combin-
ing confidence intervals I1,α1 ∈ I1, . . . , In,αn

∈ In.

The goal of this and the next Section is to get a for-
mula similar to the univariate version

P (g(X) ∈ A) = inf{α ∈ (0, 1] : g(Iα) ∩A = ∅}.

But such a formula will not be uniquely defined be-
cause we have several possibilities of choice

• for the set of confidence intervals considered to
be combined and

• for the weights used for the local joint random
set.

5.1 Combination of marginal confidence
intervals

Let the joint confidence set Jα be given by

Jα = I1,α1×· · ·×In,αn

with α = (α1, . . . , αn). Then J = {Jα}α∈S is the
family of all joint confidence sets depending on which
set S of indices α is considered.

If S = SR = (0, 1]n then all possible combinations
of confidence intervals are used, exactly as the joint
focal sets are generated for random set independence.

A second possibility is to combine only confidence in-
tervals of the same level α similar to the combination
of the α-level sets for fuzzy set independence. In this
case we have the set

S = SF = {α ∈ (0, 1]n : α1 = α2 = · · · = αn} ⊆ SR

which has the advantage that the number of joint con-
fidence sets does not grow with the number of vari-
ables. For simplification we will then also use the
notation

J = {Jα}α∈[0,1] = {I1,α×· · ·×In,α}α∈[0,1]

for the family of joint confidence sets.

5.2 Local joint random sets

For two variables X1 and X2 the combination of a
confidence interval I1,α1 ∈ I1 at confidence level 1−α1

with a confidence interval I2,α2 ∈ I2 at confidence
level 1 − α2 means to generate a local joint random
set with focal sets

I1,α1 × I2,α2 , Ic
1,α1

× I2,α2 , I1,α1 × Ic
2,α2

, Ic
1,α1

× Ic
2,α2

from the marginal local random set at level α1 with
focal sets I1,α1 , Ic

1,α1
for the first variable and from

the marginal local random set at level α2 with focal
sets I2,α2 , Ic

2,α2
for the second one, cf. Fig. 4. The

focal set Jα = I1,α1 × I2,α2 , α = (α1, α2), is then the
joint confidence set.

I1,α1

I 2
,α

2

m1(I1,α1)

m
2
(I

2
,α

2
)

I1,α1×I2,α2

m(I1,α1×I2,α2)

I1,α1×Ic
2,α2

Ic
1,α1

×I2,α2

Ic
1,α1

×Ic
2,α2

Figure 4: Joint focal sets I1,α1 × I2,α2 , Ic
1,α1

× I2,α2 ,
I1,α1 × Ic

2,α2
and Ic

1,α1
× Ic

2,α2
.

Computation of the local upper probability Pα(A):

In the following we do not care about how an event A
with empty intersection with the joint confidence set
I1,α1 × I2,α2 hits the remaining three focals sets. We
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assume the worst case (hitting all three focals sets),
that means

Pα(A) = m(I1,α1 × Ic
2,α2

) + m(I1,α1 × Ic
2,α2

)+

+ m(Ic
1,α1

× I2,α2)

= 1−m(I1,α1 × I2,α2) = P ((I1,α1 × I2,α2)
c)

which relieves us from computing images of sets where
the complements are involved.

For n variables we have then

Pα(A) = 1−m(I1,α1×· · ·×In,αn
)

for (I1,α1×· · ·×In,αn
) ∩A = ∅.

5.3 The local joint weight

The main task is to determine the weight m(I1,α1 ×
I2,α2) of the joint confidence set I1,α1 × I2,α2 which
represents the confidence we have in this set.

This weight is not uniquely determined, because joint
probability distributions are not unique in general.
The weights of all four joint focal sets (see Fig. 4) has
to be chosen in a way that the horizontal and verti-
cal sums in the following table lead to the marginal
weights mi which are either α1 or 1− α1 for the first
variable and either α2 or 1− α2 for the second one:

m2(I
c
2,α2) = α2 m(I1,α1 × Ic

2,α2) m(Ic
1,α1 × Ic

2,α2)

m2(I2,α2) = 1− α2 m(I1,α1 × I2,α2) m(Ic
1,α1 × I2,α2)

m1(I1,α1) = 1− α1 m1(I
c
1,α1) = α1

5.3.1 Random set independence

In the case of random set independence the weight of
the joint confidence set is given by the product of the
marginal weights. For n variables we have then

m(I1,α1×· · ·×In,αn
) =

n∏

i=1

mi(Ii,αi
) =

n∏

i=1

(1− αi)

which leads to the local upper probability

Pα(A) = 1−m(I1,α1×· · ·×In,αn
) = 1−

n∏

i=1

(1− αi)

if (I1,α1×· · ·×In,αn
) ∩A = ∅.

If it is known that the uncertain variables are inde-
pendent, random set independence is one possibility
to take the independence of the variables into account.
We note that there are other notions of independence
such as strong independence and epistemic indepen-
dence [2, 6, 7, 8].

5.3.2 Lower and upper bounds for the focal
weights m(I1,α1×· · ·×In,αn

)

Using the bounds of Fréchet [9] for joint probability
distributions we get in the 2-dimensional case for the
joint weight m(I1,α1 × I2,α2)

max(m(I1,α1) + m(I2,α2)− 1, 0) ≤ m(I1,α1×I2,α2) ≤
≤ min(m(I1,α1),m(I2,α2))

and with m(Ii,αi
) = 1− αi

max(1− α1 − α2, 0) ≤ m(I1,α1 × I2,α2) ≤
≤ min(1− α1, 1− α2).

Further using that the local upper probability
Pα(A) = 1−m(I1,α1×I2,α2) for (I1,α1×I2,α2)∩A = ∅
leads to lower and upper bounds

max(α1, α2) ≤ Pα(A) ≤ min(α1 + α2, 1)

for Pα(A).

With Frechet’s version of the inequality for n variables
we get then the bounds

max
i=1,...,n

(αi) ≤ Pα(A) ≤ min(α1 + · · ·+ αn, 1).

We use these bounds if nothing is known about how
the uncertain variables interact.

5.4 Levels of the joint confidence set

These different approaches have only an influence on
the level of the joint confidence sets, but not on the
sets itself.

For the three different approaches (random set inde-
pendence, lower bound and upper bound) we have
different levels described by the level function

ℓ(α) =





max
i=1,...,n

(αi) lower bound,

1−∏n
i=1(1− αi)

random set
independence,

min(α1 + · · ·+ αn, 1) upper bound

which leads to the upper probability

P
S

ℓ (A) = inf
α∈S

{ℓ(α) : Jα ∩A = ∅}

where the subscript ℓ indicates the level function and
the superscript S the set of the (α1, . . . , αn) consid-
ered.

5.5 Propagating uncertainty through a
multivariate function g

Let a continuous multivariate function

g : D ⊆ Rn → R : x 7→ g(x)
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be given.

Using the same ideas as in the univariate case we get
now the desired formula for the upper probability

P
S

ℓ (g(X) ∈ A) =

= inf
α∈S

{ℓ(α) : Jα ∩ g−1(A) = ∅} =

= inf
α∈S

{ℓ(α) : g(Jα) ∩A = ∅}.

We note that this is the same formula as in the uni-
variate case with the only difference that the level ℓ(α)
of the resulting interval g(Jα) = g(I1,α1×· · ·×In,αn

)
may change according to the chosen level function ℓ
and that the upper probability depends on the set of
confidence intervals considered for combination which
is indicated again by ℓ and S.

5.6 Notations

We introduce the following notations for the upper
probability P

S

ℓ (A) = infα∈S{ℓ(α) : Jα ∩ A = ∅}
depending on ℓ and S.

If all possible combinations of confidence intervals are
allowed, S = SR, we indicate this by the superscript
R:

Notation level ℓ(α)

P
R

lower max
i=1,...,n

(αi) lower Fréchet bound

P
R

indep 1−∏n
i=1(1−αi) random set

independence

P
R

upper min
(∑n

i=1 αi, 1
)

upper Fréchet bound

If we consider only combinations of confidence inter-
vals of the same level α, S = SF, we indicate this by
the superscript F:

Notation level ℓ(α)

P
F

lower α lower Fréchet bound

P
F

indep 1− (1− α)n random set
independence

P
F

upper min(nα, 1) upper Fréchet bound

Now we recall the definitions of the upper probabili-
ties for random set independence, fuzzy set indepen-
dence and unknown interaction in the multivariate
case where the notations are given in the following
table:

Notation

PR random set independence
PF fuzzy set independence
PU unknown interaction

The upper probability for random set independence

(joint plausibility measure) is defined by

PR(A) =
∫

(0,1]n

χ(Jβ ∩A 6= ∅) dβ

where the Jβ = I1,β1×· · ·×In,βn
has the meaning of

joint focal sets.

The upper probability for fuzzy set independence
(joint possibility measure) is given by

PF(A) = sup{α ∈ (0, 1] : Jα ∩A 6= ∅}

where Jα = I1,α×· · ·×In,α are now the joint α-level
sets.

In the case where we do not know how the variables
are correlated or interact the upper probability for
unknown interaction is defined by

PU(A) = sup{P (A) : P ∈ MU}

where MU is the biggest set of all joint probability
measures generated by marginal probability measures
compatible with the families of confidence intervals.

For upper distribution functions defined by

F
S

ℓ (x) = P
S

ℓ ((∞, x])

we use the analogous notation as presented in the
above tables, e.g. F

R

indep is the upper distribution
function for ℓ(α) = 1−∏n

i=1(1− αi) and S = SR.

5.7 The ordering of the upper probabilities

With β ≤ α defined by βi ≤ αi, i = 1, . . . , n, we have
the order relation

Jα ⊆ Jβ ⇐⇒ β ≤ α

since all Ii are families of nested confidence intervals.

Let an event A be given. Then we have always an
α ∈ SR such that

P
SR

ℓ (A) = inf
β∈SR

{ℓ(β) : Jβ ∩A = ∅} = ℓ(α),

because all level functions ℓ are continuous.

Inspired by a figure in [1] used in a different context
we define for above A and α the sets :

Shit(A) = {α ∈ SR : Jα ∩A 6= ∅},
S(α) = {β ∈ SR : ℓ(β) ≤ ℓ(α) = P

SR

ℓ (A)}

and

S(α) = (0, 1]n \ ((α1, 1]× · · · × (αn, 1]),
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Figure 5: Contourlines of 1− (1−α1)(1−α2) and the
sets Shit(A), S(α) and S(α) for a given α.

cf. Fig. 5.

For α ∈ Shit(A) the set Shit(A) has the property

β ≤ α =⇒ β ∈ Shit(A).

Since all level functions are increasing in all directions
S(α) and obviously S(α) also have this property.

Then we have S(α) ⊆ Shit(A) ⊆ S(α). See Fig. 5.

Since SF ⊆ SR we have always P
SR

ℓ (A) ≤ P
SF

ℓ .

5.7.1 PR(A) ≤ P
R

indep(A) ≤ P
F

indep(A)

Let α ∈ SR, such that

P
R

indep(A) = ℓ(α) = 1−
n∏

i=1

(1− αi).

Then

PR(A) =
∫

Shit(A)

dβ ≤
∫

S(α)

dβ =

= 1−
n∏

i=1

(1− αi) = P
R

indep(A).

5.7.2 PU(A) ≤ P
R

upper(A) ≤ P
F

upper(A)

Let p[0,1] the probability measure representing the
uniform distribution on [0, 1], M′

U the set of all proba-
bility measures p on (0, 1]n whose marginals are p[0,1]

and p(S) = sup{p(S) : p ∈ M′
U}. Then we have

p(Shit(A)) = PU(A) ≤ p(S(α)).

α2

α1

ℓ(β) =
ℓ(α)

α

Shit(A)

β
2

β1

0 1
0

1

α1

ℓ(β) =
ℓ(α)

αα2

S(α)S(α)

p(S(α)c) =
= 1−α1−α2

β1

0 1
0

1

Figure 6: 2-dimensional visualization of the proof in
Sec. 5.7.2

The least probability we can concentrate in S(α)
c

is
given by

p(S(α)
c
) = max

(
n∑

i=1

p[0,1]((αi, 1])− (n− 1), 0

)
=

= max

(
n∑

i=1

(1− αi)− (n− 1), 0

)

using the lower Fréchet bound which leads to

p(S(α)) = 1− p(S(α)
c
) =

= min

(
n∑

i=1

αi, 1

)
= P

R

upper(A),

cf. Fig. 6 for the 2-dimensional case.

5.7.3 P
R

lower(A) = P
F

lower(A) = PF(A)

First we show that P
F

lower(A) = PF(A):

PF(A) = sup
α∈(0,1]

{Jα ∩A 6= ∅} =

= inf
α∈(0,1]=SF

{Jα ∩A = ∅} = P
F

lower(A)

with Jα = I1,α × · · · × In,α which is both the joint
confidence at level α and the corresponding joint α-
level set.

Again let α ∈ SR, such that

P
R

lower(A) = ℓ(α) = max
i=1,...,n

(αi) =: α.

But then also (α, . . . , α) ∈ S(α) and P
F

lower(A) = α
which proves the first equality.

5.8 The special case S = SF

In the case of S = SF the joint confidence sets are
nested. Let

Gα = g(Jα), α ∈ (0, 1]
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be the image of the joint confidence set Jα under g.
The index α does correspond only to the case where
ℓ(α) = α. But if we lift the images of the joint con-
fidence sets to the right level by the transformation
Hα = Gℓ−1(α), α = 1, . . . , n, we get the family

Hℓ = {Hα}α∈(0,1]

where ℓ indicates the level function used for the trans-
formation. Then the upper probability corresponding
to ℓ is simply obtained by

P ℓ(A) = inf
α∈(0,1]

{Hα ∩A = ∅}

as in Section 3 and 4 where no ℓ appears in the for-
mula. In Fig. 7 families Hℓ are plotted for the three
different level functions ℓ presented in this paper.

α
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0.8

1

Figure 7: An example of families Hℓ for ℓ correspond-
ing to the upper bound (solid) and lower bound (dash-
dotted) and for random set independence (dashed).

6 A Numerical Example

As a numerical example we consider a beam of length
3 m supported on both ends and additionally bedded
on two springs, cf. Fig. 8. The values of the beam
rigidity EI = 1 kNm2 and of the equally distributed
load f(x) = 100 kN/m are assumed to be determinis-
tic, but the values of the two spring constants λ1 and
λ2 are uncertain.

In this example we assume that the expectations and
variances of the two variables λ1 and λ2 are given as
in the following table.

variable expectation variance
λ1 30 2
λ2 35 1.5

The corresponding families of confidence intervals
generated by means of Tchebycheff’s inequality are
truncated by the interval [0, 50] and depicted in Fig. 9.

λ
1

λ
2

3 m

100 kN/m

Figure 8: A beam bedded on two springs.
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1

Figure 9: Families of confidence intervals for the two
spring constants.

Now we want to compute the upper probability of
failure of the beam. The criterion of failure is

max
x∈[0,3]

|M(x, λ1, λ2)| ≥ Myield

where M(x) is the bending moment at point x ∈ [0, 3]
depending on the two spring constants λ1, λ2 and
Myield = 12 kNm the elastic limit moment. We re-
formulate the failure criterion as failure function

g(λ1, λ2) = Myield − max
x∈[0,3]

|M(x, λ1, λ2)|

where now g(λ1, λ2) ≤ 0 means failure. In Fig. 10
the failure function g is depicted as a contour plot for
values (λ1, λ2) ∈ [10, 45] × [10, 45] where we can see
that g is a concave function in both directions.

Since we want to know if g(λ1, λ2) becomes zero it is
sufficient to have only the lower bounds of the images

Gα = [Gα, Gα] = g(Jα)

of the joint confidence sets Jα = λ1,α1 × λ2,α2 . These
lower bounds can be easily obtained by minimizing
the function values at the vertices of the joint confi-
dence set which is not true for the upper bounds.

The function values g(λ1, λ2) are computed by the fi-
nite element method. To omit a large number of func-
tion evaluations for a large number of joint confidence
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Figure 10: Contour plot of the failure function g. The
gray rectangle is the joint confidence set λ1,α1 ×λ2,α2

for (α1, α2) = (1, 1).

sets to be considered we evaluate g on grid points on
[0, 50]× [0, 50] and get g(λ1, λ2) using interpolation.

We get the upper probability distribution functions
F

S

ℓ by

F
S

ℓ (x) = P
S

ℓ ((∞, x]) = inf
α∈S

{ℓ(α) : Gα > x}.

The results are plotted for x ∈ [−0.5, 1.75] in Fig. 11.
The upper probabilities P

S

ℓ ((∞, 0]) of failure are given
by the upper distribution functions at zero.
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Figure 11: Upper probability distribution functions.

Conclusion

The notion of local random sets was introduced in
this article in order to provide a conclusive semantic

connection between confidence intervals and random
sets. We showed how upper probabilities of events
can be calculated from families confidence intervals.
The upper probabilities are unique in the univariate
case, while in the multivariate case different methods
of combinations leading to different upper probabil-
ities are admissible. Further we gave computational
formulas for all cases and showed how the resulting
upper probabilities are ordered. We demonstrated
how the method can be applied in an example from
structural mechanics.

References

[1] C. Baudrit and D. Dubois. Comparing meth-
ods for joint objective and subjective uncertat-
inty propagation with an example in a risk assess-
ment. In F. Gagliardi Cozman, R. Nau, T. Sei-
denfeld (Eds.): ISIPTA ’05, Proceedings of the
Fourth International Symposium on Imprecise
Probabilities and Their Applications, Carnegie
Mellon University, Pittsburgh, 2005.

[2] I. Couso, S. Moral, and P. Walley. Exam-
ples of independence for imprecise probabilities.
In G. de Cooman, G. Cozman, S. Moral, and
P. Walley, editors, Proceedings of the first in-
ternational symposium on imprecise probabilities
and their applications, pages 121–130, Ghent,
1999. Universiteit Gent.

[3] A.P. Dempster. Upper and lower probabilities
induced by a multivalued mapping. Ann. Math.
Stat., 38:325–339, 1967.

[4] A.P. Dempster. Upper and lower probabilities
generated by a random closed interval. Ann.
Math. Statistics, 39:957–966, 1968.

[5] D. Dubois, L. Foulloy, G. Mauris, and H. Prade.
Probability-possibility transformations, triangu-
lar fuzzy sets, and probabilistic inequalities. Re-
liable Computing, 10:273–297, 2004.

[6] Th. Fetz. Sets of joint probability measures
generated by weighted marginal focal sets. In
G. de Cooman, T. Fine, T. Seidenfeld (Eds.),
ISIPTA’01, Proceedings of the Second Sympo-
sium on Imprecise Probabilities and Their Appli-
cations, pages 171–178, Maastricht, 2001. Shaker
Publ. BV.

[7] Th. Fetz. Multi-parameter models: rules and
computational methods for combining uncertain-
ties. In W. Fellin, H. Lessman, R. Vieider, and
M. Oberguggenberger, editors, Analyzing Un-
certainty in Civil Engineering. Springer, Berlin,
2004.

ISIPTA’09: Multivariate Models and Confidence Intervals: A Local Random Set Approach 207



[8] Th. Fetz and M. Oberguggenberger. Propagation
of uncertainty through multivariate functions in
the framework of sets of probability measures.
Reliability Engineering and System Safety, 85(1-
3):73–87, 2004.
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Abstract

The present article considers estimating a parameter θ
in an imprecise probability model (P θ)θ∈Θ which con-
sists of coherent upper previsions P θ . After the defi-
nition of a minimum distance estimator in this setup
and a summarization of its main properties, the fo-
cus lies on applications. It is shown that approximate
minimum distances on the discretized sample space
can be calculated by linear programming. After a dis-
cussion of some computational aspects, the estimator
is applied in a simulation study consisting of two dif-
ferent models. Finally, the estimator is applied on a
real data set in a linear regression model.

Keywords. Imprecise probabilities, coherent lower
previsions, minimum distance estimator, empirical
measure, R Project for Statistical Computing.

1 Introduction

1.1 Motivation

In classical statistics, it is common to assume com-
plete knowledge about a statistical model which con-
sists of a (smooth parametric) family (Pθ)θ∈Θ of (pre-
cise) probability measures. The task is to make asser-
tions about the true parameter θ0 ∈ Θ . Most often,
it is assumed that such assertions can be based on
data x1, . . . , xn from random variables which are
independent identically distributed according to the
true distribution Pθ0 . That is, the data analyst al-
ready knows that the real distribution P0 can only
be a member of a very special family of probability
measures (Pθ)θ∈Θ and the only thing which is not
one hundred percent sure is the correct parameter
θ0 ∈ Θ . Since this assumption is much to strong for
many real applications, generalizations of this prob-
abilistic setup are needed. Suitable generalizations
of the concept of probability have been developed,
among others, by [12] (coherent lower/upper previ-
sion) and [15] (F-probability). Here, the probability

of an event is no longer a number p ∈ [0, 1] but an
interval [p, p] ⊂ [0, 1]. In order to generalize the setup
of classical statistics to a (more realistic) imprecise
probability setup, it is natural to replace the precise
model (Pθ)θ∈Θ by an imprecise model (P θ)θ∈Θ which
consists of such coherent upper previsions P θ .

The classical frequentist theory of statistics is, in
large part, concerned with hypothesis testing (in the
sense of Neyman-Pearson) and estimating a parame-
ter. While Neyman-Pearson testing under imprecise
probabilities has been extensively studied (cf. e.g. [1]
and [2]), estimating a parameter has hardly been con-
sidered explicitly within the theory of coherent lower
previsions so far. There are a few articles which are
concerned with it in Bayesian models (primarily asso-
ciated with Walley’s Imprecise Dirichlet Model), e.g.
[13], [9], [7] and [14]. In addition, there are a few ar-
ticles which address very special applications, e.g. [8]
(climate projections) and [3] (prediction of the next
influenza pandemic). However, general investigations
about frequentist estimation of a parameter using co-
herent lower/upper previsions are still missing. A first
attempt is made in [6] where a minimum distance es-
timator is developed, and its asymptotic properties
are investigated.
The present article focuses on applications of this es-
timator; for the theoretical validation of the estima-
tor, it is referred to [6]. After a recollection of the
definition and the basic properties of the minimum
distance estimator in Section 2, Section 3 investigates
the concrete calculation of the estimator. At first,
the sample space has to be suitable discretized, then
the distances between the empirical measure and the
coherent upper previsions can be approximately cal-
culated by linear programming. An explicit linear
program is developed in Subsection 3.2. The mini-
mum distance estimator is already implemented in the
(open source) statistical programming language R; it
is publicly available as R-package “imprProbEst” [5].
Subsection 3.3 explains some details about this imple-
mentation in R. Next, Section 4 presents a simulation
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study where the estimator is applied in two different
models and compared to classical estimators. This
simulation study exemplifies that the proposed esti-
mator can also be calculated for large sample sizes.
This meets objections that, due to high computa-
tional costs, imprecise probabilities could not be used
for practical purposes. Finally, the minimum distance
estimator is applied on a real data set in Section 5.
Section 6 contains some concluding remarks.

1.2 Setup and Notation

Let X be a set with σ-algebra B . Then, L∞(X ,B)
denotes the set of all bounded, B -measurable real
functions f : X → R . The supremum norm on
L∞(X ,B) is denoted by ‖f‖ = supx∈X |f(x)| . The
set of all bounded, finitely additive, signed measures
is denoted by ba(X ,B) and can be identified with the
dual space of L∞(X ,B) ; cf. [4, Theorem IV.5.1]. Fi-
nally, ba+

1 (X ,B) denotes the set of all finitely addi-
tive probability measures. Integrals with respect to
µ ∈ ba(X ,B) are denoted by µ[f ] .
In accordance with [12, § 2.5.1], a coherent upper pre-
vision on (X ,B) is a map

P : L∞(X ,B) → R , f 7→ P [f ]

such that there is a (non-empty) set V ⊂ ba+
1 (X ,B)

and P [f ] = supP∈V P [f ] for every f ∈ L∞(X ,B) ;
cf. also [12, § 3.3.3] and [6, § 2.3]. The non-empty set
M :=

{
P ∈ ba+

1 (X ,B)
∣∣ P [f ] ≤ P [f ] ∀ f

}
is called

credal set of P then.
A coherent upper prevision P is called finitely gener-
ated if there is a finite set {f1, . . . , fs} ⊂ L∞(X ,B)
such that P is the natural extension of a coherent up-
per prevision on {f1, . . . , fs} ⊂ L∞(X ,B) . That is,
P ∈ ba+

1 (X ,B) is in the credal set of P if and only
if P [fj ] ≤ P [fj ] for every j ∈ {1, . . . , s} . Such co-
herent upper previsions naturally arise in applications
whenever a practitioner is only able to specify upper
(or lower) bounds on the probability or expectation
of a finite number of events or functions respectively.
A finitely generated, coherent upper prevision P is
called regular if, in addition, P [fj ] > P [fj ] ∀ j ∈
{1, . . . , s} where P denotes the coherent lower pre-
vision corresponding to P ; i.e. P [f ] = −P [−f ] =
infP∈M P [f ] for every f ∈ L∞(X ,B) .

2 A minimum distance estimator for
imprecise models

2.1 Assumptions

In order to state the definition of the minimum dis-
tance estimator, the following fixings and assumptions

are made. These are valid throughout the rest of the
article:

(X ,B) is a measurable space and Θ is a finite1 index
set. The data x1, . . . , xn stem from random variables
which are independent identically distributed accord-
ing to a probability measure P0 . For every θ ∈ Θ ,
let P θ be a coherent upper previsions on (X ,B) with
credal set Mθ ; (P θ)θ∈Θ is called imprecise model. It
is only assumed that the true probability measure P0

is contained in Mθ0 where θ0 ∈ Θ is the unknown
true parameter. The task is to estimate θ0 . 2

The following fundamental assumptions on the coher-
ent upper previsions are made:

There is a finite subset K = {f1, . . . , fs} ⊂ L∞(X ,B)
such that

Mθ =
{
Pθ ∈ ba+

1 (X ,B)
∣∣ Pθ[fj ] ≤ P θ[fj ] ∀ fj ∈ K

}

for every θ ∈ Θ . Furthermore, it is assumed that

P θ[fj ]− P θ[fj] > 0 ∀ fj ∈ K (1)

where P θ is the corresponding lower coherent previ-
sion. In particular, each P θ is a regular, finitely gen-
erated coherent upper previsions. 3

In the following, it is always assumed that each fj ∈ K
is standardized; i.e. inf fj = 0 and sup fj = 1 . Of
course, this is no restriction since every bounded, non-
constant function f ′ can be standardized by

f :=
f ′ − inf f ′

sup f ′ − inf f ′

and, for every Pθ ∈ ba+
1 (X ,B) , we have

Pθ[f ] ≤ P θ[f ] ⇔ Pθ[f ′] ≤ P θ[f ′]

2.2 Definition and asymptotic properties of
the minimum distance estimator

The idea of the minimum distance estimator devel-
oped in [6, § 6] is very simple: The data x1, . . . , xn

are used to build the empirical measure P(n) . Then,
the minimum distance estimator is that θ̂ ∈ Θ such

1Finiteness of the index set is not crucial for the definition
and basic properties of the estimator (see [6, § 6]) but the algo-
rithm which calculates the estimator is based on this assump-
tion (see § 3).

2This approach corresponds to the use of the type-2 product
of coherent upper previsions [12, § 9.3.5]. The type-2 product of
coherent upper previsions is consistent with a strict sensitivity
analyst’s point of view on imprecise probabilities.

3Though credal sets may also contain elements P which are
not σ-additive, the above assumptions include that P0 is σ-
additive. In case of regular, finitely generated coherent upper
previsions, this assumption is justified by [6, Prop. 6.4] which
states that these previsions can be represented by sets of (σ-
additive) probability measures.
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that P(n) lies next to Mθ̂ . That is, we calculate the
distance between P(n) and Mθ for every θ ∈ Θ and
pick that θ̂ where the distance is minimal.

The empirical measure P(n) is defined to be the map

P(n) : Xn → ba+
1 (X ,B) , x 7→ P(n)

x =
1
n

n∑

i=1

δxi

where x = (x1, . . . , xn) and δxi denotes the Dirac
measure in xi ∈ X . Appropriately to the sensitivity
analyst’s point of view, the distance between a mea-
sure P ′ and a coherent upper prevision P is defined
to be

∥∥P ′ − P
∥∥ := inf

P∈M
‖P ′ − P‖ (2)

where M denotes the credal set of P and ‖P ′ − P‖
the operator norm

‖P ′ − P‖ = sup
f∈L∞(X ,B)

∣∣P ′[f ]− P [f ]
∣∣

‖f‖

The minimum distance estimator θ̂n is defined to be

θ̂n : x 7→ argmin
θ∈Θ

∥∥P(n)
x − P θ

∥∥

Note that the minimizing θ is not always unique; in
this case, the minimum distance estimator may pick
any minimizing θ .

Now, let us turn over to the asymptotic properties
of the minimum distance estimator according to [6,
§ 6.4]. Firstly, note that the use of the operator norm
together with the empirical measure is not unproblem-
atic in classical statistics: Though several distances d
provide the desirable property that

d
(
P(n)

x , P0

)
−−−−→
n→∞

0 (3)

almost surely, this is not necessarily true for the op-
erator norm (e.g. in case of the standard normal dis-
tribution). However, this annoying difficulty totally
disappears in our imprecise probability setup (Sub-
sections 1.2 and 2.1). If we replace P0 by a regular,
finitely generated coherent upper prevision P , we get
that

∥∥P(n)
x − P

∥∥ −−−−→
n→∞

0 (4)

almost surely if P0 lies in the credal set M of P ; cf.
[6, Theorem 6.6].

A true parameter θ0 is any θ0 ∈ Θ such that

P0 ∈ Mθ0

Since it is not assumed that the credal sets are dis-
joint, there may be several true parameters.

According to [6, Theorem 6.10], the probability of the
event

{
x ∈ Xn

∣∣∣ P0 6∈ Mθ̂n(x)

}
(5)

tends to zero for increasing sample size n if the index
set Θ is finite.

The mathematically rigorous statements about these
asymptotic properties are more involved and have to
be formulated in terms of random variables and image
measures. This is because the expressions in (4) and
(5) will not be measurable in general. For the treat-
ment of unmeasurable maps in asymptotic statistics,
confer e.g. [11, §18].

3 Calculation of the minimum
distance estimator

3.1 Discretization of the sample space

As seen in the previous section, it is not necessary to
discretize the sample space in order to define the min-
imum distance estimator based on the total variation
norm in a sensible way. Since this is not possible for
precise probabilities, going over to imprecise proba-
bilities, in a sense, turns out to be a simplification.
Of course, if we want to calculate the estimator by
use of computers, the sample space has to be dis-
cretized – at least implicitly. However, it is one of the
most striking properties of the above presented mini-
mum distance estimator, that this is only a practical
need which is irrelevant for theoretical investigations.
That is, we can also deal with infinite sample spaces
(X ,B) . In case of precise probabilities, discretization
would even be part of the definition of the minimum
distance estimator.

Recall our assumptions given in Subsection 2.1. In
order to calculate the minimum distance estimator,
we have to calculate

∥∥P(n)
x − P θ

∥∥ = inf
Pθ∈Mθ

sup
f∈L∞(X ,B)

∣∣ P(n)
x [f ]− Pθ[f ]

∣∣
‖f‖

for θ ∈ Θ . ThoughMθ is a large subset of ba+
1 (X ,B) ,

these values can nevertheless be calculated with arbi-
trary accuracy as explained in the following:

At first, fix any accuracy ε > 0 . Then, the sample
space (X ,B) may be discretized as follows:

For θ ∈ Θ , let Kθ be the smallest subset of K such
that

Mθ =
{
Pθ ∈ ba+

1 (X ,B)
∣∣ Pθ[fj ] ≤ P θ[fj ] ∀ fj ∈ Kθ

}
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and put Iθ =
{
j ∈ {1, . . . , s}

∣∣ fj ∈ Kθ

}
. That is,

Kθ = {fj ∈ K|j ∈ Iθ} . Furthermore, put

ε
(j)
θ :=

P θ[fj ]− P θ[fj]
2s

· ε ∀ j ∈ Iθ

and choose simple functions h
(j)
θ such that

fj ≤ h
(j)
θ ≤ fj + ε

(j)
θ ∀ j ∈ Iθ (6)

Then, let Cθ be the smallest σ-algebra on X such
that the simple functions h

(j)
θ , j ∈ Iθ, are Cθ/B -

measurable. Note that Cθ is a finite subset of B . So,
there is a finite partition

{
C

(1)
θ , . . . , C

(r)
θ

}
of X such

that every event C ∈ Cθ is a (finite) union of elements
of the partition

{
C

(1)
θ , . . . , C

(r)
θ

}
.

Now, let Qθ be the coherent upper prevision on
L∞(X , Cθ) which corresponds to the credal set

Nθ =
{

Qθ ∈ ba+
1 (X , Cθ)

∣∣∣∣
Qθ[h

(j)
θ ] ≤ P θ[fj] + ε

(j)
θ

∀ j ∈ Iθ

}

According to [6, Theorem 6.11], we have the following
inequalities for every x ∈ Xn:
∥∥P(n)

x −Qθ

∥∥ ≤
∥∥P(n)

x − P θ

∥∥ ≤
∥∥P(n)

x −Qθ

∥∥ + ε (7)

3.2 Approximate calculation of the distance
by linear programming

According to (7), it is possible to calculate

∥∥P(n)
x −Qθ

∥∥ = inf
Qθ∈Nθ

sup
f∈L(X ,Cθ)

∣∣P(n)
x [f ]−Qθ[f ]

∣∣
‖f‖ (8)

in order to approximately calculate ‖P(n)
x − P θ‖ ,

where Qθ is a coherent upper prevision on the finite
space (X , Cθ) . So, we have to minimize the convex
function

Nθ → R , Qθ 7→ sup
f∈L(X ,Cθ)

∣∣P(n)
x [f ]−Qθ[f ]

∣∣
‖f‖

Though this is a convex optimization problem, the
optimal solution can be found by solving one single
linear program.

In order to formulate this linear program, choose any
cj ∈ C

(j)
θ for every element C

(j)
θ of the partition

{C(1)
θ , . . . , C

(r)
θ } of X which generates Cθ . Further-

more, put

Nj =
{
i ∈ {1, . . . , n}

∣∣ xi ∈ C
(j)
θ

}

and let nj be the number of elements in Nj for every
j ∈ {1, . . . , r} . In addition, put

J0 =
{
j ∈ {1, . . . , r}

∣∣ nj = 0
}

and
J1 =

{
j ∈ {1, . . . , r}

∣∣ nj > 0
}

Now, consider the following linear program:
∑

j∈J1

qj − γj −→ max! (9)

where
r∑

j=1

qj = 1 , (10)

r∑

j=1

qjh
(k)
θ (cj) ≤ P θ[fk] + ε

(k)
θ ∀ k ∈ Iθ (11)

and

qj − γj ≤ nj

n
∀ j ∈ J1 (12)

for the variables

(q1, . . . , qr) ∈ Rr , qj ≥ 0 ∀ j ∈ {1, . . . , r} (13)

and

(γj)j∈J1 ⊂ R , γj ≥ 0 ∀ j ∈ J1 (14)

Let βθ be the optimal value of the above linear pro-
gram. Then, Proposition 3.1 below shows that

∥∥P(n)
x −Qθ

∥∥ = 2 ·
(
1− βθ

)
(15)

Hence, it is, in fact, enough to solve one single linear
program in order to obtain the distance

∥∥P(n)
x −Qθ

∥∥ .
Of course, this was useless in applications if this lin-
ear program would tend to be unsolvable because of
exceedingly high computational costs. So let us take
a closer look on the size of the above linear program:

Since the number of elements in J1 is not larger than
min{r, n} , we have the following upper bounds:

Number of variables: r + min{r, n}
Number of inequalities: 2 + ♯(Kθ) + min{r, n}

Similar to the discretization method presented in [6,
§ 5.4] in data-based decision theory, r can – in general
– exceed beyond all reasonable bounds but will stay
within a reasonable order of magnitude in most ap-
plications. In particular, the latter statement is true
if the functions fj ∈ Kθ are convex, concave or indi-
cator functions of (finite unions of) intervals; confer
[6, Prop. 5.16]. Though the number n of observations
may be very large, it will hardly reach astronomical
orders of magnitude in real applications. The size of
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the number of elements in Kθ (i.e. the number of ele-
ments in Iθ) will usually be negligible.

Note that a very large r will usually result from small
values ε

(j)
θ . However, in most real applications, P θ

cannot be specified so accurately that too small values
ε
(j)
θ are meaningful. Furthermore, such small values

ε
(j)
θ indicates that the imprecise model (P θ)θ∈Θ is in

danger of being instable – confer [6, § 5.2]. In this
case it might be justified to replace ε

(j)
θ by a larger

value. In doing so, we end up with a linear program
of a smaller size but, then, it is not guaranteed that
‖P(n)

x −Qθ‖ still is an approximation of ‖P(n)
x − P θ‖.

However, replacing ε
(j)
θ by a larger value corresponds

to a more conservative proceeding. If this has a large
effect on ‖P(n)

x −Qθ‖ , this means that small changes
of P θ[fj ] , j ∈ Iθ , have large effects on P θ[f ] for some
f 6∈ Kθ . In this unstable case, it seems to be a good
idea to be more conservative because this may save
from arbitrary results.4

The following proposition says that ‖P(n)
x − Qθ‖ can

indeed be calculated by solving the linear program
given by (9) – (14):

Proposition 3.1 Let βθ be the optimal value of the
linear program given by (9) – (14). Then,

∥∥P(n)
x −Qθ

∥∥
is given by (15).

Proof:
STEP 1: Firstly, it is shown that, for every Q ∈ Nθ ,

‖P(n)
x −Q‖ = 2

∑

j∈J1

(
P(n)

x (C(j)
θ )−Q(C(j)

θ )
)+

(16)

To this end, fix any Q ∈ Nθ and note that – due to
finiteness of Cθ – the total variation distance is equal
to

‖P(n)
x −Q‖ =

r∑

j=1

∣∣ P(n)
x (C(j)

θ )−Q(C(j)
θ )

∣∣ (17)

Since {C(1)
θ , . . . , C

(r)
θ } is a partition of X , we have

0 = P(n)
x (X )−Q(X ) =

r∑

j=1

P(n)
x (C(j)

θ )−Q(C(j)
θ )

=
r∑

j=1

(
P(n)

x (C(j)
θ )−Q(C(j)

θ )
)+

−

−
r∑

j=1

(
P(n)

x (C(j)
θ )−Q(C(j)

θ )
)−

4Confer [6, § 5.2] for more details on the stability of coherent
upper previsions and the potential instability of the natural
extension.

Hence,

‖P(n)
x −Q‖ (17)

=
r∑

j=1

∣∣ P(n)
x (C(j)

θ )−Q(C(j)
θ )

∣∣

= 2 ·
r∑

j=1

(
P(n)

x (C(j)
θ )−Q(C(j)

θ )
)+

Note that P(n)
x (C(j)

θ ) = 0 if j 6∈ J1 and, therefore,
(

P(n)
x (C(j)

θ )−Q(C(j)
θ )

)+

= 0 ∀ j 6∈ J1

This proves (16).

STEP 2: Secondly, it is shown that, for every Q ∈ Nθ

and every j ∈ J1 ,
(
P(n)

x (C(j)
θ )−Q(C(j)

θ )
)+

=

= inf
γj∈Γj(Q)

P(n)
x (C(j)

θ )−Q(C(j)
θ ) + γj (18)

where

Γj(Q) :=
{
γj ∈ R

∣∣∣∣
γj ≥ 0 ,

Q(C(j)
θ )− γj ≤ P(n)

x (C(j)
θ )

}

In case of P(n)
x (C(j)

θ ) ≥ Q(C(j)
θ ) , it is easy to see that

the infimum is attained in γ̃j = 0 ∈ Γj(Q) and,
therefore, (18) is fulfilled.
In case of P(n)

x (C(j)
θ ) < Q(C(j)

θ ) , it is easy to see
that the infimum is attained in γ̃j = Q(C(j)

θ ) −
P(n)

x (C(j)
θ ) ∈ Γj(Q) and, therefore, (18) is again ful-

filled.

STEP 3: Finally, put

M =
{

(Q, γ) ∈ Nθ × R♯(J1)

∣∣∣∣
γ = (γj)j∈J1 ,

γj ∈ Γj(Q) ∀ j ∈ J1

}

Then, it follows from STEP 1 and STEP 2 that

inf
Q∈Nθ

‖P(n)
x −Q‖ = (19)

= 2· inf
(Q,γ)∈M

∑

j∈J1

P(n)
x (C(j)

θ )−Q(C(j)
θ ) + γj

The definition of J1 implies
∑

j∈J1
P(n)

x (C(j)
θ ) = 1 .

Hence,

inf
Q∈Nθ

‖P(n)
x −Q‖ =

(19)
= 2 ·

(
1− sup

(Q,γ)∈M

∑

j∈J1

(
Q(C(j)

θ )− γj

))

For every j ∈ {1, . . . , r} , identify Q(C(j)
θ ) with the

variable qj in the linear program. Then, it follows
from the definitions of Nθ and M that

sup
(Q,γ)∈M

∑

j∈J1

(
Q(C(j)

θ )− γj

)
= βθ

and, therefore, inf
Q∈Nθ

‖P(n)
x −Q‖ = 2 · (1 − βθ) . 2
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3.3 Implementation in the statistical
programming language R

The minimum distance estimator is implemented in
the (open source) statistical programming language
R [10] and is publicly available as R-package “im-
prProbEst” [5]. In order to calculate the estimator,
the program has to do the following steps:

1. for “some” θ ∈ Θ , (approximately) calculate the
distance ‖P(n) −Qθ‖ , i.e.

• discretize the sample space

• solve the linear program given by (9)- (14)

2. choose that θ̂ which minimizes ‖P(n) −Qθ‖
The inputs are the observations x = (x1, . . . , xn) and
the imprecise model given by the (standardized) func-
tions fj ∈ Kθ and the previsions P θ[fj ] , fj ∈ Kθ , for
every θ ∈ Θ .

Note that we do not assume any condition of regu-
larity for the map θ 7→ P θ . Therefore, one might
suppose that we have to calculate ‖P(n)−Qθ‖ for ev-
ery θ ∈ Θ in order to find the minimizing θ̂ . Though
this is possible since Θ is assumed to be finite here,
such a proceeding is very cumbersome because the
calculation of ‖P(n) − Qθ‖ is computationally costly.
Fortunately, it usually suffices to calculate ‖P(n)−Qθ‖
only for very few elements of Θ : Put

t(θ) = 2 ·
(
max
j∈Iθ

P(n)
x [h(j)

θ ]− P θ[fj]− ε
(j)
θ

)

and Θ = {θ1, . . . , θm} . Then, for every θl ∈ Θ ,

‖P(n) −Qθl
‖ ≥

(∗)
≥ max

j∈Iθ

P(n)
[
fj − (1 − fj)

]
−Qθl

[
fj − (1− fj)

]

= 2 ·
(
max
j∈Iθ

P(n)[fj ]−Qθl
[fj]

) (∗∗)
≥ t(θl)

where (∗) is valid since the standardization of fj im-
plies ‖fj − (1 − fj)‖ = 1 , and (∗∗) follows from the
definition of t(θl) and (6). Hence, the algorithm only
has to calculate the subsequent value ‖P(n) −Qθl

‖ if

t(θl) ≤ min
k∈{1,...,l−1}

‖P(n) −Qθk
‖ (20)

is fulfilled. If (20) is not fulfilled, we do not have to
calculate ‖P(n)−Qθl

‖ because, in this case, it follows
from the above calculation that θl is already known to
be not a minimizer. The simulation studies described
in Section 4 showed that, in this way, usually only a
very small number of distances ‖P(n)−Qθ‖ has to be
calculated.

4 A simulation study

4.1 Model 1: A first example

Model 1 is intended to demonstrate two aspects of the
proposed estimator: Firstly, the estimator can really
be calculated even for large numbers of observations.
In the simulation study, the estimator is applied for
sample sizes n = 30, n = 100, n = 1000, n = 10000 .
For each number of observations, the estimator is eval-
uated 500 times. Secondly, the estimator can provide
good results even though it is developed for the rather
large imprecise models given by finitely generated co-
herent upper previsions. In order to demonstrate
this, the imprecise Model 1 contains a nice precise
parametric model so that the estimator can be com-
pared with a maximum likelihood estimator. While
the maximum likelihood estimator is applied by using
complete knowledge of the precise parametric model,
our minimum distance estimator is only based on the
knowledge of a large imprecise model. Since the sim-
ulated data exactly stem from the ideal parametric
model, this is a rather unequal situation which favors
the maximum likelihood estimator and, therefore, the
maximum likelihood estimator should clearly beat our
estimator. Nevertheless, the performance of our esti-
mator appears to be almost as good as the one of
the maximum likelihood estimator in the simulation
study. In this way, it can be seen that going over to
a large imprecise model does not necessarily mean to
loose a lot of efficiency even if the ideal parametric
model was precisely true.

Here is a detailed description of Model 1: The sample
space is (X ,B) where X is equal to [0, 1] and B is
the Borel-σ-algebra. The precise parametric model
(Pθ)θ∈Θ is given by dPθ = pθ dλ , θ ∈ Θ := [−2, 2]
where the Lebesgue-densities pθ are

pθ(x) = 1+θ
(
x−0.5

)
I[0,0.5](x)+θ

(
0.75−x

)
I(0.5,1](x)

for every x ∈ [0, 1] . Despite of this confusing formula,
the densities pθ are very simple and natural as can be
seen from Figure 1. In order to define the imprecise
model, the parameter set Θ is discretized as follows:

Θ0 :=
{
θ ∈ Θ

∣∣ θ =−2+0.1k−0.05 , k ∈ {1, . . . , 40}
}

That is, θ0 ∈ Θ0 corresponds to the interval (θ0 −
0.05 , θ0 + 0.05] with center θ0 . The imprecise model
(P θ)θ∈Θ0 is given by credal sets

Mθ =
{
Qθ

∣∣ Qθ[fj ] ≤ P θ[fj ] ∀ fj ∈ K
}

∀ θ ∈ Θ0

Here, K is the finite set K =
{
f1, . . . , f10

}
which

consists of the (rather arbitrarily chosen) functions
fj : [0, 1] → R , x 7→ fj(x) given by

f1(x) = x , f2(x) = 1− x , f3(x) = x2 ,
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Figure 1: Graphs of pθ for θ = 0 (the uniform distri-
bution) and θ = 1.5 in Model 1

f4(x) = x3, f5(x) = I[ 1
4 , 3

4 ](x), f6(x) = I[0, 1
4 ](x),

f7(x) = I[ 3
4 ,1](x) , f8(x) =

√
x ,

f9(x) = x + 1
2I[ 1

4 , 1
2 ](x) , f10(x) = 4(x− x2)

and the upper previsions on these functions are de-
fined by

P θ0 [fj ] = sup
θ∈[θ0−0.05 , θ0+0.05]

∫ 1

0

fj(x)pθ(x)λ(dx)

for every j ∈ {1, . . . , 10} and θ0 ∈ Θ0 .

In the simulation study, the data x1, . . . , xn stem from
the uniform distribution P0 = Unif

(
[0, 1]

)
. That is,

θ = 0 is the true parameter which has to be estimated.

For the estimation, the proposed minimum distance
estimator and the maximum likelihood estimator

θ̂n,MaxLikelihood(x1, . . . , xn) = arg max
θ∈[−2,2]

n∏

i=1

pθ(xi)

are applied. Note that – due to the discretization
of Θ – our minimum distance estimator does not
specify a precise value θ as an estimation but an in-
terval [θ0 − 0.05, θ0 + 0.05] . In order to compare
the results between both estimators, these intervals
[θ0 − 0.05, θ0 + 0.05] are recorded by their center θ0 .

Table 1 shows the empirical mean squared error
(MSE)

1
500

500∑

j=1

(
θ̂(j)

n − 0
)2

of the estimations θ̂
(j)
n calculated over all runs j =

1, . . . , 500 for the proposed minimum distance esti-
mator (MinDistance) and the classical maximum like-
lihood estimator (MaxLikelihood); these values are

MinDistance MaxLikelihood

−
2

−
1

0
1

2

n=30 observations

MinDistance MaxLikelihood

−
2

−
1

0
1

2

n=100 observations

MinDistance MaxLikelihood

−
0
.6

−
0
.2

0
.2

0
.6

n=1000 observations

MinDistance MaxLikelihood

−
0
.6

−
0
.2

0
.2

0
.6

n=10000 observations

Figure 2: Boxplots of the estimations obtained in 500
runs for each number of observations in Model 1

n MinDistance MaxLikelihood
30 1.29943 1.35598

100 0.59675 0.49674
1000 0.06753 0.04692

10000 0.00711 0.00482

Table 1: Empirical mean squared error calculated over
the estimations obtained in 500 runs for each number of
observations in Model 1

similar for both estimators. Figure 2 shows the box-
plots of the estimations. These results demonstrate
that, in Model 1, the maximum likelihood estimator
is not much better than the minimum distance esti-
mator even though the unequal situation of Model 1
highly privilege the maximum likelihood estimator as
explained above.

4.2 Model 2: Approximate Poisson
distributions

In Model 2, the sample space is (N0, 2N0) and it is
assumed that the data “approximately” stem from a
Poisson distribution Poi(θ) where the parameter set
is Θ = (0, 50] . The parameter set is again discretized:

Θ0 :=
{
θ ∈ Θ

∣∣ θ =0.1 + 0.05k , k ∈ {0, . . . , 998}
}

The imprecise model (P θ)θ∈Θ0 is given by credal sets

Mθ =
{
Qθ

∣∣ Qθ[f
(j)
θ ] ≤ P θ[f

(j)
θ ] ∀ f

(j)
θ ∈ Kθ

}
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and Kθ is the finite set Kθ =
{
f

(1)
θ , . . . , f

(56)
θ

}
which

consists of the following functions:

f
(j)
θ = I{4(j−1) ,..., 4j−1} ∀ j ∈ {1, . . . , 25}

f
(25+j)
θ = 1− f

(j)
θ ∀ j ∈ {1, . . . , 25}

f
(51)
θ (x) =

x

100
I{0,...,100}(x) , f

(52)
θ = 1− f

(51)
θ

f
(53)
θ (x) =

( x

100

)2

I{0,...,100}(x) , f
(54)
θ = 1− f

(53)
θ

f
(55)
θ = I(θ−1,θ] , f

(56)
θ = 1− f

(55)
θ

The upper previsions on these functions are defined
by

P θ0 [f
(j)
θ0

] = (1− r) sup
θ∈[θ0−0.025 , θ0+0.025]

Pois(θ)[f (j)
θ0

] + r

for every j ∈ {1, . . . , 56} and θ0 ∈ Θ0 . In the simula-
tion study, we put r = 0.01 . 5

For the estimation, our minimum distance estimator
and the maximum likelihood estimator

(x1, . . . , xn) 7→ argmax
θ∈Θ

n∏

i=1

Pois(θ)
(
{xi}

)
,

are applied. The simulation study consists of 500 runs
with different sample sizes n = 20, n = 100 and n =
250 . The real distribution which generates the data
is equal to

P0 = (1− c)Pois(12.5) + c Unif
(
{0, . . . , 100}

)

for c = 0, c = 0.01 and c = 0.1 where c = 0 is
the “ideal situation” and c ∈ {0.01; 0.1} stands for
(very) small deviations of the “ideal situation”. Fig-
ure 3 shows the boxplots for c = 0 and c = 0.01 (only
sample sizes n = 20 and n = 250); Figure 4 shows the
boxplots for c = 0.1. Table 2 gives the empirical mean
squared errors. In the ideal situation, the maximum
likelihood estimator is only slightly better than the
(imprecise probability) minimum distance estimator.
However, very small deviations from the ideal situa-
tion are enough so that the minimum distance esti-
mator beats the maximum likelihood estimator. In
particular, this is true even for c = 0.01 and n = 20
though, in this case, most samples x1, . . . , x20 will not
contain any “wrong” observation – i.e. will be “ideal”.

5Though this looks very similar to contamination neighbor-
hoods (which are quite common in robust statistics), these up-
per previsions lead to much bigger credal sets than contamina-
tion neighborhoods. This is because, here, the definition of the

upper previsions only involves a finite number of functions f
(j)
θ0

,

while the definition of contamination neighborhoods involves all
functions f ∈ L∞(N0, 2N0) .
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Figure 3: boxplots of the estimations obtained in 500
runs for sample size n = 20 and n = 250 in Model 2

n = 20 c=0 c=0.01 c=0.10
MinDistance 1.22 1.15 1.20

MaxLikelihood 0.65 1.88 24.99

n = 100 c=0 c=0.01 c=0.10
MinDistance 0.24 0.29 0.22

MaxLikelihood 0.12 0.52 16.24

n = 250 c=0 c=0.01 c=0.10
MinDistance 0.10 0.10 0.12

MaxLikelihood 0.05 0.29 15.27

Table 2: Empirical mean squared error calculated over
the estimations obtained in 500 runs in Model 2

5 Application on a real data set

Finally, the estimator is applied on a real data set for
linear regression. The data set consists of 200 data

xi = (yi, zi) ∈ [0,∞)× [160,∞) , i ∈ {1, . . . , 200}

from the National Health and Nutrition Examination
Survey (NHANES) from the years 2005–2006 which
records the health and nutritional status of adults and
children in the United States of America. 6 Every ob-
servation xi corresponds to a person where yi specifies
the person’s weight (in kilograms) and zi specifies the
person’s height (in centimeters). 7 The following rela-

6The data are publicly available in the Internet on the
website of the Centers for Disease Control and Prevention:
http://www.cdc.gov/nchs/nhanes.htm

7The original data set contains many additional variables
which have been omitted here. The 200 persons whose data
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Figure 4: Boxplots of the estimations obtained in 500
runs for sample size n = 20 and n = 250 in Model 2

tion is assumed

yi = θ1 + θ2(zi − 160) + εi , i ∈ {1, . . . , 200}

for persons with a height of at least 160 cm. Ac-
cordingly, only persons have been considered who ful-
fill this condition. The set of possible parameters is
bounded and may be given by Θ = [25, 100]×[0.5, 1.5]
In order to apply the minimum distance estimator, Θ
is again discretized:

Θ0 =

{
(θ1, θ2)

∣∣∣∣
θ1 ∈ {25, 26, . . . , 100} ,

θ2 ∈ {0.5, 0.55, 0.6, . . . , 1.45, 1.5}

}

As an imprecise distribution of the i.i.d errors εi, we
take the coherent upper prevision Eσ , which is based
on the normal distribution N (0, σ2) in the following
way: Take h0 = I(−∞,−20] ,

h1 = I(−20,−15], h2 = I(−15,−10], . . . , h12 = I(35 , 40]

h12+j = 1− hj ∀ j ∈ {1, . . . , 12}
and h25 = I(40,∞) . Put S0 = {1, 2, . . . , 30} . The er-
ror distribution Eσ0 is assumed to be the coherent up-
per prevision whose credal set consists of all probabil-
ity charges E on R such that for every j ∈ {0, . . . , 25}

E[hj ] ≤ (1 − r) sup
σ
N (0, σ2)[hj ] + r sup hjI(0,∞)

where the supremum is over σ ∈ [σ0 − 0.5, σ0 + 0.5] ,
r = 0.05 and σ0 ∈ S . (Roughly speaking, this means
that E is “approximately” a normal distribution but
overweight is more likely than underweight. Then,
the imprecise model is given by

P θ0,σ0 = Sσ0 [f
(j)
θ0

] ∀ j ∈ {0, . . . , 25}
are analyzed here have been randomly picked out of the data
from the National Health and Nutrition Examination Survey.

MinDistance LeastSquares
θ1 59 67.8
θ2 0.95 1.03
σ0 17 —

Table 3: Results of the estimators for the real data set
NHANES; the nuisance parameter σ0 is only estimated by
the minimum distance estimator

where f
(j)
θ0

: (y, z) 7→ hj

(
y − θ1 − θ2(zi − 160)

)
. The

parameter of interest is θ0 = (θ1, θ2) ; σ0 is a nuisance
parameter.

Our minimum distance estimator is compared to the
classical least-squares estimator. The results are given
in Table 3, and Figure 5 illustrates the corresponding
regression lines. By definition, the least-squares esti-
mator fits the data best with respect to the squared
residuals. However, this also leads to the fact that this
estimator is sensitive to outliers. This effect is also
visible in Figure 5: The least-squares estimator seems
to be more influenced by a relatively small number
of considerably overweight persons than the minimal
distance estimator.

160 165 170 175 180 185 190 195

0
5

0
1

0
0

1
5

0

height

w
e

ig
h

t

Figure 5: Regression lines for the real data set NHANES
obtained by the minimum distance estimator (solid line)
and by the least-squares estimator (dashed line)

6 Concluding remarks

The present article considers estimating a parameter
in an imprecise probability model – a topic which has
hardly been considered explicitly within the theory of
coherent upper previsions so far. In this setup, a mini-
mum distance estimator is presented and an algorithm
for calculating the estimator is given which is based on
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linear programming. The applicability of the estima-
tor is verified by a simulation study and on a real data
set. In particular, the simulation study shows that the
proposed estimator can even be used for large sample
sizes and may, in fact, lead to good results in realis-
tic situations. This meets objections that imprecise
probabilities could not be used for practical purposes.
The estimator has been programmed in R and has al-
ready been made publicly available as (open source)
R package “imprProbEst”; cf. [5]. However, future
research should also develop alternative estimators so
that the proposed minimum distance estimator can be
compared to other estimators under imprecise proba-
bilities.
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Abstract

The paper discusses the (common, important, and yet
neglected) situation of a (strong or full) conflict of evi-
dence in scientific and everyday inference (which may
lead to valuable new knowledge and even an unex-
pected scientific breakthrough). It analyses the struc-
ture and role of the background knowledge we are us-
ing and may have to change, and the many aspects of
new information and its interpretation. A number of
real life examples follows, which also bring up some
more subtle points of inductive thinking.

Keywords. Background knowledge, new informa-
tion, conflict of evidence, change of model/paradigm,
common sense thinking, scientific breakthrough,
philosophical foundations of inductive inference, real
life examples.

1 Introduction

In observing the various theories using something
like upper and lower probabilities, such as in Shafer
(1976), Dubois and Prade (1988) and Zadeh (1965),
I am still wondering what the precise numerical in-
terpretation of the numbers occurring there is sup-
posed to be, apart from situations with symmetry
(cf., e.g., Coolen, 1998) or the start with “total ig-
norance” which all these theories can deal with (con-
trary to the neo-Bayesian theory). However, it may
well be that only the vague, approximate interpreta-
tion of the numerical fixation is relevant, that (like
in the Neyman-Pearson theory) in a single situation
only values “near” 0 or 1 have a direct practical inter-
pretation, and that perhaps in similar situations the
different theories, as far as they are “objective”, may
lead to somewhat similar values.

A (rare?) example where such a comparison is
possible, are enforced fair bets on k independent
tosses of a biased coin, starting with total igno-
rance about the probability of success, evaluated by

Smets’s pignistic transformation of the Dempster-
Shafer belief function theory (Smets, 1990, Smets,
1991, Smets, 1993) and by my own frequentist the-
ory (Hampel, 1993a, Hampel, 1993b, Hampel, 1998,
Hampel, 2001; cf. also Hampel, 2002, Hampel, 2005).
The enforced probabilities of (0, . . . , k) successes are
for k = 1 (1/2, 1/2) (for both and many other the-
ories), for k = 2 (5/12, 2/12, 5/12) (Smets) and
(1/2, 0, 1/2) (Hampel), for k = 3 (157/432 =
0.363, 59/432=0.137, 59/432, 157/432) (Smets) and,
for the symmetric solution, (5/12 = 0.417, 1/12 =
0.083, 1/12, 5/12) (Hampel). The numbers are
clearly different, but still show some superficial simi-
larity.

Exact numbers may be needed in intermediate calcu-
lations (to avoid rounding errors), and they are im-
portant in well-developed quantitative theories, where
the aims are “only” numerical refinements within a
given frame. (The “only” should not be mislead-
ing; most research is of this type, and also within a
fixed frame there is qualitative progress possible, as by
tests.) But when I look at everyday learning and also
at scientific breakthroughs, I find that progress often
comes by abandoning an old framework or paradigm
and replacing it by a new one (cf. also Kuhn, 1962).
Such a replacement should obviously be considered
when there is a contradiction between the old frame-
work and a new observation.

But in the literature (as far as I know it) I find discus-
sion of this model change conspicuously absent. Only
top applied statisticians like John Tukey or Cuthbert
Daniel dare to “change the horses in the middle of the
stream” (C.D.). The Neyman-Pearson theory is very
anxious not to change the assumed model, because
then some probabilities would be changed; but these
probabilities may have become completely irrelevant.
Neo-Bayesians renormalize their posteriors, no matter
how small they are without renormalization. For ex-
ample, depending on circumstances, a single outlier
can play havoc with their results. (The (in)famous
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dictum by de Finetti: “There is no Bayesian prob-
lem of outliers, because there are no outliers” assumes
an omniscient, God-like attitude: in real life, we just
don’t know everything.) Shafer (1976) discusses at
length a quantitative measure of the degree of con-
tradiction between two claims; but he does not say
what to do when the contradiction is large (except
renormalizing) or even complete.

Now one reason for the silence about such a crucial
point is probably that it may be (or may seem) im-
possible to build an exact, numerical mathematical
theory about it. However, my impression is that
most arguments in real life and many arguments in
top science are even on a 0-1-scale (not involving
degrees in between), but involving changes of back-
ground beliefs; therefore I consider it worthwhile to
study the (existing) qualitative (and perhaps even
semi-quantitative) structures which we can find when
we analyse our corresponding thinking in more detail.
Such an attempt is what the paper is about.

This paper is closely related to the short outline in
Hampel (2007); cf. also Hampel (2009). After an
introductory example, the interplay between back-
ground knowledge and new information, the structure
of background knowledge in real life, and the interpre-
tation and surrounding structure of new information
are discussed; then a number of real life examples are
given, including the discussion of some finer points in
inductive logic.

While in Shafer (1976) the two (or more) sources of
new information are treated symmetrically, keeping
the background model fixed, here one of the sources
of information is the background model itself which
may have to be changed by the new information.

Although not discussed here, the new concepts can
easily be applied to the problem of model change in
applied statistics or data analysis, using the great ex-
perience of top applied statisticians.

We also note that probably quite a few scientific
breakthroughs, like the discovery of penicillin by
Fleming, or the discovery of the effect of rubella on
pregnancy, have their root in an unexpected (and
first unexplainable) observation which was then thor-
oughly analyzed.

One referee kindly alerted me to the danger that my
approach might be confused with the (relatively pop-
ular) work on “belief revision” as exemplified in the
classic paper by Alchourron et al. (1985). But that
paper deals merely with the logical consequences if in
a complex logical system one statement is being con-
tradicted (or another statement is being added). This
is certainly a legitimate topic of research, but it is en-

tirely restricted to deductive logic, working out the
(intricate) logical consequences of partial knowledge.
By contrast, I am considering the situation that a for-
mer belief is entirely wrong, and a new belief has to
be created on the basis of inductive guesswork (based
on “life experience”). It is one of my main points that
such arguments cannot be derived by pure deductive
logic (except, of course, if one believes to be omni-
scient, like God or some Bayesians). Nevertheless, I
do describe a rich new structure of inductive thinking.
And while my paper abounds in real life examples, I
cannot find a single real life example in the 20 or so
pages of Alchourron et al. (1985). (In addition, I
believe that in practice often the contradictory new
observation in their paper needs one or more detailed
interpretations in order to allow meaningful logical
deductions.) Overall, I think that my approach is of-
ten much closer to real life problems (and to Kuhn,
1962) than the approach in Alchourron et al. (1985).

2 Oregon and Dolomites

The following story (which may well be more widely
known) was told to me in 1984 by the late Philippe
Smets.

A couple (perhaps from the US East Coast) was plan-
ning their holiday travel. The wife had found a very
enticing article about the Dolomites in a travel journal
and wanted to go there. But the husband found in the
same journal a highly commendatory article about a
dry and sunny place in Oregon, and everybody knows
that in Oregon it always rains. Later, the husband
found out that there are indeed dry and sunny places
in Oregon, and both went to the Dolomites.

Let us now analyze this little story in more detail.

The wife got and accepted a “new information” from
the travel journal, namely that the Dolomites would
be a very nice place to visit. The husband was more
sceptical, but since he could not directly judge the
article on the Dolomites, he tried to get some more
general “information” on the overall reliability and
quality of the travel journal, from which to “extrap-
olate” to the Dolomites article. And he found an ar-
ticle (on some place in Oregon) which was in contra-
diction with his “background knowledge.” Believing
his “background knowledge” more than the unknown
quality of the journal, he at least cast some doubt on
the praise of the Dolomites. (Or perhaps he found the
Oregon contradiction just by accident; the end result
would be pretty much the same.)

But then he happened to learn (reliably) about the
cold desert in the thinly populated (and hence often
forgotten) East of Oregon, refining and in this par-
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ticular case correcting his “background knowledge”;
thus there was no contradiction and no reason to mis-
trust the journal anymore, and the couple decided
to trust the recommendation for the Dolomites. (It
could even be argued that a journal talking about dry
spots in Oregon is rather sophisticated and not just
citing mainstream beliefs and hence trustworthy, once
the existence of these dry spots is acknowledged.)

3 Background knowledge and new
information

I think this story is an (already somewhat intri-
cate) example of the following general scheme. We
all have accumulated, throughout our lifetime up to
the present, a large body of “background knowledge”
which we use, often subconsciously, to judge our
present surroundings. (The structure of our back-
ground knowledge is itself very interesting and im-
portant, see Section 4 below.) When we now get
some “new information” (be it by words, by experi-
ment, or by observation and experience), we compare
it with the “extrapolation” from a pertaining part of
our background knowledge; if there is a contradiction,
then (apart from the chance of later getting new, clar-
ifying information) we have to dismiss either the new
information or some part of our background knowl-
edge; or at least we have to “reinterprete” the one or
the other or both, in order to make them compatible
again.

This is the classical, rational, “scientific” procedure.
However, we might also try to live with a contradic-
tion in our “new background knowledge”; and this
not only due to irrational or confused thinking, or in
fields like religion (“credo quia absurdum”), but also
in pure science such as quantum mechanics (like in the
saying about the physicist who believes light is a par-
ticle on Mondays, Wednesdays, Fridays, and a wave
on Tuesdays, Thursdays, Saturdays, and on Sundays
he prays).

A rational way of living with a contradiction is to
transcend two contradictory claims A and B by not
believing either A or B, but by merely noting that
both claims exist, without committing oneself. This
is possible in pure inference, as opposed to decisions,
in view of the necessary action there; but as long as no
action is necessary, and even after a necessary action,
it makes sense to consider both A and B possible (as
can be done in all theories with something like up-
per and lower probabilities, beliefs, and so on). If
later we are reliably told that the chances, or some-
thing similar, of A over B are 999:1, then we most
strongly keep A, even if before we had made the (ap-
parently bad, on hindsight) decision B. A theory (like

the Bayesian one) which would make any decision,
however shaky, automatically part of our new back-
ground knowledge, would (with a suitable formalism)
still keep B; it would weigh internal consistency over
time (!) higher than eventual truthfulness.

4 Background knowledge and real life

But where does our background knowledge come
from? It has a wide variety of sources: wishful think-
ing; prejudice; emotions; belief from hearsay, espe-
cially from “authorities”; belief from the media, in-
cluding the internet; a more or less detailed “official”
scientific knowledge (which, as experience shows, is
mostly fairly stable, but still continuously and some-
times even fundamentally revised, and which contains
many bold extrapolations which are hard to judge for
the outsider and which may well turn out to be false);
personal experiences and extrapolations from these,
in combination with the “official” knowledge, and a
broad mix of all these sources. Many fundamental
beliefs and attitudes go back to our education and
even heredity; but we leave this to others to discuss.
However the clearer we know the sources of our con-
victions, the better we can deal with conflicting new
information, in judging the relative reliability of both
claims.

The background information comes in layers. Usu-
ally we take only the most obvious layer or belief for
granted, and when the new information is in agree-
ment with it, then this belief will only be somewhat
reinforced. But when there is a contradiction be-
tween default background and new information, then
we have to dig deeper and choose a less likely back-
ground as our updated background. Even then, we
shall usually consider only interpretations of the next
most likely layer (there may be several).

The idea of looking at the set of all possible inter-
pretations of the world and then choosing the most
likely one may sound good in philosophy and in pure
mathematics, but this is not how we work in real life,
nor in science. A physicist will not consider the set
of all possible physical theories and then select the
most plausible one, once he is forced by experiment
to abandon an old theory; but rather he will only
look at a “neighborhood” of the old theory and try
to get along with as few (or as simple) changes as
possible (simple changes may be radical, but only as
much as needed by circumstances). If we wanted to
consider ALL possibilities of what could happen when
we leave the house (like the famous tile dropping from
the roof; or being shot to death by mistake, as hap-
pened to a wellknown statistician in Mexico City), we
would never set a foot in front of the door. This is
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a question of efficiency of life. We normally act and
think as if only the most likely, or “most plausible”
assumptions would be true.

In addition, we may also look at the set of alternatives
which are still “quite possible” (like an unexpected
delay in something), just to be on the safe side, de-
pending on how pessimistic we are or how strong the
consequences would be. But if we observe a contradic-
tion with the “most plausible” assumption, we fully
switch to the set of “quite possible” alternatives and
perhaps choose the most likely one among them. Only
when an occurrence would have drastic consequences
(as in cases of life and death), shall we look also at
“unlikely” events (and perhaps write a testament or
take out an insurance). We hardly ever (except in
theory) shall consider “extremely unlikely” interpre-
tations of the world (or even, for logicians and pure
mathematicians, “impossible” ones).

These ordered categories: “most plausible”, “quite
possible”, “unlikely”, “extremely unlikely” (and per-
haps “impossible”), of which we normally only use
the first and the second one, to me seem to provide
a sufficiently accurate, but also important and nec-
essary valuation of aspects of reality, both in science
and in real life. These valuations may differ according
to personal experience and present circumstances (cf.
the examples below). New experiences may change
the category, but usually only to a neighboring one.
Cf. also Hampel, 2007.

5 New information

The “new information” in general is not simple and
unstructured either. It is connected with “everything
that can be said about it”, by considering it from its
meaning, its sources, its context, its aims, its different
possibilities of interpretation, and so on. When faced
with new information (and the problem of reconcil-
ing it with the background information), and if “So
what?” is not the most appropriate reaction (it often
is!), the following questions may be helpful:

Who says so?

What is the purpose behind it?

What says the other side? (If controversial)

How does one know this?

What is lacking? (What was forgotten or concealed?)

What does this really mean?

The reliability of the source of information is clearly
very important. (I once studied and compared two
locally wellknown newspapers for a while. One had a
surprisingly large number of – mostly small – inaccu-

racies. The other, supposed to be very reliable, was
so most of the time, but sometimes it contained big
blunders – the more misleading as they were unex-
pected.)

The purpose of news may be a “good story”, the fame
of a scientist (and the associated money), the need to
publish something rather than perish, political influ-
encing, but also neutral information, like the weather
report. (Even the weather, and more so the climate,
can be political, and even in leading Western countries
sometimes scientists have been forbidden to publish
their findings.)

The old Roman rule: “Audiatur et altera pars! Lis-
ten also to the other side!” is very important in all
controversial issues. A comparison of the arguments,
motives, backgrounds, reputations, etc. may well al-
low a decision for one side or the other. Often the
truth is somewhere in between; sometimes it is even
beyond the range of present opinions.

The question how the new information could have
been obtained means going beyond the surface of the
information to its possible origins. Sometimes these
origins are very subjective and biased, or shaky in
other ways.

As is wellknown among statisticians (and still not
enough known among nonstatisticians), every statis-
tical number should have with it at least an implicit
rough indication of its statistical accuracy. But this
is not enough. A good, objective information should
also contain a discussion of possible systematic (and
semisystematic) errors and their orders of magnitude,
of likeliness and effects of gross errors, and of possible
reinterpretations of the findings, which might show
the results in a completely different light. And often
we can only hope that no relevant information has
been left out of the discussion. We are reminded of
the (in)famous “oath of the statistician”: “I swear
to tell the truth – nothing but the truth – but not
the whole truth.” Contrary to deductive logic, con-
clusions in inductive logic can be changed completely
by leaving skillfully out part of the premises.

Often it pays to go a step back and ask oneself: Is
this information really what it is supposed to be? Or
does it actually mean something noticeably different?
Is it only suggestive, and perhaps even without real
contents?

A delightful collection of arguments and examples in
these directions can be found in the classic book “How
to lie with statistics” (Huff 1954); there is also a num-
ber of more recent books along similar lines.
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6 Some examples of interpretation of
new information

A prototype situation is the following: We are liv-
ing on, without much thinking, in our “most plausi-
ble” world, and then (if we are awake and attentive)
we observe something strange and surprising (like a
Zurich tram in the wrong street, cf. Hampel 2007),
which forces us to consider other interpretations of our
present surrounding reality (e.g., an accident) which
may influence our plans (e.g., requiring us to take
another route, or enforcing a delay). Thus, several
“quite possible” interpretations are raised to the cat-
egory “most plausible”, until we have learned more.
The event observed might even be a “non-event”, like
suddenly no cars coming from the opposite direction,
or the not-barking of the dog in a story about Sher-
lock Holmes.

The following examples are often from my own expe-
rience, especially from ornithology: because I know
them best, and because they are sufficiently “unim-
portant” to allow a neutral discussion. If we discussed
“God and the World”, which we formally could do
equally well, we would soon end up in heated argu-
ments about “God and the World” and not the logical
structure of thinking.

6.1 Alarms

When I recently heard a siren wailing at home, I re-
membered that there were regular test alerts, but I
did not remember when. So I looked at the watch;
the “round” time (precisely a half-hour) seemed to
confirm this interpretation, but to be more sure, I
looked also out of the window to see the people on
the street walking casually as usual. (The newspaper
announcement of the trial alert, which I found later,
was somewhat hidden.)

A real alarm under my circumstances fortunately
was not very probable, but one never knows. For
me, in the beginning both real and test alert were
“most plausible” (though the test alert was much
more “probable” in the subjectivistic Bayesian sense),
and only the two indications (and later the proof) di-
minished the plausibility of a real alarm.

However, the year before, there was a real alarm in
a nearby community because of a pollution of the
drinking water. Since it was not too long after the
test alert, many people did not pay any attention to
it. (In addition, the alarm came only more than five
hours after the pollution; and many people were sick
for several days.)

Some years ago, during the wars in ex-Yougoslavia, a

child from that region had come to Switzerland and
went to a Swiss school. When an airplane flew low
over the school building, this child immediately dove
under a table; and the Swiss classmates had to learn
how lucky they were not to be traumatized in this
way and not carrying such a background experience
with them.

6.2 The meaning of a phrase

The interpretation of a new information may depend
strongly on the context. Thus (cf. Hampel 2007),
when we ask someone whether a certain way leads to
a certain place, in our Western culture a “yes” nor-
mally just means “yes” (unless there are or may be
reasons that the person answering may want to lead us
astray). But experienced world travellers have gained
the background knowledge that a “yes” in a differ-
ent cultural context can mean many different things,
for example: 1. “Yes”. 2. “Yes, I understand your
question.” (Perhaps the actual answer comes later.)
3. “Yes, I heard that you said something (without un-
derstanding it).” 4. “Yes – you seem to believe so,
and I don’t want to contradict you.” 5. “Yes – I re-
ally don’t know.” 6. “Yes – any other answer would
be impolite.” (Cf. the story of the East Asian student
in Berkeley who finally learnt to say “yes yes” or “yes
no”, depending on what he really meant, because he
was obliged to say always “yes.”)

(There is also the true story of the white man who
spoke perfectly well Chinese and who asked two old
Chinese men whether this was the way to the Ming
graves. The two men just stared at him openmouthed;
he asked again; the same reaction. Finally he gave up.
When he was leaving, he heard one man say to the
other: “This sounded just as if he asked whether this
was the way to the Ming graves.” These men certainly
had a strong background conviction.)

More generally, let us assume we learn that a per-
son makes a statement “A”. This may mean: 1. A;
2. the opposite of A; 3. approximately A; 4. perhaps
A; 5. something related to A; 6. A and B (A incom-
plete and misleading without B); 7. a polite phrase
with no other meaning; 8. an attempt to conceal B,
and to divert attention away from B (a frequent trick
of tourist guides, if B would be embarassing); 9. an
unsubstantiated claim (advertisement); 10. a misun-
derstanding or a mistake: what was meant was B;
11. A under a side condition forgotten to be men-
tioned; 12. A under an assumption obvious to the
speaker, but unfortunately wrong; 13. A and a seem-
ingly obvious conclusion B, which however is wrong;
14. A and the denial of a conclusion B which is consid-
ered too obvious to be true (as pure mathematicians
sometimes think); 15. A, but not a fully obvious and
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correct conclusion B (which would cause a judge to
be called prejudiced and biased; this problem seems
to be not uncommon in law), and so on.

(We are also reminded of the joke about the absent-
minded professor who says A, writes B, thinks C,
means D, and E would have been right.)

6.3 Prejudices I and overreactions

There is often a tendency to cling to old convictions
and to defend them by exaggerated means. When
I once in fall discovered a Citril Finch (Serinus cit-
rinella) in the Harz mountains in northern Germany,
far north of the nearest breeding range in the Black
Forest which it hardly ever left, suddenly the Citril
Finch was supposed to be a “rather common cage
bird” (which it definitely was not, though it was en-
tirely appropriate to consider the possibility of an es-
caped bird). But when some weeks later I discov-
ered a whole flock of Citril Finches in the same area,
opinions switched to the other extreme that some or-
nithologists believed the bird was even breeding in
the Harz. (Compare also the extreme switch of opin-
ions about redescending M-estimators in the Prince-
ton Monte Carlo study, cf. Hampel 1997.)

A rather ridiculous attempt to defend a preconceived
attitude by all means once happened in Zurich, when
many people saw an “UFO” (a slowly descending
chain of lights) in about 10 km distance in a very
hazy night. Since some explanation had to be found
(to dispel any chance of believing in the little green
men), this was officially explained (and believed, even
by hobby astronomers) as a chain of burning candles
hanging below balloons! As I explained in my farewell
lecture, it was nothing but a chain of car headlights
descending from an (invisible) mountain lookout.

A very illuminating experiment concerning the
strength of false imagination, but also the occurrence
of rare exceptions, was once done by an astronomer
on British TV (Hunt & Moore 1982, p. 32f). Near in-
ferior conjunction of Venus, he showed the telescopic
view of its crescent, whose visibility with the naked
eye (under favorable circumstances) is a question of
debate among astronomers, and asked the viewers to
send in little sketches when they thought they saw
the crescent. More than 200 sketches were received;
all but two – both by surprised young people – showed
the crescent in the inverted view of the telescope.
Apparently only these two people genuinely saw the
crescent of Venus (as is corroborated by a number of
other well-documented observations). Thus, 99% of
the claims were illusions, but 1% were proper.

6.4 Layers of questioning

A sceptic (who does not know about the other evi-
dence) might still claim that the two young people
could be cheating: they could have known about the
inversion of astronomical telescopes and, to make it
look more convincing, they might have claimed to be
surprised about the right picture (which they did not
see). In our case, this appears to be a very far-fetched
argumentation, especially since the stake is very low;
but in other situations, sceptical digging into deeper
layers might well be appropriate.

During the period when I was collecting the bird ob-
servations in southernmost Lower Saxony, a young
field ornithologist claimed to have seen a female Red-
crested Pochard (Netta rufina) on a certain lake,
which would have been only the second record of this
(mostly very rare) duck for the whole area. I let him
describe his observation in a neutral mood and asked
him also whether he could see the little red spot at
the bill of the female. “Oh yes”, he said, “the sun was
so bright that it looked as if the whole bill was red.”
Then I knew two things for certain: that it was a male
Red-crested Pochard in eclipse plumage (which, as I
knew, has an all-red bill and otherwise looks like a fe-
male, but which was not painted even in the best bird
book of that time), and (as I had not doubted any-
way) that the observation was not made up. (It was
also to the credit of the observer that he was very
aware of the dangers of light effects.) It can often
pay to have some more knowledge or experience than
the other person. And what was puzzling for him (the
bright red bill), found an explanation and was a proof
that the observation was basically correct (apart from
the sex).

When I prepared a talk for the European Meeting of
Statisticians 1987 in Thessaloniki, I also read some-
thing from Aristotle, the genius loci, and was sur-
prised to find that what we consider his “logic” was
only a small part of his discussions of a logic in a
much broader sense. One of his examples was the
story of a very strong man who was accused to have
robbed another person during the night. His defense
was that he would never have done it, because if he
did, he knew that he immediately would be suspected
and arrested (being the strongest man around). So it
could not have been him.

We can iterate this argument: Since he had such a
convincing (?) defence, he could have been the rob-
ber, after all. (Cf. the “Theorem” 2 in my talk in
Thessaloniki: “The game is indefinite.”) Where to put
the limit and stop? In general, this may be a difficult
problem, with no guidelines except insight into the
situation and common sense. In the cases of the cres-
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cent of Venus and of the Red-crested Pochard, there
clearly was no reason to go further (also because I
knew the observer personally in the second case), but
when the stakes are high, the question becomes more
delicate. The stake might, for example, be the fame
of some sort, as in the case of the British ornithol-
ogist who shot birds in Asia, imported them frozen
to England and layed them out in a small stretch of
sea shore where he then obtained “first records” and
other remarkable “rare records” of these species for
Great Britain (even with “proofs”, namely the dead
bodies).

He was actually convicted by a statistical argument:
there were far too many “rare birds” concentrated
on that otherwise rather ordinary piece of sea shore,
also compared with the wider surroundings. But even
here one has to be careful. While on suitably located
islands like Heligoland or the Scilly Islands many rare
bird records can be expected, the number of special
records around Hildesheim (Lower Saxony), in a very
“ordinary” landscape, is at first really amazing. In
this case it was due to the sheer fanatic ardor with
which the Hildesheim group of ornithologists made
their (well-documented) observations; and it showed
how little we really know about our surroundings.

6.5 Subtle clues

It is a general experience of mine that unintentional,
casual, neutral, often subtle observations or remarks
often have the “ring of truth” (as long as this is not
used against me on purpose, in the next round of ar-
gumentation as described above), while I mistrust all
claims with a hidden (or even obvious) purpose be-
hind them. An example of my beginner’s time in or-
nithology is a flock of (very variable) Dunlins (Calidris
alpina) in fall; as I counted them back and forth, each
time my eye stayed longer with a particularly clean
bird (which in a process of “Gestaltwahrnehmung”
seemed more and more like a nearby outlier), until
I flushed it and could safely identify it as a Curlew
Sandpiper (Calidris ferruginea), an uncommon mi-
grant from Siberia.

It may also be that something seems “to be the same
and not the same”, as when I twice in 3 days observed
a Kentish Plover (Charadrius alexandrinus), which is
very rare inland. At closer scrutiny one was a male
and the other a (distinguishable) female.

Sometimes also “traces of memory” can be helpful for
explaining a strange observation.

A very informative clue can be the “Gestalt” of a
bird song. Once I woke up by a bird song I had
never heard before; it was a Greenish Warbler (Phyl-
loscopus trochiloides), one of the first records in West-

ern Germany, later published (Hampel 1964; Hampel
1965) and corroborated by several other West German
records during the same summer. Decades later I was
thrilled to hear and recognize the same song again for
the second time in the wintering area in India.

Another acoustic observation was more complicated.
On May 31, 1985, just before leaving Poland, I heard
a new song at Milicz railway station (Silesia) which
according to the Swedish bird records appeared to be
an Arctic Warbler (Phylloscopus borealis). But the
scientists I contacted claimed that the Wood War-
bler (Ph. sibilatrix) can have a very similar song. So I
spent some summers to check the breadth of variation
of Ph. sibilatrix songs. There was some variation, but
I never came close to the song in question. (Of course,
I cannot exclude that in some areas Ph. sibilatrix can
sing almost like Ph. borealis, but I suspect that it was
the same reaction as with Serinus citrinella suddenly
being a “rather common cage bird.”) Meanwhile, I got
a record with Mongolian bird songs, including sev-
eral songs by Ph. borealis, and one sounded exactly
like the bird I had heard. My last personal doubts
vanished when in the tropical jungle of southwestern
China, amidst lots of new songs, I suddenly heard
again the Milicz song (and briefly saw the bird).

I got some feedback on my observation of Oct. 20,
1962, of a possibly Phylloscopus schwarzi in Goettin-
gen (Hampel 2007), asking why I did not put it from
the category “extremely unlikely” to “possible” if not
“plausible”, but only to “unlikely” after hearing of the
“invasion” in Europe. But in this case I had very little
positive evidence for the species. I mainly knew that
according to the call it was not Ph. collybita (nor Ph.
trochilus), but I could not positively and safely iden-
tify the call, not knowing more about this and other
similar-looking Asiatic accidentals (and about details
of the “invasion”). Nevertheless, with additional in-
formation a new assessment might be possible.

6.6 Prejudices II and stability of opinion

It is a hard situation when people are so convinced
of their “background knowledge” that they refuse to
look at anything nonfitting (like the astronomer and
the philosopher in Brecht’s “Leben des Galilei” who
refused to look through Galilei’s telescope with the
moons of Jupiter visible, only arguing whether such
moons were “possible” and were “necessary”). I once
had an experienced ornithologist with me who liter-
ally (for a long time) refused to look at a Crane (Grus
grus) who was there at a very unusual time of year,
because he “knew” it could not be. (Probably he
thought I was pulling his leg.)

There is actually a fairly unknown variant of Bayes’
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theorem, derived from general principles, with an ex-
ponent on one of the two factors. As the exponent
varies between zero and infinity, we get all kinds of
people from those who are completely stuck in their
prejudices, to those who believe everything. (A fitting
story is the Sufi story of two persons A and B arguing
strongly; a third person C listens to A and says: “You
are right.” Then he listens to B and says: “You are
right.” When another person points out to C that A
and B cannot be both right, he says: “You are also
right.”)

It is clear that some medium stability of opinion is
needed in the flow of new informations, and science
certainly should lean somewhat more to the conser-
vative side. But when a reputable scientist observed,
with good documentation, that Lichtenstein’s Sand-
grouse (Pterocles lichtensteinii), an extreme desert
dweller, flew daily up to 80 km to the nearest wa-
terhole, walked into the water until the belly feathers
soaked up the water like a sponge, and then flew back
to water the young birds in the nest with its belly,
this was first ignored and then emphatically denied
for 70 years, until it was confirmed also for several
other Pterocles species (cf. Scott et al. 1974, p. 153).

Another such story (cf. Barth 1991): the similar-
ity of orchid flowers of the genus Ophrys with several
species of sand bees had long been noticed; but when a
wellknown specialist observed an actual “copulation”
attempt between bee and flower, he first kept it for
himself; and when he later wanted to publish it, it was
put down as “dirty fantasies of an old man.” (By now,
there are not only documentary movies, but also fasci-
nating research about the female smell of unpolluted
and polluted flowers, as well as a new systematics of
the orchids based on the bees.)

6.7 Some tough situations

Very often we have to deal with half-truths (“there
may be something to it ...”) which are very hard to
judge properly.

But one of the worst things that can happen to the
pursuit of truth in science is when it is distorted
and suppressed by political and religious, commercial
and financial interests, as happened again and again.
In evaluating new evidence (or even the lack of
public evidence), we unfortunately have to take such
interests and influences into account.

Acknowledgments: I owe to Werner Stahel, besides
technical help, several valuable remarks. – One
anonymous referee provided me with an additional
reference.
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Abstract
The theory of combinatorial games (like board games)
and the theory of social games (where one looks for
Nash equilibria) are normally considered two separate
theories. Here we shall see what comes out of com-
bining the ideas. J. Conway observed that there is a
one-to-one correspondence between the real numbers
and a special type of combinatorial games. There-
fore the payo¤s of a social games are combinatorial
games. Probability theory should be considered a
safety net that prevents inconsistent decisions via the
Dutch Book Argument. This result can be extended
to situations where the payo¤ function yields a more
general game than a real number. The main di¤er-
ence between number-valued payo¤ and game-valued
payo¤ is that the existence of a probability distrib-
ution that gives non-negative mean payo¤ does not
ensure that the game will not be lost.

Keywords. Combinatorial game, Dutch Book The-
orem, exchangable sequences, game theory, surreal
number.

1 Introduction

The word game in mathematics has two di¤erent
meanings. The �rst type of games are the social games
where a number of agents at the same time have to
make a choice and where the payo¤ to each agent is
a function of all agents�choices. Each agent has his
own payo¤ function. The question is how the agents
should choose in order to maximize their own payo¤.
In general the players may bene�t by making coali-
tions against each other. This kind of game theory
has found important applications in social sciences
and economy. A special class of these social games
are the two-person zero-sum games where collabora-
tion between the agents makes no sense.

The second type of games are the combinatorial
games. These are mathematical models of board

games. These games are the ones that people �nd
interesting and amusing. Games that people play for
amusement often involve an element of chance, gen-
erated by, for instance, dice, but the combinatorial
games are by de�nition the ones that do not contain
this element. Therefore they are sometimes called
games of no chance [15]. Examples from this cate-
gory are chess, nim, nine-mens-morris, and go. Com-
binatorial game theory has been particularly success-
ful in the analysis of impartial games like nim [5] and
has lead to a better understanding of endgames in
go [3,4, 15].

The Dutch Book Theorem is important in our under-
standing of imprecise probabilities. The Dutch Book
Theorem was �rst formulated and proved by F. P.
Ramsay in 1926 (reprinted in [16]) and later indepen-
dently by B. de Finetti [8], who used it as an argument
for a subjective interpretation of probabilities. Since
the original formulation of the Dutch Book Theorem
most of the research has been in the direction of more
subjective versions. As it is normally formulated, the
theorem relies on the concept of a real-valued payo¤
function. One may think of an outcome of the pay-
o¤ function as money but the uniform mean of hav-
ing £ 1.000.000 and having £ 0 is having £ 500.000.
Most people have a very clear preference for having
£ 500.000 rather than an unknown amount of money
with mean £ 500.000. Instead one may think of the
payo¤ as a more subjective notion of value, but this is
also a highly debatable concept and one may actually
consider money as our best attempt to quantify value.
Savage showed that the concept of value and payo¤
function can be replaced by the concept of preference,
so that a coherent set of preferences corresponds to
the existence of a payo¤ function and a probability
measure. This line of research has been followed up
by many other researchers [6, 17]. All those studies
involve some subjective notion of value or preference.

In order to better understand the Dutch Book Theo-
rem it is desirable to see how the theory would look
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in an environment where a subjective notion of value
plays no role. In this study we replace the normal
payo¤ functions by game-valued functions. There are
several reasons why this is of interest:

� A real-valued payo¤ function is a special case of
a game-valued payo¤ function.

� The theory of probability has its origin in the
study of games involving chance.

� Social game theory and combinatorial game the-
ory may mutually bene�t from a closer interac-
tion.

� One can often get insight into a special case by
the study of its generalizations.

With a game-valued payo¤ function the players in
a social game have to play a certain combinatorial
game that depends on their decisions and/or on some
random event. This setup may seem quite contrived,
but many board games that involve chance are of this
form.

Example 1 In chess it is normally considered a
slight advantage to play white. Therefore one nor-
mally randomly selects who should play white and who
should play black.

Example 2 M. Ettinger has developed an interesting
version of combinatorial game theory where after each
move a coin is �ipped to determine who is going to
play next [9].

Actually any board game involving chance may be
considered as an example. It will be the subject
of a future paper how to take advantage of a com-
bined probabilistic and combinatorial game approach
for some speci�c board games. In this short note we
shall focus entirely on how we should formulate or re-
formulate the Dutch Book Theorem when the payo¤s
are combinatorial games.

Social games and combinatorial games are built on
quite di¤erent ideas and many scientists only know
one of the types of game theory. There have only
been few attempts to combine the two types of game
theory [9, 22]. In this exposition we will assume that
the reader has basic knowledge about social games
such as two-person zero-sum games. Nevertheless we
have to repeat some of the elementary de�nitions from
social game theory in order to �x notation and, in
particular, to avoid confusion with similar but slightly
di¤erent concepts from combinatorial game theory.

Our main result is that it is possible to formulate ver-
sions of the Dutch Book Theorem for game-valued

payo¤ functions, but there will be some important
modi�cations of the theorem. For instance our prob-
ability distributions will not always be real-valued. In
our approach the focus is on order structure (induced
by games) and its relation to decision theory. A some-
what orthogonal approach was taken in [13] where the
probabilities were elements of a metric space with no
order structure.

2 Combinatorial games

The theory of combinatorial games was developed by
J. Conway as a tool to analyze board games [5, 7].
A short and more careful exposition can be found
in [18]. In a board game the players alternate in mak-
ing moves. Each move changes the con�guration of
the pieces on the board to some other con�guration
but only certain changes are allowed. It is convenient
to call the two players Left and Right. We shall of-
ten consider di¤erent board con�gurations as di¤erent
games. If G denotes a game, i.e. a certain con�gura-
tion then the game is speci�ed by the con�gurations
GL that Left is allow to move to and the con�gura-
tions GR that Right is allowed to move to, and we
write G =

�
GL j GR

	
: Note that we have not told

who is playing �rst, and therefore we have to describe
it from both Left�s and Right�s perspective. Now the
point is that GL and GR are sets of games, so a game
is formally a speci�cation of two sets of games. In a
board game it is nice to have many options to choose
among and bad if there are only few options. The
worst case for Left is if there are no options left and
in this case we say that Left has lost the game. So
Left has lost the game if he is to move next and GL

is empty. Similar Right loses the game if it is Right
to move and GR is empty. The rules of many board
games can be modelled in this way.

Example 3 (Games illustrated in Figure 1.)
The game f? j ?g is a boring one. The one to move
�rst loses this game. This game is denoted 0:

0 1 1 *

Figure 1: Games can be illustrated by game trees.
Options for Left are illustrated by left slanting edges,
and options for Right are illustrated by right slanting
edges. Here are the simplest ones. In more complicted
games there may be several left or right slanting edges
from each node.
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The game f? j 0g is lost by Left if Left has to move
�rst. If Right goes �rst Right has to choose 0: Now it
is Left to move but this is a losing position for the one
who is going to move, so poor Left loses. Thus Right
always wins the game f? j 0g : This game is denoted
�1:

The game f0 j ?g is lost by Right if Right has to move
�rst. If Left goes �rst Left has to choose 0: Now it
is Right to move but this is a losing position for the
one who is going to move, so now Left is happy again
because he wins. Thus Left always wins the game
f0 j ?g : This game is denoted 1:

Similarly we see that f0 j 0g is won by the player that
moves �rst. This game is called star and is denoted �:
In Japanese go terminology such a position is called
dame.

Here we shall use the following recursive de�nition of
a game.

De�nition 1 A game is a pair
�
GL j GR

	
where GL

and GR are sets of already de�ned games.

The status of a game G can be classi�ed according to
who wins if both players play optimally. We de�ne

G = 0; if second player wins;
G < 0; if Right wins whoever plays �rst;
G > 0; if Left wins whoever plays �rst;
G k 0; if �rst player wins.

For a game G we can reverse the role of Left and Right
and call this the negative of the game. Formally we
use the following recursive de�nition.

�
�
GL j GR

	
=
�
�GR j �GL

	
:

Left and Right can play two games in parallel. In
every round each player should make a move in one
of the games of his own choice. Perhaps there are
urgent moves to be made in both games so the players
have to prioritize in which game it is most important

G G

Figure 2: The game tree of �G is simply the mirror
image of the game tree of G:

to make the move. Several games played in parallel
is called the sum of the games, and many positions
in actual board games can be understood as sums of
sub-games. Combinatorial game theory is essentially
the theory of how to prioritize your moves in a board
game that has the structure of a sum of independent
sub-games. Formally the sum of the games G and H
is de�ned recursively by

G+H =��
GL +H

�
[
�
G+HL

�
j
�
GR +H

�
[
�
G+HR

�	
:

The sum of games is normally illustrated by the dis-
joint union of the game trees of the individual games.
The game G�H is by de�nition the game G+(�H) :

Now, we are able to de�ne what it should mean that
two games are equal. We write G = H if G�H = 0;
i.e. second player wins G�H: One can de�ne G > H,
G < H; and G k H in the same way. We say that G
and H are confused if G k H: One can prove that
G = H if and only if G+K and H+K have the same
status for any game K:

With these operations the class of games has the
structure as a partially ordered Abelian group. Any
Abelian group is a module over the ring of integers
with multiplication de�ned as follows. If n is a nat-
ural number we de�ne n �G by

n timesz }| {
G+G+ � � �+G :

If n = 0 then 0 � G is by de�nition equal to 0: If n
is a negative integer we de�ne n � G to be equal to
(�n) � (�G) :

The equation 2 � G = 0 has G = 0 as solution, but
G = � is also a solution. Therefore there is in general
no unique way of de�ning multiplication of a game
by 1=2; and the same holds for other non-integers.
From this point of view it is surprising that all dyadic
fractions (rational numbers of the form n=2m) can be
identi�ed with games. One way of doing it goes as
follows.

3 Numbers may be identi�ed with
games

J. Conway discovered that all real numbers can be
identi�ed with games but his construction will lead to
a larger class of numbers called the surreal numbers
(or Conway numbers). The surreal numbers were �rst
described in a mathematical novel by D. Knuth [14],
and later in much detail by J. Conway [7]. For newer
and more complete descriptions we refer to [1, 11].
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Figure 3: Some dyadic fractions.

We have already de�ned the game 1 so the integer
n is identi�ed with the game n � 1: The game f0 j 1g
satis�es

2 � f0 j 1g = 1:

Hence the 2�1 can be identi�ed with the game f0 j 1g :
In general the game f0 j 2�mg satis�es

2 �
�
0 j 2�m

	
= 2�m

so the fraction 2�(m+1) can be identi�ed with the
game f0 j 2�mg (see Figure 3). Thus the fraction
n=2m can be identi�ed with the game n � 2�m: In this
way any dyadic fraction can be identi�ed with a game.

A real number can be identi�ed with a Dedekind sec-
tion in the group of dyadic fractions. In other words,
a real number r; can be identi�ed with the partition
of the dyadic fractions into the sets

A = fn � 1=2m < r j m;n 2 Ng ;
B = fn � 1=2m > r j m;n 2 Ng :

Now, A and B can be identi�ed with sets of games and
therefore fA j Bg is a game. When r is a real number
that is not a dyadic fraction, it can be identi�ed with
the game fA j Bg : At this step one has to check that
the structure of the real numbers as an ordered group
is preserved under the embedding but this turn out
to be the case [7].

We have seen that real numbers may be identi�ed with
games, but combining the de�nition of a game with
the idea of a Dedekind section leads to the much larger
class of numbers called the surreal numbers. Formally
a surreal number is a game of the form fA j Bg where
A andB are sets of (already constructed) surreal num-
bers such that a < b for a 2 A and b 2 B: That means
that a surreal number can always be played as a com-
binatorial game.

Example 4 The �rst trans�nite ordinal number !
is identi�ed with the game fN j ?g : The equation
! � ! = 0 makes no sense in Cantor�s arithmetic
for trans�nite ordinals or cardinals, but if we identify
! with a game the equation makes sense, because we

have

! � ! = f1; 2; 3; � � � j ?g+ f? j �1;�2;�3; � � � g :
This game is essentially like "my father has more
money than your father" and most children soon ex-
perience that one should not start in such a game. It
is clear that ! should not be interpreted as an amount
but is better understood as a huge set of options. Con-
way identi�ed all Cantor�s ordinal numbers with sur-
real numbers, but Cantor and Conway use di¤erent
additive structures so the identi�cation is somewhat
problematic. For instance Conway�s addition is com-
mutative but Cantor�s addition of ordinal numbers is
not. Here we shall use ! as a symbol for a game rather
than an ordinal in Cantor�s sense.

Formally the surreal numbers are constructed by
(trans�nite) recursion. It starts with the number
0 = f? j ?g : In each recursion step one adds new
surreal numbers to the ones already constructed. Ad-
dition and multiplication extend to surreal numbers
and with these operations the surreal numbers are a
maximal ordered �eld. Although the de�nition of sur-
real multiplication is relevant for the next two sections
we cannot present the de�nition in this short note but
have to refer to [7,18]. For most computations surreal
numbers are not di¤erent from real numbers but the
topology is di¤erent.

A game G is said to be in�nitesimal if �2�m � G �
2�m for all natural numbers m: The number 1=! is
an example of an in�nitesimal number that is posi-
tive. Between any two di¤erent real numbers there
are more than continuously many surreal numbers,
and the intersection of the intervals [�2�m; 2�m] con-
tains in�nitely many in�nitesimal numbers. Formally
there are so many surreal numbers that they do not
form a set but a class.

4 Surreal probabilities and payo¤s

Here we will introduce a version of the Dutch Book
Theorem for surreal payo¤ functions. Because of the
somewhat di¤erent topology of the surreal numbers,
we have to be a little careful in the formulation and
proof of the Dutch Book Theorem. In particular some
of the standard methods for proving these results like
the Hahn-Banach theorem and the separation theo-
rem for convex sets, do not hold in their normal for-
mulation when we are using surreal numbers. Those
used to to non-standard analysis may note that what
we are doing is essentially to veify that our result may
be formulated in �rst order language.

The setup is as follows. Alice wishes to make a bet on
an outcome a 2 A. A bookmaker b 2 B o¤ers the sur-
real payo¤g (a; b) (positive or negative) if the outcome
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of a random event is a 2 A: Thus (a; b)! g (a; b) can
be considered as a matrix when A and B are �nite
sets. Alice should reject to play with a bookmaker b if
Alice thinks that the payo¤ function a! g (a; b) is not
favorable. For simplicity we shall assume that Alice
accepts the payo¤ functions o¤ered by the bookmak-
ers b 2 B:We recall that a surreal number is a game so
if the outcome is a and the bookmaker is b then Alice
has to play the game g (a; b) against the bookmaker
with Alice playing Left and the bookmaker playing
Right.

By a portfolio we shall mean a probability vector Q =
(qb)b2B on B: In this section will allow the portfolio
to have surreal values. Such a portfolio is described
by the payo¤ function

a!
X
b2B

qb � g (a; b) ; (1)

A Dutch book is a portfolio such that (1) is negative
for all a 2 A; i.e. the portfolio game will be lost by
Alice for any value of a 2 A.

We assume that one of the bookmakers b0 o¤ers a
payo¤ function g (a; b0) = 0 for all a 2 A (b0 acts like
a bank with interest rate 0). Let Q be a portfolio and
assume that there exists a Dutch book Q0: If Q has B
as support then qmin = minb2B qb > 0 and the payo¤
is X

b2B
qb � g (�; b) =X

b2B
(qb � qmin � q0b) � g (�; b) + qminqb

X
b2B

q0b � g (�; b) <

X
b2B

(qb � qmin � q0b) �g (�; b)+
 
qmin

X
b2B

q0b

!
�g (�; b0) :

Hence Alice should reject to play with at least one of
the bookmakers. If no Dutch book exists the set of
payo¤ functions is said to be coherent. The notion of
convexity will be used, and in this section we allow
surreal coe¢ cients in convex combinations.

Theorem 1 Let A and B denote �nite sets and let
(a; b) ! g (a; b) denote a surreal valued payo¤ func-
tion. If the payo¤ function is coherent then there ex-
ists non-negative surreal numbers pa such that

P
pa =

1 and X
a2A

pa � g (a; b) � 0 (2)

for all b 2 B:

Proof. Assume that A has d elements. Then
each function g (�; b) may be identi�ed with a d-
dimensional surreal vector. Let K be the convex hull

of fg (�; b) j b 2 Bg ; and let L denote the strictly neg-
ative surreal functions on A: They are convex classes.

If K and L intersect then there exists non-negative
surreal numbers qb such that

P
qb = 1 and such that

(1) de�nes a strictly negative function.

Assume that K and L are disjoint. Then de�ne C =
K �L as the class of vectors �x� �y where �x in K and
�y in L: This is convex and does not contain �0: Now,
K is a polytope (convex hull of �nitely many extreme
points) and L is polyhedral (given by �nitely many
inequalities), so C is polyhedral. Hence, each of the
faces of C is given by a linear inequality of the formP

a2A pa � g (a) � c for g 2 C. The delta function ��
is non-negative so if g is in C then g� ` � �� is also in
C for ` positive. In particular

c �
X
a2A

pa � (g � ` � ��) (a)

=
X
a2A

pa � g (a)�
X
a2A

pa`�� (a)

=
X
a2A

pa � g (a)� ` � p�

for all positive `: Hence p� � 0 for all � 2 A: Further
we know that �0 is not in C so that

P
a2A pa � 0 � c

does not hold and therefore c > 0: In particular pa
cannot be 0 for all a: The result follows by replacing
pa by

paP
a2A pa

:

Note that our surreal valued version Dutch Book The-
orem states there are two exclusive cases:

1. Dutch book.

2. Non-negative mean value.

The theorem leads to surreal probabilities pa � 0.
Due to the normalization we do not have in�nite prob-
abilities, but there is no problem in having in�nitesi-
mal probabilities. In general the probability distribu-
tion will not be uniquely determined, but will merely
be located in a non-empty convex set (credal set).
Therefore the Dutch Book Theorem suggests that un-
certainty about some unknown event should be rep-
resented by a convex set of surreal probability distri-
butions rather than a single real valued distribution.
Real functions are special cases of surreal functions
so even if the payo¤ functions are real valued one can
model our uncertainty by a convex set of surreal prob-
ability distributions.

If either g is acceptable or �g is acceptable then it is
called a two-sided bet. In this case the convex set of
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probability distributions reduces to a point. The term
one-sided bet is taken from F. Hampel [12]. In general
people will �nd it di¢ cult to decide that either g or
�g is acceptable and thus the two-sided bet is not
realistic. In De Finetti [8] only two-sided bets were
considered. In our formulation of the Dutch Book
Theorem we just have a one-sided bet with a set of
acceptable payo¤ functions.

A special case that has been studied in great detail is
when the functions g (�; b) only assume two di¤erent
values, i.e. g (�; b) has the form

g (a; b) =

�
g1 (b) ; for a 2 Ab;
g2 (b) ; for a =2 Ab:

Without loss of generality we may assume that
g1 (b) � 0 > g2 (b) : Then the g is accepted when
P (Ab) g1 (b) + (1� P (Ab)) g2 (b) � 0 or equivalently

P (Ab) �
�g2 (b)

g1 (b)� g2 (b)
: (3)

We then de�ne the lower provision function [21] by

L (A) = minP (A)

where the minimum is taken over all distributions P
that satis�es (3) for all b 2 B: One may form surreal
lower provisions in the same way as ordinary lower
provisions are formed.

In this section we have seen that uncertainty may be
identi�ed with a convex set of surreal-valued proba-
bility distribution, but often such convex sets contain
a lot of real-valued distributions. One may therefore
ask whether the surreal-valued distributions add any-
thing to the theory. Are they of any use? This we
will try to answer in the next section.

5 Two-person zero-sum games

The theory of two persons zero sum games was
founded by J. von Neumann together with O. Mor-
genstern [20] and has been extended to social games
with more players. The readers who are interested in
a deeper understanding of the theory of social games
should consult [19] for an easy introduction or [10] for
a more detailed exposition.

A social game with 2 players, that we will call Al-
ice and Bob, is described by 2 sets of strategies A;B
such that Alice can choose a strategy from A and Bob
can choose a strategy from B: If Alice choose a and
Bob choose b then the payo¤ for Alice will be g (a; b)
and the payo¤ for Bob will be �g (a; b) ; where g is
a function from A�B to surreal numbers: Alice and
Bob will never collaborate in a zero-sum game because

what is good for one of the players is equally bad for
the other.

A pair of strategies (a; b) is called a Nash equilibrium
if no player will bene�t by changing his own strategy
if the other player leaves his strategy unchanged. If
a game has a unique Nash pair and both players are
rational, then both players should play according to
the Nash equilibrium.

Assume that the players are allowed to use mixed
strategies, i.e. choose independent probability dis-
tributions over the strategies. The probabilities are
allowed to take surreal values. Let P be the mixed
strategy of Alice and Q be a mixed strategy of Bob.
Then the mean payo¤ for Alice is

g (P;Q) =
X
(a;b)

g (a; b) � paqb:

This number is considered as the payo¤ of the social
game where mixed strategies are allowed.

Theorem 2 Consider a game with surreal valued
payo¤s. If the players are allowed to use mixed strate-
gies, then the game has a Nash equilibrium.

There exists various di¤erent proofs of the existence of
Nash equilibria for two-person zero-sum games [2,10,
19, 20]. In this note we shall focus on its equivalence
with the Dutch Book Theorem.

The minimax inequality

max
a2A

min
b2B

g (a; b) � min
b2B

max
a2A

g (a; b)

is proved in exactly the same way for surreal payo¤
functions as for real payo¤ functions. The game is
said to be in equilibrium when these quantities are
equal. The common value is the value of the game.
For any mixed strategy P for Alice the minimum of
g (P;Q) over distributions Q is attained when Q is
concentrated in a point, i.e. Q = �b for some pure
strategy b 2 B: Thus

min
Q
g (P;Q) = min

b

X
a

g (a; b) � pa: (4)

To maximize this over all surreal-valued distributions
P is a linear programming problem and can be solved
by the same methods as if the payo¤ functions were
real valued. In particular there exists a surreal valued
distribution that maximizes (4). Using this argument
we see that minimax and maximin are obtained even
for mixed strategies.

Proof of equivalence of Thm. 1 and Thm. 2.
Assume that for a two person zero-sum game there
exists a value � with optimal strategies P andQ: Then
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g a1 a2
b1 1 + 1=! �1� 2=!
b2 �1 1 + 1=!

Table 1: Payo¤ for Alice.

� < 0 leads to the existence of a Dutch book and � � 0
leads to the existence of a distribution P satisfying
(2).

Assume that the Dutch Book Theorem holds. Assume
that there exist a surreal number � such that

max
P
min
Q
g (P;Q) < � < min

Q
max
P
g (P;Q)

Consider the payo¤ function f (a; b) = g (a; b) � �.
According to the Dutch Book Theorem there exists a
probability distribution P on AX

a2A
pa � f (a; b) � 0

for all b 2 B; or there exists a probability distribution
Q on B such thatX

b2B
qb � f (a; b) < 0

for all a 2 A. Therefore there exists a probability
distribution P on A such thatX

a2A
pa � g (a; b) � � (5)

for all a 2 A or there exists a probability distribution
Q on B such thatX

b2B
qb � g (a; b) � � (6)

for all strategies a 2 A: Inequality (5) contradicts
that � < minQmaxP g (P;Q) and Inequality (6)
contradicts that maxP minQ g (P;Q) < �: Hence,
maxP minQ g (P;Q) = minQmaxP g (P;Q) :

The importance of the proof that the Dutch Book
Theorem is equivalent to the existence of a Nash
equilibrium for two-person zero-sum games is that it
means that the two results refer to the same type of
rationality. The next example show that the use of
using surreal probabilities may make the di¤erence
between winning and losing.

Example 5 Consider the payo¤ function in Table 1.
If Alice ignores in�nitesimals her optimal strategy is
the distribution (1=2; 1=2) ; which gives a payo¤ func-
tion for Bob that is �1=2! if b = b1 and 1=2! if
b = b2: In this case Bob could win the game by choos-
ing b = b1: The minimax optimal strategy for Alice

g a1 a2
b1 ! + 1 �! � 2
b2 �! ! + 1

Table 2: Payo¤ for Alice multiplied by !:

is the mixed strategy
�
1=2 + 1

4(!+1) ; 1=2�
1

4(!+1)

�
: If

she choose this mixed strategy the payo¤ is always pos-
itive and she will win the game.

One should note that playing this game is not very dif-
ferent from playing the game where we have scaled the
payo¤ up by a factor ! (see Table 2). We may also
scale up Bob�s optimal strategy by a factor 4 (! + 1) to
obtain (2! + 3; 2! + 1) : Therefore an optimal strategy
for Alice is to play the game 4 (! + 1) "times" in par-
allel in such a way that a1 is "chosen 2! + 3 times"
and a2 is "chosen 2! + 1 times ".

If a two-persons zero-sum game has a Nash equi-

librium pair
�
~a;~b
�
; which is always the case if A

and B are �nite, then supa2A g
�
a;~b
�
= g

�
~a;~b
�
and

therefore infb2B supa2A g (a; b) � g
�
~a;~b
�
: Similarly,

supa2A infb2B g (a; b) � g
�
~a;~b
�
: Thus, the game is

in equilibrium and the value of the game is g
�
~a;~b
�
:

In particular all Nash equilibria have the same value.
The same argument holds for mixed strategies.

6 Dutch books for short games

Surreal numbers are totally ordered and never con-
fused with each other. Games that are not surreal
number are confused with a small or large interval of
surreal numbers. For instance � is confused with 0 and
the game f100 j �100g is confused with any number
between �100 and 100: Before formulating a Dutch
Book Theorem for general combinatorial games we
need to introduce the mean value � (G) of a short
game G: A game G is said to be short if it only
has �nitely many positions: Our recursive de�nition
of games allows trans�nite recursion and games that
are not short, but for the de�nition of mean values we
shall focus on the short games. Note that if a short
game is a number then it is a dyadic fraction.

The mean value of a game G is a real number � (G)
that satis�es the following mean value theorem.

Theorem 3 ( [7]) If G is a short game then there
exists a natural number m and a number � (G) that
satis�es

n � � (G)�m � n �G � n � � (G) +m
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for all natural numbers n:

Mean values of short games can be calculated by the
thermographic method described in [7] and using this
method it is easy to see that the mean value of a
short game is always a rational number. Mean values
of games share some important properties with mean
values of random variables. For instance we have

� � (n �G) = n � � (G) ;

� � (G+H) = � (G) + � (H) ;

� G � 0) � (G) � 0;

� � (1) = 1:

Example 6 The game G = f1 j f0 j �2gg that is il-
lustrated in Figure 2, satis�es G > 0: In the game n�G
Right can only play in a sub-game where Left has not
played and the response optimal for Left is always to
answer a move of Right by a move in the same sub-
game. From this one sees that n �G � 1 and therefore
that � (G) = 0: We see that Left may win a game for
sure although the game has mean value zero!

The setup is as before that each bookmaker b 2 B
tells Alice which game he wants to play if a certain
horse a 2 A wins. Alice is going to play Left and
the bookmaker or the bookmakers are going to play
Right. After certain bookmakers have been accepted
the bookmakers choose natural numbers nb; b 2 B and
combine these into a super game

P
b2B nb � G (a; b)

that will depend on which horse wins. We say that
we have a Dutch book if there exists natural numbers
n1; n2; � � � ; nk such that Alice will lose the gameX

b2B
nb �G (a; b) (7)

for any value of a: Otherwise the set of game valued
payo¤ functions is said to be coherent. If all the games
are short surreal numbers then this notion of coher-
ence is equivalent to the de�nition of coherence given
in Section 4.

Alice is allowed to choose that the game should be
played a number of times in parallel. With this setup
we get the following version of the Dutch Book The-
orem.

Theorem 4 If a payo¤ function G (a; b) ; a 2 A; b 2
B with short games as values, is coherent then either
exists a probability vector a! pa and a natural num-
ber n such that npa 2 N and the gameX

a

(npa) �G (a; b) > 0; for all b 2 B; (8)

or there exist natural numbers n1; n2; � � � ; nk; a nat-
ural number n and a probability vector a ! pa such
that both games (7) and (8) have mean value 0:

Proof. We apply the existence of an equilibrium in
the two-person zero-sum game with payo¤ function
(a; b) ! � (G (a; b)) : If the value of the two-person
zero-sum game is negative then the game (7) is nega-
tive if the coe¢ cients n1; n2; � � � ; nk are large enough.
If the value of the two-person zero-sum game is non-
negative there exists a probability vector a! pa such
that X

a

pa � � (G (a; b)) � 0:

The mean value of a short game is a rational number.
Therefore the probability vector a! pa can be chosen
with rational point probabilities. Hence, there exists
a natural number m such that m � pa is an integer for
all a 2 A: Therefore

0 � m
X
a

pa � � (G (a; b))

�
X
a

mpa � � (G (a; b))

= �

 X
a

mpa �G (a; b)
!
:

If

�

 X
a

mpa �G (a; b)
!
> 0

then there exists a natural number k such that

k
X
a

mpa �G (a; b) > 0

and the game de�ned in (8) is winning for Alice who
plays as Left when n = km: Otherwise

�

 X
a

mpa �G (a; b)
!
= 0: (9)

Here we should note that our short-game-valued
Dutch Book Theorem stated there are three cases that
are not exclusive:

1. Dutch book.

2. Positive mean.

3. Zero mean.

As we saw in Example 6 a game with mean zero may
be positive or negative. Therefore a decision strategy
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in which only games with positive means are accept-
able will exclude some games that one will win for
sure and a decision strategy where games with non-
negative mean are acceptable will include some games
that are lost for sure. The most reasonable solution to
this problem seems to be to accept or reject accord-
ing to the mean payo¤ with respect to some proba-
bility distribution, but leave the cases with mean zero
undecided because a more detailed non-probabilistic
analysis is needed for these cases.

7 More on in�nitesimals

The Dutch Book Theorem for short games only used
rational valued mean values. One may hope for a
better Dutch Book Theorem if we allow also allow a
mean value function with in�nitesimal surreal num-
bers as mean values. For short games this will not
solve the problem.

De�nition 2 A game G is said to be strongly in�n-
itesimal if �s � G � s for any surreal number s > 0:

Example 7 The game f0 j �g is called up and de-
noted ": It is easy to check that " > 0: The game " is
in�nitesimal (check how Left can win 2�s � "). One
can prove that any in�nitesimal short game is strongly
in�nitesimal [18].

An interesting situation is when all games G (a; b) are
in�nitesimal. In this case the Dutch Book Theorem
for games as formulated in Theorem 4 tells exactly
nothing because the mean value of strongly in�nites-
imal games would always be 0 even if surreal mean
values are allowed. But if all games are in�nitesimal
one could shift to a di¤erent "mean value" concept.
For short games one compares the game with n � 1
and the game 1 can be considered as a unit in the
theory. For in�nitesimal short games one can com-
pare with the in�nitesimal game " instead. It is pos-
sible to de�ne an atomic mean value such that " has
mean 1; but the proofs are more involved. One can
also prove a version of the Dutch Book Theorem for
in�nitesimally short games that involves three cases.
The three cases are Dutch book, positive mean, and
some games G that cannot be analyzed in the sense
that their atomic mean value is zero. Although in�n-
itesimal games can be treated with their own mean
value concept this will not solve all problems because
games that are not in�nitesimal may sometimes be
combined into strongly in�nitesimal games. A simple
example consist of the games 1 and " � 1 whose sum
is the strongly in�nitesimal game ":

8 Discussion

In any frequency interpretation of probability theory,
probabilities should be interpreted as limits of fre-
quencies. Obviously surreal probabilities cannot have
such interpretations because a frequency interpreta-
tion cannot distinguish between surreal probabilities
that have an in�nitesimal di¤erence. This leads us
to the following conclusion: frequency probabilities
are real numbers but uncertainty should in general be
modelled by convex sets of surreal numbers.

In a subjective Bayesian approach to probability and
statistics one will assign probabilities expressing the
individual feeling of how probable or likely an event
is. Many subjective Bayesians justify this point of
view by reference to the Dutch Book Theorem. We
note that unlike some of the modi�cation by Savage et
al. neither our formulation of the Dutch Book The-
orem nor its original formulation of de Finetti has
any reference to subjectivity. For short-game valued
payo¤s even the one-to-one correspondence between
probability and coherent decisions breaks down. Ex-
periments have demonstrated that most people have a
bad intuition of probabilities and are unable to assign
probabilities in a consistent manner. It should be even
harder to make a consistent distinction between the
probabilities 1=3 and 1=3 + 1=! although the Dutch
Book Theorem give the same type of justi�cation for
surreal probabilities as for real probabilities.

We have seen that from a mathematical point of view
uncertainties may be modeled by a convex set of sur-
real probability vectors, but the reader may wonder
why in�nitesimals do normally not appear in prob-
ability theory. Actually there are many real num-
bers that never appear as probabilities. For instance
all the numbers that do appear are computable, and
there are only countably many computable numbers.
Therefore, it seems that the use of surreal numbers is
an idealization that is not worse than the use of real
numbers as subjective probabilities. At the moment
two-person zero-sum games like the ones described in
Example 5 are the only known kind of calculations
that gives surreal valued probabilities as results.

In this paper we used the operations + and � to de�ne
Dutch books and coherence. These operations refer
to ways of combining games into new games. It is
an open question what kind of Dutch Book Theorem
one would get if other ways of combining games were
considered.

For social games with several players and surreal-
valued payo¤ functions we have not been able to prove
existence of a Nash equilibrium, because one cannot
use the usual �xed-point results that rely heavily on
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the topology of the real numbers. We shall not discuss
it here as it has less interest for our understanding of
what probabilities are.
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Abstract

We prove necessary and sufficient conditions on choice
functions for factuality to hold in normal form se-
quential decision problems. We find that factuality is
sufficient for backward induction to work. However,
choice must be induced by a total preorder for factu-
ality to hold. Hence, many of the optimality criteria
used in imprecise probability theory (such as inter-
val dominance, maximality, and E-admissibility) are
counterfactual under normal form decision making.

1 Introduction

Consider the two-stage decision problem depicted in
Fig. 1. In the first stage, the subject chooses be-
tween either taking scones, or proceeding to the sec-
ond stage. In the second stage, the subject chooses
between either cake or ice cream. A normal form solu-
tion to this problem consists of the subject specifying
all his admissible choices, at all stages, beforehand.
One possible normal form solution is

{scones, no scones and then ice cream}.

Imagine now that the subject already chose not to
have scones. To resolve his choice between cake and
ice cream, the subject can go back to the original
problem that involved scones, and take the ice cream,
but we might also imagine that he simply forgets
about the scones and considers the simpler problem
of choosing between cake and ice cream, as in Fig. 2.

If, faced with the simpler problem, the subject would
now not state ice cream as his only admissible choice,
we say that he is counterfactual : his choice between
cake and ice cream depends on whether or not he
had the choice of scones before. Perhaps, this seems
an awkward property at first, but as we shall see,
counterfactual choices are legion in many theories—a
notable exception is maximizing expected utility.

So, when faced with a sequential decision problem, at

N1

N2

cake

ice cream

scones

Figure 1: Two-stage problem.

N2

cake

ice cream

Figure 2: Second stage.

any particular stage, one has two ways of looking at
its normal form solution. Either, the problem can be
thought of as part of a much larger problem (consider-
ing past choices one did not make and events that did
not happen), or the problem can be thought of in its
simplest form, not considering any past stages. Intu-
itively, a reasonable requirement is that the solution
at any particular stage does not depend on the larger
problem it is embedded in, i.e., that it is factual.

This papers studies necessary and sufficient conditions
on choice functions for factuality in sequential decision
problems when using normal form solutions, extend-
ing some results of Hammond [1] in his consequen-
tialist theory. In doing so, factuality turns out to be
sufficient for a backward induction scheme to work.
We also find that choice must be induced by a total
preorder for factuality to hold: for any choice function
not induced by a total preorder, we can construct a
counterfactual normal form example.

The relevance of this result for imprecise probabil-
ity theory is that any criterion of optimality not
induced by a total preorder (such as maximality,
E-admissibility, and interval dominance) necessarily
leads to counterfactuality. In other words, to satisfy
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factuality, one must reject either (i) the normal form
as a means of solving decision problems, or (ii) any
criterion that is not induced by a total preorder.

A total preorder, however, is not sufficient to im-
ply factuality. Indeed, many total preorders that
have been proposed for choice are still counterfac-
tual. When precise probabilities are used, Hammond
showed that expected utility is factual, as is well
known, as are several related criteria [1, Sec. 9]. We
are not aware of any non-trivial factual criteria that
do not rely on probability and expected utility, al-
though they may exist. The representation of all fac-
tual optimality criteria is still an open problem.

The paper is structured as follows: Section 2 explains
decision trees and introduces notation. Section 3 pro-
vides a careful definition of normal and extensive form
solutions, and introduces the concept of gambles to
more easily work with normal form solutions. Sec-
tion 4 introduces choice functions and their relation-
ship with normal form solutions. Section 5 defines
factuality and contains the principal results.

2 Decision Trees

2.1 Definition and Example

A decision tree [6] consists of a rooted tree of decision
nodes, chance nodes, and reward leaves, growing from
left to right. The left hand side corresponds to what
happens first, and the right hand side to what happens
last.

Consider Fig. 3. Decision nodes are depicted by
squares, and chance nodes by circles. From each node,
branches emerge. For decision nodes, each branch
matches a decision; for chance nodes, each branch
matches an event. For each chance node, the events
that emerge form a partition of the possibility space:
exactly one of the events must obtain. Each path in a
decision tree corresponds to a particular sequence of
decisions and events. The payoff resulting from each
such sequence is put at the right end of the tree.

2.2 Notation

Decision trees can be seen as combinations of smaller
decision trees: for instance, in the example, one could
draw the subtree corresponding to dS , and also draw
the subtree corresponding to dS . The full decision
tree then joins these two subtrees at a decision node.

Hence, we can represent a decision tree by its subtrees
and the type of its root node. Let T1, . . . , Tn be
decision trees and E1, . . . , En be a partition of the
possibility space. If T is rooted at a decision node,
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Figure 3: A decision tree.

we write T =
⊔n

i=1 Ti, and at a chance node, we write
T =

⊙n
i=1 Ei Ti. For instance, for the tree of Fig. 3,

(S1(T1 t T2)� S2(T1 t T2)) t (U1 t U2) with

T1 = E19� E214 U1 = E110� E215
T2 = E14� E219 U2 = E15� E220

Definition 1. A subtree of a tree T obtained by re-
moval of all non-descendants of a particular node N is
called the subtree of T at N and is denoted by stN (T ).

For any (sub)tree T , we summarize the events ob-
served in the past as ev(T ), which is the intersection
of all the events on chance arcs that preceded T .

3 Solving Decision Trees

This paper deals with more general solutions of de-
cision trees than are usually considered. Conse-
quently, the standard definitions of extensive and nor-
mal forms, such as in Raiffa and Schlaifer [10], are in-
sufficient for our purpose. Therefore, we first carefully
define normal and extensive form solutions.

3.1 Extensive and Normal Form Solutions

An extensive form solution takes the decision tree
and removes from each decision node some (possibly
none), but not all, of the decision arcs. So, an exten-
sive form solution is a subtree of the original decision
tree, where at each decision node only a non-empty
subset of arcs is retained. For instance, in the exam-
ple, one of the extensive form solutions is: take dS ,
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and then either take d1 or d2. An extensive form solu-
tion can be used as follows: the subject, upon reaching
a decision node, chooses one of the arcs in the exten-
sive form solution, and follows it. The subject only
needs to decide which arc to follow at a decision node
when reaching that node.

Following Raiffa and Schlaifer [10], Luce and Raiffa
[7], and many others, another way to describe solu-
tions to decision trees goes as follows. First, an ex-
tensive form solution with just one arc out of each de-
cision node, is called a normal form decision. Hence,
once a normal form decision is specified, a subject’s
decisions are uniquely determined in every eventual-
ity. For instance, in the example, one of the normal
form decisions is: take dS , followed by d1 if S1 ob-
tains, and d2 if S2 obtains. We denote the set of all
normal form decisions for a decision tree T by nfd(T ).

The interpretation of a normal form decision is that,
upon reaching a decision node, the subject chooses
the arc specified in the normal form decision. Com-
pare this with a more general extensive form solution,
in which the subject, upon reaching a decision node,
chooses one of a subset of the available arcs. The dif-
ference between the two is that, for a normal form
decision, the subject’s choice at every decision node
is uniquely determined from the beginning. In the ex-
tensive form, the particular arc to follow does not need
to be determined unless the subject actually reaches
the decision node in question.

A normal form solution of a decision tree T is then
simply a subset of nfd(T ). The interpretation of this
subset is that the subject simply picks one of the nor-
mal form decisions of the normal form solution, and
then acts accordingly.

Of course, an extensive form solution can always be
transformed into a normal form solution by taking
every possible normal form decision that is compatible
with it. However, there are usually more normal form
solutions than there are extensive form solutions.

3.2 Extensive and Normal Form Operators

An extensive form operator is a function which maps
each decision tree to an extensive form solution of that
decision tree. Note that some definitions in the litera-
ture, such as Raiffa and Schlaifer [10], define extensive
form solutions through backward induction. Our def-
inition does not specify the method by which decision
arcs are removed. There need be no relationship be-
tween extensive forms and recursive methods.

An normal form operator is a function which maps
each decision tree to a normal form solution of that
decision tree. Again, note that the method by which

this subset is determined is not part of our definition.

These operators usually (but do not need to) have the
interpretation of describing optimal solutions.

An example of an extensive form operator is the clas-
sical backward induction method. Moving from right
to left in the tree, decision arcs are deleted unless they
give the maximum expected utility over all available
arcs at that node. The principal feature of the method
is that, once an arc has been deleted, it is ignored in all
future calculations at nodes further to the left in the
tree. The corresponding normal form operator finds
the expected utility of each normal form decision and
then returns the set that maximizes expected utility.

While it is well documented that these two classical
operators always give equivalent solutions, this rela-
tionship can fail for other criteria. Extensive form
operators that recursively apply a criterion may give
a solution that differs from the normal form operator
that applies the same criterion to the set of all normal
form decisions. Examples can be found in Seidenfeld
[11], Machina [8], and Jaffray [4], among others.

3.3 Gambles

In this paper we are primarily investigating normal
form solutions. To express normal form decisions and
solutions efficiently, we first introduce some defini-
tions and notation. Let Ω be the possibility space:
the set of all possible states of the world. We only
consider finite possibility spaces. Elements of Ω are
denoted by ω. Subsets of Ω are called events. The
arcs emerging from chance nodes in a decision tree
correspond to events.

Let R be a set of rewards. Often, rewards are mea-
sured in utiles, and hence R = R, but this assumption
is not necessary for our results.

A gamble is a function X : Ω → R; in other words,
gambles are Ω–R functions. Gambles are interpreted
as uncertain rewards: should ω ∈ Ω be the true state
of the world, the gamble X will yield the reward X(ω).
Note that no probabilities over Ω are assumed at all.

3.4 Normal Form Gambles

Recall that a normal form decision prescribes the sub-
ject’s actions, so once one has been chosen, the reward
is determined entirely by the events that obtain. In
other words, a normal form decision has a correspond-
ing gamble, which we call a normal form gamble. The
set of all normal form gambles associated with a de-
cision tree T is denoted by gamb(T ), so gamb is an
operator on trees which yields the set of all gambles
induced by normal form decisions of the tree.
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ω1 ω2 ω3 ω4

E19⊕ E214 9 9 14 14
S1 (E19⊕ E214)
⊕S2 (E14⊕ E219) 9 4 14 19

Table 1: Example of normal form gambles.

Let us explain how to find the gamble corresponding
to a normal form decision, using Fig. 3 as an example.
Instead of looking at the full tree, for simplicity let us
first consider the subtree with root at N1

1
1. The only

two normal form decisions in this subtree are simply
d1 and d2. The former gives reward 9 utiles if ω ∈ E1

and 14 utiles if ω ∈ E2, which corresponds to a gamble

E19⊕ E214. (1)

In the above expression, the ⊕ operator combines par-
tial maps defined on disjoint domains (i.e. the con-
stant partial map E19 defined on E1, and the constant
partial map E214 defined on E2).

Now consider the subtree with root at N1
1, and in

particular the normal form decision ‘d1 if S1 and d2 if
S2’. This gives reward 9 if ω ∈ S1 ∩ E1, reward 14 if
ω ∈ S1 ∩E2, and so on. The corresponding gamble is

(S1 ∩E1)9⊕ (S1 ∩E2)14⊕ (S2 ∩E1)4⊕ (S2 ∩E2)19,

or briefly, if we omit ‘∩’ and employ distributivity,

S1 (E19⊕ E214)⊕ S2 (E14⊕ E219) ,

where multiplication with an event is now understood
to correspond to restriction, i.e., 9 is a constant map
on Ω, E19 is a constant map restricted to E1, and
S1(E19) is obtained from E19 by further restriction
to E1 ∩ S1. For illustration, we tabulate the values
of some normal form gambles in Table 1, where Ω =
{ω1, ω2, ω3, ω4}, E1 = {ω1, ω2}, and S1 = {ω1, ω3}.
Observe that the above gamble includes the gamble in
Eq. (1) from N1

1
1. Relationships between sets of nor-

mal form gambles for different subtrees allows a very
convenient recursive definition of the gamb operator,
given next. First, we extend ⊕ to sets of gambles:
Definition 2. For any events E1, . . . , En which form
a partition, and any finite family of sets of gambles
X1, . . . , Xn, we define the following set of gambles:

n⊕

i=1

EiXi =

{
n⊕

i=1

EiXi : Xi ∈ Xi

}

Definition 3. With any decision tree T , we associate
a set of gambles gamb(T ), recursively defined through:

• If a tree T consists of only a leaf with reward
r ∈ R, then

gamb(T ) = {r}. (2a)

• If a tree T has a chance node as root, that is,
T =

⊙n
i=1 EiTi, then

gamb

(
n⊙

i=1

EiTi

)
=

n⊕

i=1

Ei gamb(Ti). (2b)

• If a tree T has a decision node as root, that is, if
T =

⊔n
i=1 Ti, then

gamb

(
n⊔

i=1

Ti

)
=

n⋃

i=1

gamb(Ti). (2c)

Most decision problems can be modelled in more more
than one way: there are usually multiple decision trees
that model the same problem. This suggests the fol-
lowing definition (see for instance [8]):
Definition 4. Two decision trees T1 and T2 are called
strategically equivalent if gamb(T1) = gamb(T2).

4 Normal Form Solutions for
Decision Trees

4.1 Choice Functions and Optimality

A normal form solution of a decision tree T is a sub-
set of the set nfd(T ) of all its normal form decisions.
Ideally one would like to identify a single normal form
decision that the subject considers the best, but there
is no reason to suppose that this is always possible.
The subject might, however, still be able to identify
some normal form decisions that he would never con-
sider choosing, and eliminate these. This leaves a sub-
set of normal form decisions that the subject would
be willing to choose from. We say that the subject
considers elements of this subset to be optimal.

For instance, in classical decision theory, each normal
form decision induces a random real-valued gain, and
assuming that all probabilities are fully specified, a
normal form decision is considered optimal if its ex-
pected gain is maximized. As another example, con-
sider the situation where the probabilities are not pre-
cisely known, but a setM of plausible probability dis-
tributions can be specified. Then the subject might
consider as optimal any of those normal form deci-
sions whose expected gain is maximal under at least
one probability distribution inM. In other situations
one might use a different optimality criterion.

In these two examples, optimal decisions are deter-
mined by comparison of gambles. This is a common
approach, and one we follow here, since we have seen
that normal form decisions have corresponding gam-
bles, and gambles are easier to work with. We there-
fore suppose that the subject has some way of de-
termining an optimal subset of any set of gambles,
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conditional upon an event A (which corresponds to
the ev(T ) of the decision tree in question):

Definition 5. A choice function opt is an operator
that, for any non-empty event A, maps each non-
empty finite set X of gambles to a non-empty subset
of this set: ∅ 6= opt(X|A) ⊆ X .

Note that common uses of choice functions in social
choice theory, such as by Sen [12, p. 63, ll. 19–21] do
not consider conditioning, and define choice functions
for arbitrary sets of options (not for gambles only).

4.2 Normal Form Operator Induced by a
Choice Function

We have seen that normal form decisions induce gam-
bles, and have introduced choice functions, acting
on sets of gambles, as a means to model optimality.
Whence, we naturally arrive at a normal form opera-
tor normopt, simply by applying opt on the set of all
gambles associated with the tree T and then finding
the corresponding set of normal form decisions.

Definition 6. Given any choice function opt, and
any decision tree T with ev(T ) 6= ∅, we define

normopt(T ) = {U ∈ nfd(T ) :
gamb(U) ⊆ opt(gamb(T )|ev(T ))}.

Of course, since U is always a normal form decision,
gamb(U) is always a singleton in this definition. In
particular, the following equality holds,

gamb(normopt(T )) = opt(gamb(T )|ev(T )). (3)

Note that, although normopt is applied to trees, it
really depends only on the set of normal form gambles
associated with the tree. Hence, the operator normopt

will respect strategic equivalence:

Theorem 7. If T1 and T2 are strategically equiva-
lent, then gamb(normopt(T1)) = gamb(normopt(T2))
whenever ev(T1) = ev(T2) 6= ∅.

If there are several strategically equivalent trees that
are plausible representations of the same problem, the
above theorem guarantees that our solution is inde-
pendent of the particular representation we use.

When studying factuality, we consider normopt for ar-
bitrary subtrees of a given decision tree. To ensure
that normopt can be applied on each of such subtrees,
the following condition is necessary:

Definition 8. A decision tree T is called consistent
if for every node N of T , ev(stN (T )) 6= ∅.

Clearly, if a decision tree T is consistent, then for
any node N in T , stN (T ) is also consistent. We

study only consistent decision trees because we con-
sider normopt(stN (T )) for any node N in T , which is
impossible when ev(stN (T )) = ∅.
Usually, when constructing decision trees, one does
not consider events which conflict with preceding
events, hence consistency is satisfied. However, due
to an oversight, some branch of a chance node might
be connected to an event that cannot occur: such
tree can always be made consistent by removing those
nodes whose conditioning event is empty.

We sometimes need to know when a set of gambles
can be represented by a consistent decision tree, con-
ditional on some event. The following definition char-
acterizes precisely those gambles:

Definition 9. Let A be any non-empty event, and let
X be a set of gambles. Then the following conditions
are equivalent; if any (hence all) of them are satisfied,
we say that X is A-consistent.

(A) There is a consistent decision tree T with
ev(T ) = A and gamb(T ) = X .

(B) For every r ∈ R and every X ∈ X such that
X−1(r) 6= ∅, it holds that X−1(r) ∩A 6= ∅.

A gamble X is called A-consistent if {X} is A-
consistent.

5 Counterfactuals

We now give a discussion of issues arising from the use
of operators, either normal form or extensive form,
that use counterfactual reasoning, and find necessary
and sufficient conditions on opt for normopt to avoid
counterfactuality. Counterfactual reasoning involves
the consideration of events that did not occur or de-
cisions that were not chosen. This is of interest be-
cause for many choice functions opt that have been
suggested in the literature, normopt is counterfactual.

5.1 Example and Definition

Counterfactuals are best illustrated by an example.
Suppose we are applying an extensive form operator
to the tree T in Fig. 3. This operator will delete some
(possibly none) of the decision arcs at N = N1

1
1. If the

choice of arcs to delete is influenced only by stN (T )
(that is, the operator would delete the same arcs at
N regardless of the larger tree in which stN (T ) is em-
bedded) then the operator is called factual. If the op-
erator does not have this property (for instance, if the
solution were to depend on the possible consequences
of dS or S2), then it is called counterfactual.
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T stN (T )

ext(stN (T ))
optimize

restrict

ext(T ) stN (ext(T ))restrict

optimize

if N in ext(T )

Figure 4: For a factual extensive form operator, opti-
mization and restriction commute.

The definition of a counterfactual normal form oper-
ator requires the following extension to Definition 1.

Definition 10. If T is a set of decision trees and N
a node, then

stN (T ) = {stN (T ) : T ∈ T and N in T}.

Definition 11. An extensive form operator ext is
called factual if for every consistent decision tree T
and every node N such that N is in ext(T ),

stN (ext(T )) = ext(stN (T )),

otherwise, ext is called counterfactual.

An normal form operator norm is called factual if for
every consistent decision tree T and every node N
such that N is in at least one element of norm(T )

stN (norm(T )) = norm(stN (T )),

otherwise, norm is called counterfactual.

In other words, for a factual operator, it does not mat-
ter whether we first restrict our attention to a subtree
at a particular node N and then optimize this subtree,
or first optimize, and only then look at the resulting
subtree at a particular node N : roughly speaking, fac-
tuality means that optimization and restriction com-
mute, as in Fig. 4 for an extensive form operator. For
a counterfactual extensive form operator, stN (ext(T ))
can differ from ext(stN (T )) for some decision trees T
and nodes N in ext(T ).

For example, the extensive form operator extP corre-
sponding to the usual backward induction using ex-
pected utility is well known to be factual. Also, the
usual normal form operator normP corresponding to
maximizing expected utility over all normal form deci-
sions is factual, because extP is equivalent to normP .

Before we examine factuality in more detail, we give
an example of a counterfactual choice function.

Example 12. Let T be the decision tree in Fig. 5,
where X, Y , and Z are its normal form gambles.
Under point-wise dominance, X and Y are incom-
parable, as are Y and Z. Hence, norm(stN (T ))

A A
X −1 −1
Y −2 2
Z 0 0

N

−1
−2A

2A
0

Figure 5: Decision tree for Example 12.

is {X, Y } (where we conveniently identified normal
form decisions with their normal form gambles). But
norm(T ) = opt({X,Y, Z}) = {Y,Z} as clearly Z
dominates X. Restricting this solution to stN (T )
gives the normal form solution {Y }. Concluding,

{X, Y } = norm(stN (T )) 6= stN (norm(T )) = {Y }

and therefore the normal form operator induced by
point-wise dominance is counterfactual.

Even though point-wise dominance is counterfactual,
it does satisfy stN (norm(T )) ⊆ norm(stN (T )), al-
though this may not be true in general.

5.2 Necessary and Sufficient Conditions

In this section, we work extensively with normal form
solutions, which are sets of trees. Therefore, it is con-
venient to extend gamb, �, and t, to sets of trees:

Definition 13. For any set of decision trees T ,

gamb(T ) =
⋃

T∈T
gamb(T ).

Definition 14. For any sets of consistent decision
trees T1, . . . , Tn, and any partition E1, . . . , En,

n⊙

i=1

EiTi =

{
n⊙

i=1

EiTi : Ti ∈ Ti

}
.

Definition 15. For any sets of consistent decision
trees T1, . . . , Tn,

n⊔

i=1

Ti =

{
n⊔

i=1

Ti : Ti ∈ Ti

}
.

For sets of trees, the gamb operator satisfies:

gamb

(
n⊙

i=1

EiTi

)
=

n⊕

i=1

Ei gamb(Ti),

gamb

(
n⊔

i=1

Ti

)
=

n⋃

i=1

gamb(Ti).

gamb(T ) = gamb(nfd(T )).
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The following three properties turn out to be neces-
sary and sufficient for factuality of normal form oper-
ators induced by a choice function.

Property 1 (Conditioning Property). Let A be a
non-empty event, and let X be a non-empty finite A-
consistent set of gambles, with {X,Y } ⊆ X such that
AX = AY . If X ∈ opt(X|A), then Y ∈ opt(X|A).

Property 2 (Intersection property). For any event
A 6= ∅ and any non-empty finite A-consistent sets of
gambles X and Y such that Y ⊆ X and opt(X|A) ∩
Y 6= ∅, it holds that opt(Y|A) = opt(X|A) ∩ Y.

For the next property, we use the following notation:
if A is a non-trivial event (non-empty and not Ω),
then AX ⊕AZ = {AX ⊕AZ : X ∈ X}.
Property 3 (Mixture property). For any events A
and B such that A ∩ B 6= ∅ and A ∩ B 6= ∅, any
A∩B-consistent gamble Z, and any non-empty finite
A ∩B-consistent set of gambles X ,

opt(AX ⊕AZ|B) = A opt(X|A ∩B)⊕AZ.

Property 2 has a vast number of equivalent formula-
tions, three of which we give next, yielding different
interpretations to Property 2. These will be useful to
discuss the implications of factuality later on.

Property 4 (Strong path independence). For any
non-empty event A and any non-empty finite A-
consistent sets of gambles X1, . . . ,Xn, there is a non-
empty I ⊆ {1, . . . , n} such that

opt

(
n⋃

i=1

Xi

∣∣∣∣∣A
)

=
⋃

i∈I
opt(Xi|A)

Property 5 (Very strong path independence). For
any non-empty event A and any non-empty finite A-
consistent sets of gambles X1, . . . ,Xn,

opt

(
n⋃

i=1

Xi

∣∣∣∣∣A
)

=
n⋃

i=1
Xi∩opt(∪n

i=1Xi|A)6=∅

opt(Xi|A)

Property 6 (Total preorder). For every event A 6= ∅,
there is a total preorder �A on A-consistent gam-
bles such that for every non-empty finite set of A-
consistent gambles X ,

opt(X|A) = {X ∈ X : (∀Y ∈ X )(X �A Y )}

Lemma 16. Properties 2, 4, 5 and 6 are equivalent.

To show that Properties 1, 2 and 3 are necessary and
sufficient for factuality of normopt, we require several
lemmas (proofs are omitted due to space constraints).

We use this notation: for a decision tree T , ch(T ) is
the set of all child nodes of the root node of T .

Lemma 17. Let norm be any normal form operator.
Let T be a consistent decision tree. If,

(i) for all nodes K ∈ ch(T ) such that K is in at least
one element of norm(T ),

stK(norm(T )) = norm(stK(T )),

(ii) and, for all nodes K ∈ ch(T ), and all nodes L ∈
stK(T ) such that L is in at least one element of
norm(stK(T )),

stL(norm(stK(T ))) = norm(stL(stK(T ))),

then, for all nodes N in T such that N is in at least
one element of norm(T ),

stN (norm(T )) = norm(stN (T )).

Lemma 18. Let A1, . . . , An be a finite partition of
Ω, and let B be an event such that Ai ∩ B 6= ∅ for
all i. Let X1, . . . , Xn be a finite family of non-empty
finite sets of gambles, where Xi is Ai ∩ B-consistent.
If a choice function opt satisfies Properties 2 and 3,
then

opt

(
n⊕

i=1

AiXi

∣∣∣∣∣B
)

=
n⊕

i=1

Ai opt(Xi|Ai ∩B).

Lemma 19. Consider a consistent decision tree T
whose root is a decision node, so T =

⊔n
i=1 Ti, and

any choice function opt. For each tree Ti, let Ni

be its root. Then, Ni is in at least one element of
normopt(T ) if and only if

gamb(Ti) ∩ opt(gamb(T )|ev(T )) 6= ∅.

Lemma 20. For any consistent decision tree T =⊙n
i=1 EiTi, and any opt satisfying Property 1,

gamb(normopt(T )) =
n⊕

i=1

Ei gamb(normopt(Ti))

implies

normopt(T ) =
n⊙

i=1

Ei normopt(Ti).

Lemma 21. For any consistent decision tree T =⊔n
i=1 Ti and any opt satisfying Property 2,

gamb(normopt(T )) =
⋃

i∈I
gamb(normopt(Ti)) (4)

implies

normopt(T ) =
⊔

i∈I
normopt(Ti),

where I = {i : gamb(Ti) ∩ opt(gamb(T )|ev(T )) 6= ∅}.
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X1

...
Xn

A

ZA

X1

...
Xm

X1

...
Xn

Figure 6: Decision trees for Theorem 22.

We are now ready to identify necessary and sufficient
conditions for factuality.

Theorem 22. A normal form operator normopt is
factual if and only if opt has Properties 1, 2 and 3.

Proof. “only if”. Omitting details, consider Fig. 6.

“if”. We proceed by structural induction on all pos-
sible arguments of normopt, that is, on all consistent
decision trees. In the base step, we prove the implica-
tion for trees consisting of only a single node. In the
induction step, we prove that if the implication holds
for the subtrees at every child of the root node, then
the implication also holds for the whole tree.

First, if the decision tree T has only a single node, and
hence, a reward at the root and no further children,
then the condition for factuality is trivially satisfied.

Next, suppose that the consistent decision tree T has
multiple nodes. Let {N1, . . . , Nn} = ch(T ), and let
Ti = stNi

(T ). The induction hypothesis says that
factuality is satisfied for all subtrees at every child of
the root node, that is, for all Ti. More precisely, for
all i ∈ {1, . . . , n}, and all nodes L ∈ Ti such that L is
in at least one element of normopt(Ti)

stL(normopt(Ti)) = normopt(stL(Ti)).

We must show that

stN (normopt(T )) = normopt(stN (T ))

for all nodes N in T such that N is in at least one ele-
ment of normopt(T ). By Lemma 17, and the induction
hypothesis, it suffices to prove the above equality only
for N ∈ ch(T ), that is, it suffices to show that

stNi(normopt(T )) = normopt(Ti) (5)

for each i ∈ {1, . . . , n} such that Ni is in at least one
element of normopt(T ).

If T has a chance node as its root, that is, T =⊙n
i=1 EiTi, then all Ni are actually in every element

of normopt(T ), so we must simply establish Eq. (5) for

all i ∈ {1, . . . , n}. Equivalently, we must show that

normopt(T ) =
n⊙

i=1

Ei normopt(Ti) (6)

Indeed, by Eq. (3),

gamb(normopt(T )) = opt(gamb(T )|ev(T ))

and by the definition of the gamb operator, Eq. (2b)
in particular,

= opt

(
n⊕

i=1

Ei gamb(Ti)

∣∣∣∣∣ev(T )

)

and so by Lemma 18,

=
n⊕

i=1

Ei opt(gamb(Ti)|ev(T ) ∩ Ei )

so, since ev(T ) ∩ Ei = ev(Ti), and again by Eq. (3),

=
n⊕

i=1

Ei gamb(normopt(Ti))

Whence, Eq. (6) follows by Lemma 20.

Finally, assume that T has a decision node as its root,
that is, T =

⊔n
i=1 Ti. Let I be the subset of {1, . . . , n}

such that i ∈ I if and only if Ni is in at least one
element of normopt(T ). We must establish Eq. (5) for
all i ∈ I. Equivalently, we must show that

normopt(T ) =
⊔

i∈I
normopt(Ti). (7)

Indeed, by Eq. (3),

gamb(normopt(T )) = opt(gamb(T )|ev(T ))

and by the definition of the gamb operator, Eq. (2c),

= opt

(
n⋃

i=1

gamb(Ti)

∣∣∣∣∣ev(T )

)

and so by Property 5,

=
⋃

i∈I∗
opt(gamb(Ti)|ev(T )),

where I∗ = {i : gamb(Ti)∩opt(gamb(T )|ev(T )) 6= ∅},
and so because ev(T ) = ev(Ti), and again by Eq. (3),

=
⋃

i∈I∗
gamb(normopt(Ti)).

Hence, the conditions of Lemma 21 are satisfied, and
I∗ = I by Lemma 19, so Eq. (7) is established.
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5.3 Backward Induction

A practical problem when solving decision trees using
normopt, is that the set of normal form decisions of a
tree T grows very fast with its size, and so gamb(T )
may have many elements. For this reason, elsewhere
[3, 2], we have suggested the following backward in-
duction method, which generalizes classical backward
induction to arbitrary choice functions. To express
this most conveniently, we first extend the normopt

operator to act upon sets of decision trees.

Definition 23. Given any set T of consistent deci-
sion trees, where ev(T ) = A for all T ∈ T ,

normopt(T ) = {U ∈ nfd(T ) :
gamb(U) ⊆ opt(gamb(T )|A)}.

Definition 24. The normal form operator backopt is
defined for any consistent decision tree T through:

• If a tree T consists of only a leaf with reward
r ∈ R, then backopt(T ) = {T}.

• If a tree T has a chance node as root, that is,
T =

⊙n
i=1 EiTi, then

backopt (T ) = normopt

(
n⊙

i=1

Ei backopt (Ti)

)

• If a tree T has a decision node as root, that is, if
T =

⊔n
i=1 Ti, then

backopt (T ) = normopt

(
n⊔

i=1

backopt(Ti)

)
.

If backopt always yields the same normal form solu-
tion as normopt, we can use the former as an efficient
way of calculating the latter. In [2] we show that the
following four properties are necessary and sufficient
for backopt to coincide with normopt.

Property 7 (Backward conditioning property). Let
A and B be events such that A∩B 6= ∅ and A∩B 6= ∅,
and let X be a non-empty finite A ∩ B-consistent set
of gambles, with {X, Y } ⊆ X such that AX = AY .
Then X ∈ opt(X|A ∩ B) implies Y ∈ opt(X|A ∩ B)
whenever there is a non-empty finite A∩B-consistent
set of gambles Z such that, for at least one Z ∈ Z,

AX ⊕AZ ∈ opt(AX ⊕AZ|B).

Property 8 (Insensitivity of optimality to the omis-
sion of non-optimal elements). For any event A 6= ∅,
and any non-empty finite A-consistent sets of gambles
X and Y,

opt(X|A) ⊆ Y ⊆ X ⇒ opt(Y|A) = opt(X|A).

Property 9 (Preservation of non-optimality under
the addition of elements). For any event A 6= ∅, and
any non-empty finite A-consistent sets of gambles X
and Y,

Y ⊆ X ⇒ opt(Y|A) ⊇ opt(X|A) ∩ Y.

Property 10 (Backward mixture property). For any
events A and B such that B ∩A 6= ∅ and B ∩A 6= ∅,
any B ∩ A-consistent gamble Z, and any non-empty
finite B ∩A-consistent set of gambles X ,

opt
(
AX ⊕AZ|B

)
⊆ A opt(X|A ∩B)⊕AZ.

Theorem 25 (Backward induction theorem [2]). The
following conditions are equivalent.

(A) For any consistent decision tree T , it holds that
backopt(T ) = normopt(T ).

(B) opt satisfies Properties 7, 8, 9, and 10.

Obviously, Property 1 implies Property 7, and Prop-
erty 3 implies Property 10. Also,

Lemma 26. Property 2 implies Properties 8 and 9.

Hence, from Theorems 22 and 25, we conclude:

Corollary 27. If normopt is factual, then normopt =
backopt.

Factuality is, however, not necessary for backward in-
duction. For example, it is easy to see that point-wise
dominance satisfies Properties 1, 8, 9, and 10, but as
we saw in Example 12, it is counterfactual.

Backward induction does imply a weaker version of
factuality: stN (norm(T )) ⊆ norm(stN (T )).

5.4 Total Preordering

From Theorem 22 and Lemma 16, we have:

Corollary 28. If normopt is factual then, for all A 6=
∅, opt(·|A) is induced by a total preorder.

This constitutes a strong restriction on opt. Indeed,
without consideration of factuality, a choice function
that is not a total preorder may be desirable in some
circumstances. When one has limited information
about the relative likelihood of the events or the rel-
ative values of the rewards, one may wish to use
a choice function that allows no preference between
gambles, but does not consider them equivalent.

For example, if one is working with coherent lower
previsions, one may consider the choice functions E-
admissibility, maximality, and interval dominance,
but none of these corresponds to a total preorder.
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Property
1 2 3 7 8 9 10

E-admissibility X X X X X X
Maximality X X X X X X
Γ-maximin X X X X X

Interval Dominance X X X X

Table 2: Properties of various choice functions.

Anyone wishing to use these choice functions to solve
sequential decision problems must either abandon fac-
tuality or seek an alternative operator to normopt.

Those who prefer their choice functions to give a total
preorder, on the other hand, can use factuality to jus-
tify this preference. Indeed, without consideration of
factuality and sequential decisions, it is much harder
to justify a total preorder than it is to justify simpler
conditions such as Properties 8 and 9: see for instance
Luce and Raiffa [7, pp. 288-289], where Axioms 6, 7,
and 7′′ correspond to Properties 8, 9, and 2.

6 Conclusion

We defined factuality for extensive and normal forms.
We found necessary and sufficient conditions for a
choice function to induce a factual normal form oper-
ator. These turned out to be similar to, but stronger
than, those for backward induction to work.

While many choice functions satisfy Property 1, Prop-
erties 2 and 3 are perhaps more restrictive than one
would like. Is counterfactuality acceptable? We be-
lieve that factuality is a desirable property and one
should think carefully before using a counterfactual
operator. On the other hand, if one is attracted to
the three properties for other reasons, then factuality
gives them a strong justification.

Choice functions based on imprecise probability will
typically violate at least one of Properties 2 and 3:
Table 2 summarizes the properties satisfied by com-
mon choice functions. If one wishes to be factual in
such cases, normopt cannot be used. Choice functions
that induce factual extensive form operators are easier
to find, particularly in the case of violations of Prop-
erty 2 only: an example is secO in [11, p. 286]; also see
Kikuti et al. [5]. Further investigation of factuality of
extensive form operators, and in particular their rela-
tionships with backward induction and normal form
operators, has been omitted due to lack of space.

Finally we mention that using counterfactuals is com-
mon in the field of causal inference [9]. This paper is
quite different in character: we have not been con-
cerned at all with causality and the use counterfac-

tuals in causal inference. Instead, we have simply
determined for what choice functions counterfactuals
occur when solving decision trees.
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Abstract

In the paper we introduce a family of almost Bayesian
basic assignments, which slightly extends Bayesian
basic assignments. This extension incorporates all
the distributions that can be created from low-
dimensional Bayesian basic assignments by applica-
tion of the operator of composition, and simultane-
ously preserves the property of Bayesian basic assign-
ments concerning the number of focal elements: it
does not exceed cardinality of the frame of discern-
ment. The other goal of the paper is to propagate a
new way of definition of conditional independence re-
lation in D-S theory. It follows ideas of P. P. Shenoy
from [7], where the author defines the notion of condi-
tional independence for valuation-based system based
on his operation of “combination”. Here we do the
same but using the operator of “composition”. The
notion of independence we get in this way seems to
meet better the general requirements on conditional
independence relation for basic assignments.

Keywords. Dempster-Shafer theory of evidence,
multidimensionality, operator of composition, condi-
tional independence, semigraphoids.

1 Introduction

Regarding purely computational point of view, the
greatest disadvantage of Dempster-Shafer theory of
evidence (D-S) is that in contrast to probabilistic or
possibilistic models, which can be described by the
respective density functions (i.e. point functions),
D-S models must be described by set functions. It
means that while the number of necessary parameters
of probabilistic or possibilistic models grows exponen-
tially with the number of dimensions, for D-S models
one needs a superexponential number of parameters.

It is known from theory of Bayesian networks (or
graphical Markov models, in general) that the num-
ber of parameters can be drastically decreased by uti-

lization of properties of conditional independence re-
lations valid for the modelled situation. This was
among the reasons why we designed an alternative ap-
proach for multidimensional probability distribution
representation based on so called operator of com-
position [2]. The basic idea of these models is very
simple: multidimensional models are assembled (com-
posed) from a system of low-dimensional distributions
by the operator of composition (in a specified order).
Later on, Vejnarová introduced an analogous operator
also for composition of possibility distributions and
showed it manifested similar properties as its proba-
bilistic counterpart [10, 11]. Recently we designed the
operator of composition also for basic assignments in
D-S theory of evidence [5] and proved that it met
all the required properties necessary for multidimen-
sional models representation [3, 4].

However, it is not the goal of this paper to publicize
advantageous properties of the operator of composi-
tion for basic assignments. The goal of this contribu-
tion is twofold. The first one is to show that there
exists a family of basic assignments, for specification
of which one does not need more parameters than
for probabilistic models and yet it enables modelling
some type of ignorance (Section 4). The other goal is
to show that if the conditional independence for basic
assignments is defined with the help of the operator of
composition (which was already done in [3]) one can
prove semigraphoid axioms from a small number of
operator’s basic properties. This is done in Section 5.

2 Basic notion

Set notation

In the whole paper we shall deal with a finite number
of variables X1, X2, . . . , Xn each of which is specified
by a finite set Xi of its values. So, we will consider
multidimensional space of discernment

XN = X1 ×X2 × . . .×Xn,
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and its subspaces. For K ⊂ N = {1, 2, . . . , n}, XK

denotes a Cartesian product of those Xi, for which
i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK

will be denoted x↓K , i.e. for K = {i1, i2, . . . , i`}

x↓K = (xi1 , xi2 , . . . , xi`
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will
denote a projection of A into XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.

Let us remark that we do not exclude situations when
K = ∅. In this case A↓∅ = ∅.
Set A ⊆ XK is said to be a point-cylinder if it can be
expressed as a Cartesian product of a singleton and a
subspace XL. More precisely: a point-cylinder is a set
A ⊆ XK for which there exists an index set (possibly
empty) L ⊆ K such that |C↓L| ≤ 1 and

C = C↓L ×XK\L.

Let us stress that if L = ∅ then C = XK (it is the
only situation when |C↓L| < 1), and when L = K
then |C| = 1.

In addition to the projection, in this text we will need
also the opposite operation which will be called a join.
By a join of two sets A ⊆ XK and B ⊆ XL we will
understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if K and L are disjoint then the join of
the corresponding sets is just their Cartesian product

A⊗B = A×B.

For K = L, A ⊗ B = A ∩ B. If K ∩ L 6= ∅ and
A↓K∩L ∩B↓K∩L = ∅ then also A⊗B = ∅.
In one of the following proofs we will need the follow-
ing (rather technical) property of set joins.

Lemma 1. Let K1 ∩K2 ⊆ L ⊆ K2 ⊆ N . Then for
any C ⊆ XK1∪K2 the following condition (a) holds if
and only if both conditions (b) and (c) hold true.

(a) C = C↓K1 ⊗ C↓K2 ;

(b) C↓K1∪L = C↓K1 ⊗ C↓L;

(c) C = C↓K1∪L ⊗ C↓K2 .

Proof. Let us prove the assertion in three steps. First,
however, let us realize that

x ∈ C =⇒
(
x↓K1 ∈ C↓K1 & x↓K2 ∈ C↓K2

)
,

and therefore C = C↓K1 ⊗ C↓K2 is equivalent to

∀x ∈ XK1∪K2(
x↓K1 ∈ C↓K1 & x↓K2 ∈ C↓K2 =⇒ x ∈ C

)
.

(a) =⇒ (b).
Consider x ∈ XK1∪L, such that x↓K1 ∈ C↓K1 and
x↓L ∈ C↓L. Since x↓L ∈ C↓L there must exists (at
least one) y ∈ C↓K2 , for which y↓L = x↓L. Now
construct z ∈ XK1∪K2 for which z↓K1 = x↓K1 and
z↓K2 = y (it is possible because y↓L = x↓L). From
this construction we see that z↓K1∪L = x. Therefore
z↓K1 = x↓K1 ∈ C↓K1 and z↓K2 = y ∈ C↓K2 form
which, because we assume that (a) holds, we get that
z ∈ C, and therefore also x = z↓K1∪L ∈ C↓K1∪L.

(a) =⇒ (c).
Consider now x ∈ XK1∪K2 , for which its projections
x↓K1∪L ∈ C↓K1∪L and x↓K2 ∈ C↓K2 . From x↓K1∪L ∈
C↓K1∪L we immediately get that x↓K1 ∈ C↓K1 , which
in combination with x↓K2 ∈ C↓K2 (due to the assump-
tion (a)) yields that x ∈ C.

(b) & (c) =⇒ (a).
Consider x ∈ XK1∪K2 such that x↓K1 ∈ C↓K1 and
x↓K2 ∈ C↓K2 . From the last property one gets also
x↓L ∈ C↓L, which, in combination with x↓K1 ∈ C↓K1

gives, because (b) holds true, that x↓K1∪L ∈ C↓K1∪L.
And the last property in combination with x↓K2 ∈
C↓K2 yields the required x ∈ C. �

Assignment notation

The role of a probability distribution from a proba-
bility theory is in Dempster-Shafer theory played by
any of the set functions: belief function, plausibility
function or basic (probability or belief ) assignment.
Knowing one of them, one can deduce the two re-
maining. In this paper we shall use exclusively basic
assignments.

A basic assignment m on XK (K ⊆ N) is a function

m : P(XK) −→ [0, 1],

for which ∑

∅6=A⊆XN

m(A) = 1.

For the sake of this paper it is reasonable to consider
only normalized basic assignments, for which m(∅)
equals always 0. If m(A) > 0, then A is said to be a
focal element of m.
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Having a basic assignment m on XK one can consider
its marginal assignment on XL (for L ⊆ K), which is
defined (for each ∅ 6= B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Basic assignment m is said to be Bayesian if all its
focal elements are singletons, i.e.

m(A) > 0 =⇒ |A| = 1.

In this case, namely, both the other two functions,
belief Bel and plausibility Pl which are defined by
the following formulas (for all A ⊆ XK)

Bel(A) =
∑

B⊆A

m(A),

P l(A) = 1−Bel(Ā),

are normalized additive functions, and therefore prob-
ability distributions.

Another special case is represented by simple basic
assignments. Basic assignments m on XK is called
simple if there exists A (∅ 6= A ⊂ XK) and a positive
number a such that m(A) = a and m(XK) = 1− a.

3 Operator of composition

Originally, the operator of composition was designed
in probability theory as a tool enabling creation of
multidimensional probability distributions - multidi-
mensional models - by successive composition of low-
dimensional distributions. The basic idea of this op-
erator was simple. It generalized the fact that one
can construct a 3-dimensional probability distribution
P (X, Y, Z) from two 2-dimensional ones Q(X, Y ) and
R(Y,Z) just by assigning

P (X, Y, Z) = Q(X, Y ) ·R(Z|Y ).

In this case P reflects all the information contained
in Q, because evidently P (X, Y ) = Q(X, Y ), and
some of the information contained in R (P (Z|Y ) =
R(Z|Y )). Moreover, P does not contain any addi-
tional information, because for this probability distri-
bution variables X and Z are conditionally indepen-
dent given variable Y .

Introduction of the probabilistic operator of compo-
sition opened a study of a new area called composi-
tional models, which was an alternative to Bayesian
networks, or to Graphical Markov models in general.
Though it appeared that Bayesian networks and com-
positional models described exactly the same class
of probability distributions, study of a new type of

models appeared useful. First of all it offered new
points of view to multidimensional probability distri-
bution representation. In addition to this, composi-
tional models were in some situations more advanta-
geous from the computational point of view (some of
the marginal distributions, computation of which may
be algorithmically rather expensive, were in a compo-
sitional model expressed explicitly).

Later, the operator of composition was designed and
studied in possibility theory by Vejnarová [10]. Be-
ing inspired by Didier Dubois, we introduced the op-
erator of composition also for basic assignments [5];
this definition is presented below. In that paper we
also showed that if the operator of composition is ap-
plied to Bayesian basic assignments it usually yields
the Bayesian basic assignment, which corresponds to
the probability distribution, which is constructed by
the probabilistic operator of composition from the re-
spective probability distributions. The only exception
from this situation occurs when composing basic as-
signments corresponding to probability distributions,
for which their probabilistic composition is not de-
fined. In such a case, result of composition of such
Bayesian basic assignments is not Bayesian. In the
next section we will reveal the main characteristics of
such basic assignments.

Definition 1. For two arbitrary basic assignments
m1 on XK and m2 on XL (K 6= ∅ 6= L) a composition
m1 . m2 is defined for each C ⊆ XK∪L by one of the
following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K

then
(m1 . m2)(C) = m1(C↓K);

[c] in all other cases (m1 . m2)(C) = 0.

Before illustrating the operator of composition on
a simple example, let us remark that three expres-
sions in Definition 1 correspond to three situations,
which occur when one wants to define a basic as-
signments possessing those properties we highlighted
when speaking about the probability distribution
P (X, Y, Z) = Q(X, Y ) · R(Z|Y ). Point [a], in a way,
directly corresponds to this well-known probabilistic
formula. It disseminates the mass m1(C↓K) into the
respective subsets C ⊆ XK∪L. The information de-
scribing the way how this mass is disseminated is
taken over from m2. Point [b] is applicable when
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Table 1: 1-dimensional basic assignments m1 and m2.
A ⊆ X1 m1(A) B ⊆ X2 m2(B)
{a} 0.5 {b} 0.5
{ā} 0.1 {b̄} 0.5
{a, ā} 0.4

m↓K∩L
2 (C↓K∩L) = 0 and therefore m2 does not de-

termine the way how to disseminate the respective
mass. Therefore the whole mass m1(C↓K) is assigned
to the least specific set: C = C↓K ×XL\K (express-
ing in this way maximal ignorance). Eventually, point
[c] guarantees that no additional information is added
to the resulting basic assignment m1 . m2. It assigns
zero mass to all those subsets of XK∪L, whose pos-
itive values would violate the notion of the required
conditional independence (see e.g. [1]).

Example 1. Consider two 1-dimensional basic as-
signments1 m1, m2 from Table 1, which are defined
on X1 = {a, ā} and X2 = {b, b̄}, respectively.

Their composition m1 . m2 is in Table 2. Notice,
that this composed basic assignment has only 6
focal elements, which means that for the remaining
(24−1)−6 = 9 subsets of X1×X2, values of m1 .m2

equal 0. It is the case of two groups of subsets. As
for three subsets

{ab, ab̄} = {a} ⊗X2,

{āb, āb̄} = {ā} ⊗X2,

{ab, ab̄, āb, āb̄} = X1 ⊗X2,

their values of m1 . m2 are assigned by point [a] of
Definition 1 and equal 0 because m2({b, b̄}) = 0. On
the other hand side, to the remaining six subsets

{ab, āb̄},
{ab̄, āb},
{ab, ab̄, āb},
{ab, ab̄, āb̄},
{ab, āb, āb̄},
{ab̄, āb, āb̄},

values of m1 . m2 are assigned by point [c] of Defi-
nition 1, because for these subsets it does not hold
that C = C↓{1} ⊗ C↓{2}. Assigning a positive value
to any of these subsets we would, in a way, introduce
a dependence of variables X1 and X2.

1In all examples in this paper we record in tables only focal
elements. It means that for all subsets of space of discernment
which are not included in the respective tables their respective
basic assignment equals 0.

Table 2: Composed basic assignment m1 . m2.
C ⊆ X1 ×X2 (m1 . m2)(C)
{ab} 0.25
{ab̄} 0.25
{āb} 0.05
{āb̄} 0.05
{ab, āb} 0.20

{ab̄, āb̄} 0.20

Let us present the most important properties of the
operator of composition for basic assignments.

Lemma 2. Let K, L ⊆ N . For arbitrary basic as-
signments m1, m2 defined on XK , XL, respectively

(i) m1 . m2 is a basic assignment on XK∪L;

(ii) (m1 . m2)↓K = m1;

(iii) m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 ;

(iv) L ⊇M ⊇ (K ∩ L)
=⇒ m1 . m2 = (m1 . m↓M2 ) . m2;

Proof. The first three properties were proved in [5]:
properties (i)-(iii) are properties (i)-(iii) of Lemma 1.
Thus, what has remained to be proved is just prop-
erty (iv).

So, our goal is to show that for basic assignments
m1, m2 and for any M such that L ⊇M ⊇ K ∩ L

(m1 . m2) (C) = ((m1 . m↓M2 ) . m2)(C).

holds true for any C ⊆ XK∪L.

The proof will be performed in three steps correspond-
ing to cases [a], [b], [c] of Definition 1.

Ad [a]. Assume that C = C↓K ⊗ C↓L and
m↓K∩L

2 (C↓K∩L) > 0. From this we get from Lemma 1
that also C↓K∪M = C↓K ⊗C↓M , and therefore (since
K ∩ L = K ∩M)

(m1 . m↓M2 )(C↓K∪M ) =
m1(C↓K) ·m↓M2 (C↓M )

m↓K∩L
2 (C↓K∩L)

.

In the rest of this step we have to distinguish two
situations depending whether m↓M2 (C↓M ) equals 0 or
not.

If m↓M2 (C↓M ) > 0 (realize that in this case also
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m↓K∩L
2 (C↓K∩L) > 0) then

((m1 . m↓M2 ) . m2)(C)

=
(m1 . m↓M2 )(C↓K∪M ) ·m2(C↓L)

m↓M2 (C↓M )

=

m1(C
↓K)·m↓M

2 (C↓M )

m↓K∩L
2 (C↓K∩L)

·m2(C↓L)

m↓M2 (C↓M )

=
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

= (m1 . m2) (C).

If m↓M2 (C↓M ) = 0 then, according to Definition 1,
either

((m1 . m↓M2 ) . m2)(C) = (m1 . m↓M2 )(C↓K∪M ),

in case that C = C↓K∪M ⊗XL\M , or

((m1 . m↓M2 ) . m2)(C) = 0,

in opposite case. However, in this case also

(m1 . m↓M2 )(C↓K∪M ) =
m1(C↓K) ·m↓M2 (C↓M )

m↓K∩L
2 (C↓K∩L)

= 0,

and therefore ((m1 . m↓M2 ) . m2)(C) = 0 regard-
less of the form of C↓L\M (i.e. for both situations:
C↓L\M = XL\M and C↓L\M 6= XL\M ). Taking into
consideration the fact that in the considered situa-
tion (i.e. m↓M2 (C↓M ) = 0) also m2(C↓L) = 0, and
therefore also

(m1 . m2) (C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

= 0,

we have finished the first step of the proof.

Ad [b]. Now we assume that C = C↓K ⊗XL\K , and
that m↓K∩L

2 (C↓K∩L) = 0. In this case, naturally,
also m↓M2 (C↓M ) = 0 and C = C↓K ⊗XM\K ⊗XL\M .
Therefore, according to case [b] of Definition 1,

(m1 . m↓M2 )(C↓K∪M ) = m1(C↓K),

and because of the same reasons also

((m1 . m↓M2 ) . m2)(C) = (m1 . m↓M2 )(C↓K∪M )
= m1(C↓K).

In this case also (m1 . m2)(C) = m1(C↓K), and we
have finished the second step of the proof.

Ad [c]. The last step is trivial. In this case, as
the reader can immediately see, both ((m1 . m↓M2 ) .
m2)(C) and (m1 . m2)(C) equal 0 and therefore they
equal to each other. �

Table 3: 2-dimensional basic assignments m3 and m4.
A ⊆ X{1,2} m3(A) B ⊆ X{2,3} m4(B)
{ab̄} 0.5 {bc} 0.5
{āb} 0.1 {b̄c̄} 0.2
{ab, āb} 0.4 {bc̄, b̄c} 0.3

Table 4: Basic assignments m3 . m4 and m4 . m3.
C ⊆ X1 ×X2 ×X3 m3 . m4 m4 . m3

{ab̄c̄} 0.5 0.2
{ābc} 0.1 0.1
{abc, ābc} 0.4 0.4

{abc̄, ab̄c, ābc̄, āb̄c} 0.3

Example 2. Property (iii) of the previous lemma
says that for consistent basic assignments the oper-
ator of composition is commutative. Since any cou-
ple of basic assignments defined on non-overlapping
frames of discernment are consistent (because m↓∅ =
1), for basic assignments m1 and m2 from Table 1
m1 . m2 = m2 . m1. Therefore, if we want to illus-
trate non-commutativity of this operator we have to
consider overlapping frames of discernment2.

Consider basic assignments m3, m4 from Table 3. The
reader can easily see that when computing m3 . m4,
all the focal elements are computed according to case
[a] of Definition 1. There are only three sets C ⊆
X{1,2,3}, for which C = C↓{1,2} ⊗ C↓{2,3}, and for
which both m3(C↓{1,2}) and m3(C↓{2,3}) are positive,
namely

{ab̄c̄} = {ab̄} ⊗ {b̄c̄},
{ābc} = {āb} ⊗ {bc},
{abc, ābc} = {ab, āb} ⊗ {bc}.

On the other hand, when computing m4.m3 there ap-
pears set C = {bc̄, b̄c}×X1, for which m3(C↓{1,2}) = 0
and therefore value (m4 .m3)(C) is assigned by point
[b] of Definition 1. The resulting basic assignment
m4 . m3 is also recorded in Table 4.

Remark: In previous papers [5, 4] we showed a num-
ber of other properties of the operator of composition

2The simplest example of non-commutativity of the oper-
ator of composition can be got by considering two different
assignments on the same frame of discernment. Then using
property (i) of Lemma 2 we see that their composition is de-
fined on the same frame of discernment as the considered orig-
inal assignments and the non-commutativity of the operator .
immediately follows from property (ii) of Lemma 2.
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for basic assignments, especially those useful for con-
struction of multidimensional models. The four prop-
erties included in the previous lemma are those, which
are sufficient to prove that conditional independence,
if introduced with the help of the operator of compo-
sition (as done in Section 5), meets the semigraphoid
axioms. In a way it is surprising that such a small
group of elementary properties is sufficient. In con-
nection with this fact a question arises whether the
presented four properties are independent, whether
some of them cannot be deduced from the remaining
four.

Remark: Let us briefly answer a frequent question
what is the relation of the introduced operator of com-
position and the famous Dempster’s rule of combina-
tion3. Let us stress that the main difference emerges
from the different purposes the operators where de-
signed for. While Dempster’s rule of combination was
designed to have a tool enabling fusion of two basic
assignments (the goal is to get a better information
about the object than those contained in any of the
original basic assignments), the operator of composi-
tion combines different descriptions of the object to
comprehend all the information contained in original
sources. This process corresponds to knowledge inte-
gration rather than knowledge fusion.

From the formal point of view this difference is re-
flected in property (ii) of Lemma 2, which holds for
Dempster’s rule of combination only in very specific
(degenerated) situations. By the way, this difference
is also the main reason why we consider the attempts
to define a notion of conditional independence with
the help of Dempster’s rule of combination to be mis-
leading.

4 Almost Bayesian basic assignments

One of the reasons (and from our point of view per-
haps the most important) why D-S theory of evidence
was designed and why it is in the center of attention
of many researchers is the fact that probability theory
has difficulties with representing some types of uncer-
tainty; here we have in mind especially ignorance. For
example, probability theory can hardly distinguish
situation when an integer from {1, 2, . . . , 6} is deter-
mined by tossing a fair die, and when it is selected
by a totally unknown mechanism (well, the second
situation can be described by the set of all possible
distributions, however it is rather inconvenient). On
the other hand, D-S theory yields very complex mod-
els and the corresponding computational procedures
are of extremely high algorithmic complexity. Now,

3Detailed study of formal similarities of these two operators
will appear in [6].

we are about to specify a small family of basic assign-
ments extending the set of Bayesian assignments but
keeping the computational complexity on the level of
probabilistic models. However, we have to admit that
this new family, elements of which will be called al-
most Bayesian basic assignments, is very restrictive.

Definition 2. Basic assignment m on XK is called
cylindrical if all its focal elements are point-cylinders.

Theorem 1. Let K, L ⊆ N and m1, m2 be basic as-
signments defined on XK and XL, respectively. If
m1, m2 are cylindrical then m1 . m2 is also cylindri-
cal.

Proof. To prove this assertion we have to realize that
a projection A↓K of a point-cylinder A is a point-
cylinder. Moreover, join A⊗B of two point-cylinders
A and B is again a point-cylinder (recall that ∅ is a
point-cylinder).

Values of focal elements of basic assignment are com-
puted according to either point [a] or point [b] of
Definition 1. In case [a], a positive value can be as-
signed only if C = C↓K ⊗ C↓L and both C↓K and
C↓L are point-cylinders. Case [b] is applied only when
C = C↓K×XL\K . So in both cases positive value can
be assigned only to point-cylinders. �

Definition 3. Basic assignment m on XK is sparse
if all its focal elements are pairwise disjoint.

Theorem 2. Let K, L ⊆ N and m1, m2 be basic as-
signments defined on XK and XL, respectively. If
m1, m2 are sparse then m1 . m2 is also sparse.

Proof. Consider two non-disjoint focal elements
C1, C2 of m1 . m2: (m1 . m2)(C1) > 0 and (m1 .
m2)(C2) > 0. Since m1 is marginal of m1 . m2, it is
obvious that C↓K1 and C↓K2 are focal elements of m1.
Since we assume that C1 and C2 are non-disjoint the
same must hold also for their projections

C↓K1 ∩ C↓K2 6= ∅

and therefore, because of our assumption that m1 is
sparse, C↓K1 = C↓K2 .

What are the focal elements C of m1 . m2, for which
C↓K = C↓K1 ? The answer to this question is offered
by Definition 1 (realize that since we are considering
focal elements C, values (m1 . m2)(C) are defined by
expressions in points [a] or [b]).

If m↓K∩L
2 (C↓K∩L) > 0 then the considered focal ele-

ments can be expressed in the form

C = C↓K ⊗ C↓L = C↓K1 ⊗D,
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Table 5: Sparse basic assignment m on X{1,2}.

A ⊆ X1 ×X2 m(A)
{ab} 0.2
{āb} 0.3
{ab̄, āb̄} 0.5

Table 6: Marginal basic assignments m↓{1}, m↓{2}.
A ⊆ X1 m↓{1}(A) B ⊆ X2 m↓{2}(B)
{a} 0.2 {b} 0.5
{ā} 0.3 {b̄} 0.5
{a, ā} 0.5

where D ⊆ XL is a focal element of m2 and D↓K∩L =
C↓K∩L

1 . From this one can immediately see that
C1 = C↓K1 ⊗ C↓L1 and C2 = C↓K1 ⊗ C↓L2 are disjoint
if and only if also focal elements C↓L1 and C↓L2 of m2

are disjoint. In our case, because m2 is sparse, and
because we assume that C1 ∩ C2 6= ∅, it means that
C↓L1 = C↓L2 , and therefore also C1 = C2.

In case that m↓K∩L
2 (C↓K∩L) = 0 then the situation

is even simpler because in this case there can be only
one focal element C = C↓K∩L

1 ×XL\K , which means
again that C1 = C2. �

Remark: It is not difficult to show that a marginal
basic assignment of a cylindrical assignment is again
cylindrical. However, it is important to realize that,
as we illustrate in the following simple example, an
analogous property for sparse basic assignments does
not hold. Nevertheless, the main advantage of sparse
basic assignments is the fact that the number of their
focal elements does not exceed the cardinality of the
respective frame of discernment, i.e. the number of
probabilities necessary to define a general probability
distribution.

Example 3. Consider 2-dimensional case with X1 =
{a, ā} and X2 = {b, b̄} and basic assignment m in
Table 5. From Table 6 one can immediately see that
while marginal basic assignment m↓{2} is sparse, the
other marginal assignment m↓{1} is not.

Remark: Now we are ready to answer the question
raised at the beginning of the previous section: what
are the basic assignments which are obtained from
Bayesian basic assignments by a multiple application
of the operator of composition? Since all Bayesian as-
signments are obviously sparse and cylindrical, The-
orems 1 and 2 guarantee that the basic assignments
corresponding to compositional models from Bayesian

basic assignments are also cylindrical and sparse. This
fact, somehow, justifies the following definition.

Definition 4. Basic assignment is called almost
Bayesian if it is sparse and cylindrical.

As said at the beginning of this section, an expressive
power of almost Bayesian basic assignments is not too
strong. For example, even non-degenerated simple
basic assignments are not almost Bayesian. Roughly
speaking: Having a Bayesian basic assignment one
knows a probability of each point of the frame of dis-
cernment. Having an almost Bayesian basic assign-
ment and a fixed point of the frame of discernment one
either knows its probability, or knows that it belongs
to a cylindrical subset of the frame of discernment
among whose elements one cannot make a difference;
she knows only the probability of the whole subset.
Nevertheless, let us stress once more that the impor-
tance of almost Bayesian assignments is in the fact
that they describe compositional models constructed
from an arbitrary system of low-dimensional probabil-
ity distributions, which means that even in situations
when probabilistic operator of composition is not de-
fined. In this way we are getting a slight extension of
probability theory.

5 Conditional independence

In this paper our attention is concentrated on proper-
ties of basic assignments which are, in a way, promis-
ing from the point of view of computational complex-
ity. Last section was devoted to almost Bayesian ba-
sic assignment whose number of focal elements is not
higher than the number of probabilities by which a
general probability distribution must be specified.

It is well known that efficiency of Bayesian models is
based on making the best of the dependence structure
of the model, i.e. taking advantage of the knowledge
of conditional independence relations [8, 9] holding for
the multidimensional distribution in question. This
is because the notion of conditional independence in
probability theory is equivalent to the notion of fac-
torization: for probability distribution P variables X
and Z are conditionally independent given variable Y
iff distribution P (X, Y, Z) is uniquely determined by
its marginals P (X, Y ) and P (Y,Z). Unfortunately,
as shown by Studený [8, 1], the notion of conditional
non-interactivity (Shenoy’s factorization [7], Studený
conditional independence [8]) presented in [1] is not
consistent with marginalization: there are situations
when for two consistent basic assignments there does
not exist their common extension with the respective
conditional non-interactivity (for more precise expla-
nation see footnote no. 6).
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Therefore, in this paper we are going to eliminate this
drawback using the definition of conditional indepen-
dence for basic assignments introduced in [4], which
is in fact based on the notion of factorization. More-
over we will present new proofs showing that for this
concept all the semigraphoid axioms hold true. These
proofs will be based on the fundamental properties of
the operator of composition presented in Lemma 2.
It should be stressed that the novelty of these proofs
is mainly in application of property (iv) of Lemma 2,
which seems to be surprisingly weak (and which, in a
way, extends property (ii) of the same lemma).

Let us consider an arbitrary basic assignment. We
will say that two groups of variables are conditionally
independent given the third group of variables if the
respective marginal basic assignment can be decom-
posed (factorized) in the way that it can be expressed
as a composition of its respective smaller marginal as-
signments. Precisely this notion is introduced in the
following definition.

Definition 5. Consider a basic assignment m on XN

and three disjoint index sets K, L,M ⊂ N , K 6= ∅ 6=
L. We say that groups of variables XK and XL are
conditionally independent given variables XM if

m↓K∪L∪M = m↓K∪M . m↓L∪M .

In symbol this fact will be recorded K ⊥⊥m L |M .

Example 4. Consider a basic assignment m on the
same 3-dimensional binary frame of discernment as
in previous examples: X1 × X2 × X3. If variables
X1 and X2 are independent, i.e. 1 ⊥⊥m 2, from Def-
inition 1 one can immediately see that for all focal
elements C ⊆ X1×X2 of the 2-dimensional marginal
m↓{1,2} it holds that C = C↓{1} ⊗ C↓{2}. It means
that from all 15 non-empty subsets of X1 ×X2 only
9 of them are potential focal elements (six subsets
of X1 × X2 that cannot be focal elements are listed
in Example 1). Naturally, this condition on focal
elements is only a necessary condition for the inde-
pendence. This condition is not sufficient. For ex-
ample, the reader can easily check that the two ba-
sic assignments m1 . m2 from Table 2 and m3 from
Table 3 (both defined on X1 × X2) have the same
marginal assignments: ((m1 . m2)↓{1} = m

↓{1}
3 = m1

and (m1 . m2)↓{2} = m
↓{2}
3 = m2). Moreover,

for all of their focal elements the required property
C = C↓{1} ⊗ C↓{2} holds true and simultaneously

1 ⊥⊥m1.m2 2 and 1 6⊥⊥m3 2.

Analogously to what has just been said about (uncon-
ditional) independence, there is a necessary condition

also on focal elements of basic assignments with con-
ditional independence. Conditional independence

1 ⊥⊥m 3 | 2

means that all focal elements C ⊆ X{1,2,3} of m must
be of the form

C = C↓{1,2} ⊗ C↓{2,3}.

It is not difficult to show that this property holds true
only for 99 out of all possible 255 nonempty subsets
of X{1,2,3}.

In the rest of this section we will show that the ternary
relation K ⊥⊥m L |M is a semigraphoid, i.e. it meets
the four semigraphoid axioms listed below. For this,
we will exclusively use the properties of the operator
of composition presented in Lemma 2. In what fol-
lows, each axiom is reformulated into the language of
composition and the corresponding theorem is proved.

Symmetry

I ⊥⊥m J |L =⇒ J ⊥⊥m I |L

Theorem 3. If m↓I∪J∪L = m↓I∪L .m↓J∪L then also
m↓I∪J∪L = m↓J∪L . m↓I∪L.

Proof. The assertion follows immediately from the
fact that marginals m↓I∪L and m↓J∪L are consistent,
and therefore property (iii) may be applied

m↓I∪L . m↓J∪L = m↓J∪L . m↓I∪L.

�

Decomposition

I ⊥⊥m J ∪K |L =⇒ I ⊥⊥m K |L

Theorem 4. If m↓I∪J∪K∪L = m↓I∪L.m↓J∪K∪L then
also m↓I∪K∪L = m↓I∪L . m↓K∪L.

Proof. The assertion will be obtained just by applica-
tion of properties (iv) and (ii)

m↓I∪K∪L =
(
m↓I∪J∪K∪L

)↓I∪K∪L

=
(
m↓I∪L . m↓J∪K∪L

)↓I∪K∪L

=
(
(m↓I∪L . m↓K∪L) . m↓J∪K∪L

)↓I∪K∪L

= m↓I∪L . m↓K∪L.

�
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Weak Union

I ⊥⊥m J ∪K |L =⇒ I ⊥⊥m J |K ∪ L

Theorem 5. If m↓I∪J∪K∪L = m↓I∪L.m↓J∪K∪L then
also m↓I∪J∪K∪L = m↓I∪K∪L . m↓J∪K∪L.

Proof. To prove this assertion we have to realize that,
due to property (iv),

m↓I∪L . m↓J∪K∪L =
(
m↓I∪L . m↓K∪L

)
. m↓J∪K∪L,

and that, because the assumptions of Theorem 4 are
fulfilled, also

m↓I∪K∪L = m↓I∪L . m↓K∪L.

Using these two equalities we finish the proof in a
simple way

m↓I∪J∪K∪L = m↓I∪L . m↓J∪K∪L

=
(
m↓I∪L . m↓K∪L

)
. m↓J∪K∪L

= m↓I∪K∪L . m↓J∪K∪L.

�
Contraction

I ⊥⊥m K |L & I ⊥⊥m J |K ∪ L =⇒ I ⊥⊥m J ∪K |L

Theorem 6. If m↓I∪K∪L = m↓I∪L . m↓K∪L, and
m↓I∪J∪K∪L = m↓I∪K∪L . m↓J∪K∪L, then also
m↓I∪J∪K∪L = m↓I∪L . m↓J∪K∪L.

Proof. We will follow the same idea as in the pre-
ceding proof but in the reverse order. First, we will
use property (iv) and then both assumptions of this
assertion.

m↓I∪L . m↓J∪K∪L =
(
m↓I∪L . m↓K∪L

)
. m↓J∪K∪L

= m↓I∪K∪L . m↓J∪K∪L

= m↓I∪J∪K∪L.

�

6 Conclusions

In the paper we dealt with the two problems con-
nected with computational complexity of Dempster-
Shafer theory of evidence. Since full generality of the
models leads to exponential grows of space and com-
putational complexity we showed that focusing our
attention only to models, which are constructed from
Bayesian basic assignments by application of the op-
erator of composition, one does not get beyond the
boundaries of a rather limited class of models, which
are called in the paper almost Bayesian. The most ad-
vantageous characteristics of these models is the fact
that though they are able to describe a special type

of an ignorance, they do not have a higher space re-
quirements than classical probabilistic models.

The other goal of this paper was to show that when ac-
cepting the notion of conditional independence based
on factorization corresponding to the operator of com-
position, one can easily prove validity of semigraphoid
axioms just with the help of the four very elementary
properties from Lemma 2. Since the same idea was
employed by Prakash P. Shenoy in [7], a very natural
question arises: what is the relation of composition
introduced in this paper and the Shenoy’s notion of
combination?

Looking at Shenoy axioms4 C1, C2 and C3 we see
that Shenoy’s axiom C1 (Domain) is equivalent to
property (i) of Lemma 2 and therefore it holds also
for our composition. However Shenoy’s axioms C2
(Associative) and C3 (Commutative) hold for com-
position only under special conditions. The operator
of composition is commutative only for consistent ba-
sic assignments; point (iii) of Lemma 2. In definition
of conditional independence (Definition 5 of this pa-
per) we consider only composition of consistent as-
signments (marginals of the considered basic assign-
ment) and therefore we were able to prove axiom of
Symmetry. Nevertheless, associativity holds for the
operator of composition only under very specific con-
ditions5 and therefore the Shenoy’s proofs cannot be
used. Moreover, property (ii) of Lemma 2 does not
hold for Shenoy’s combination. So, one cannot be
surprised that both of the definitions of conditional
independence (i.e. the one proposed in this paper
and Shenoy’s conditional independence following from
the definitions in Section 5 of [7]) are different from
each other. They coincide only for unconditional inde-
pendence and for conditional independence in case of
Bayesian basic assignments. Moreover, as we showed
in [4], our concept of conditional independence does
not suffer from the drawback described in detail in
[1], where the authors show that the notion of condi-
tional independence used by Shenoy is not consistent
with marginalization6. Therefore, we can conclude
that our concept of conditional independence seems to
meet better some of the intuitive requirements. Nev-
ertheless, a question what is the relation of this notion
and concepts of conditional basic assignments remains
still open.

4We do not comment axiom C4 (Zero) because we consider
only normalized basic assignments.

5For example, for basic assignments m1, m2, m3 defined on
XK1 ,XK2 ,XK3 , respectively

K1 ⊇ (K2 ∩K3) =⇒ (m1 . m2) . m3 = m1 . (m2 . m3).
6Roughly speaking: one can find two consistent basic as-

signments m1, m2, on X1 ×X2 and X2 ×X3, respectively, for
which there does not exist a 3-dimensional basic assignment m
on X1 ×X2 ×X3 having m1 and m2 as its marginals, and for
which 1 ⊥⊥m 3 | 2.
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[10] J. Vejnarová, “Composition of possibility mea-
sures on finite spaces: preliminary results,” Pro-
ceedings of 7th International Conference on In-
formation Processing and Management of Uncer-
tainty in Knowledge-based Systems IPMU’98, (B.
Bouchon-Meunier, R.R. Yager, eds.). Editions
E.D.K. Paris, 1998, pp. 25–30.
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Abstract

We study the combination problem for credal sets via
the robust Bayesian combination operator. We extend
Walley’s notion of degree of imprecision and introduce
a measure for degree of conflict between two credal
sets. Several examples are presented in order to ex-
plore the behavior of the robust Bayesian combination
operator in terms of imprecision and conflict. We fur-
ther propose a discounting operator that suppresses
a source given an interval of reliability weights, and
highlight the importance of using such weights when-
ever additional information about the reliability of a
source is available.

Keywords. Imprecise probabilities, robust Bayesian
combination, credal set, discounting, information fu-
sion

1 Introduction

We define the combination problem as the problem of
combining evidences regarding some reality of inter-
est (cf., [9]). The problem has gained much attention
in several different research fields, in particular infor-
mation fusion (see, e.g., [2]) and artificial intelligence
(see, e.g., [18]). We have here taken a “set-point-wise
Bayesian”, or credal [11, 5], approach to the combi-
nation problem via the robust Bayesian combination
operator. One important advantage with such an ap-
proach is that it is easily adoptable for practitioners
and researchers that already are familiar with (stan-
dard) Bayesian theory. It should be emphasized that
the combination problem is different from the aggrega-
tion problem where the main goal is to find a common
agreement among sources. If an aggregation operator
[19, Section 1.1] is applied to identical operands, typ-
ically the result will also be the same, since it repre-
sents a “perfect agreement”. If we consider the same
scenario, using a combination operator instead, the re-
sult usually represents stronger evidence in compari-
son to any of the operands, since both sources agree on

some hypotheses, i.e., the result is different from the
operands. Several researchers have addressed the ag-
gregation problem (see, e.g., [12, 13, 20]), however, the
combination problem is an overlooked area in the case
of general credal sets. Combination of evidences in the
form of so-called mass functions (which can be trans-
formed into a particular type of credal set [2]), have
been thoroughly studied within evidence theory [16],
mainly via some variant of Dempster’s rule. However,
it has been shown that Dempster’s rule can yield dis-
parate results in comparison to the robust Bayesian
combination operator, in fact, the results can even be
disjoint [2].

Our main concern in this paper is to characterize the
behavior, interpretation, and implications of utiliz-
ing the robust Bayesian combination operator for the
combination problem. Furthermore, we introduce a
discounting operator which can be used whenever an
interval of reliability weights are known for the sources
involved in the combination.

The paper is organized as follows: in Section 2, we
elaborate on credal set theory1 and derive the ro-
bust Bayesian combination operator. In Section 3,
we elaborate on imprecision and conflict with respect
to credal sets. In Section 4, we present three exam-
ples and utilize imprecision and conflict in order to
investigate the results. In Section 5, we introduce the
discounting operator and revisit two of the mentioned
examples. Lastly, in Section 6, we present a summary,
our conclusions, and ideas for future work.

2 Preliminaries

We here present some background on credal set theory
and derive the robust Bayesian combination operator
via its precise counterpart, the Bayesian combination
operator.

1Also known as theory of credal sets. We choose the term
“credal set theory” since it is coherent with “Bayesian theory”.
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2.1 Credal Set Theory

Credal set theory [4, 5, 6, 11] is a generalization of
Bayesian theory where one acknowledges that there
might be more than one reasonable probability distri-
bution for representing belief. As a consequence one
is allowed to adopt a closed convex set of such dis-
tributions, commonly referred to as a credal set, as
the fundamental representation of belief. In order to
update such belief, one applies Bayes’ theorem point-
wise to a credal set of priors and a convex set of like-
lihood functions. As a last step one utilizes a convex
hull operation. Note that in the special case of sin-
gleton sets, the theory reduces to standard Bayesian
theory.

Let us denote a credal set by PX , containing proba-
bility distributions of the form p(X), PX|y for distri-
butions in the conditional form p(X|y), and PX,Y for
joint probability distributions p(X,Y ). Let ext (PX)
denote the set of extreme points (also known as ver-
tices) of PX , i.e., distributions that cannot be ex-
pressed as a convex combination2 of any other dis-
tributions in the set. We only consider credal sets
that have a finite set of extreme points (also known
as polytopes). Each credal set PX can be described as
the set of convex combinations of points in ext (PX),
in other words, it suffices to maintain a credal sets’
extreme points in order to represent it. In a number
of places throughout this paper we will use the credal
set that contains all probability distribution for some
random variable. Let us therefore formally define this
credal set:

Definition 1. Let P∗X denote the set of all probabil-
ity distributions for a random variable X with state
space ΩX , i.e., P∗X , {p : 0 ≤ p(xi) ≤ 1, 1 ≤ i ≤
|ΩX |,

∑|ΩX |
i=1 p(xi) = 1}

One controversy in credal set theory is how one
should define independence between variables (for an
overview see [3]). We here adopt the most commonly
used such definition, referred to as strong indepen-
dence [6]:

Definition 2. X and Y are strongly independent iff
each pi ∈ ext (PX,Y ) can be expressed as pi = pjpk,
where pj ∈ PX and pk ∈ PY . X and Y are
strongly conditionally independent given Z iff pi ∈
ext
(
PX,Y |z

)
can be expressed as pi = pjpk, ∀z ∈ ΩZ ,

where pj ∈ PX|z and pk ∈ PY |z.

2A convex combination of points {pi : 1 ≤ i ≤ n} is defined
as
∑n

i=1 λipi, where
∑n

i=1 λi = 1, λi ≥ 0

2.2 The Robust Bayesian Combination
Operator

Let us first derive, via Bayes’ theorem, the Bayesian
combination operator, which we then generalize to op-
erate on credal sets. The derivation is inspired by
Arnborg [1, 2]. The derivation has previously been
utilized in order to define distinctness of evidences in
variants of evidence theory [17, Sect. 3.1]. Assume
that two sources have made observations y1 and y2,
respectively, related to a random variable X. If one
wants to formulate one’s belief regarding X, based
on the observations made by the sources, one utilizes
Bayes’ theorem:

p(X|y1, y2) =
p(y1, y2|X)p(X)∑

x∈ΩX

p(y1, y2|x)p(x)
(1)

We see that the posterior belief p(X|y1, y2) is af-
fected by the observations through the joint likelihood
p(y1, y2|X). Hence, it is reasonable to interpret such
likelihood as being evidence regarding X [9]. Now,
if one’s posterior belief p(X|y1, y2) should be a repre-
sentation of the available evidence solely, i.e., the pos-
terior belief should be equal to the normalized joint
likelihood function, then we need to set our prior be-
lief p(X) to the uniform distribution over ΩX . If we
also can assume that the sources have made condi-
tionally independent observations given X, i.e.,:

p(y1, y2|X) = p(y1|X)p(y2|X) (2)

and that both sources have adopted the uniform dis-
tribution as their prior belief p(X), i.e., their belief is
completely determined by likelihoods, then we get:

p(X|y1, y2) =
p(y1|X)p(y2|X)p(X)∑

x∈ΩX

p(y1|x)p(y2|x)p(x)
(3)

=

p(X|y1)p(y1)
p(X)

p(X|y2)p(y2)
p(X)

∑

x∈ΩX

p(x|y1)p(y1)
p(x)

p(x|y2)p(y2)
p(x)

(4)

=
p(X|y1)p(X|y2)∑

x∈ΩX

p(x|y1)p(x|y2)
(5)

We know that:

p(X|yi) =
p(yi|X)p(X)∑

x∈ΩX

p(yi|x)p(x)

=
p(yi|X)∑

x∈ΩX

p(yi|x)
,

(6)
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i ∈ {1, 2}, since the sources have adopted the uni-
form distribution as prior belief. Hence, Eq. 5 consti-
tutes an operator that takes two probability functions,
interpreted as evidences, i.e., normalized likelihoods,
as operands, and returns a new such function, repre-
senting the combined evidence, i.e., normalized joint
likelihood. We are now ready to define the Bayesian
combination operator [1, 2]:

Definition 3. The Bayesian Combination (BC) Op-
erator3 is defined as:

p1(X)⊗B p2(X) , p1(X)p2(X)∑

x∈ΩX

p1(x)p2(x)
,

where p1(X) and p2(X) are interpreted as con-
ditionally independent evidences, i.e., normalized
likelihoods that are conditionally independent given
X (see Eq. 2). The operator is undefined when∑

x∈ΩX
p1(x)p2(x) = 0.

Let us first comment on the case when∑
x∈ΩX

p1(x)p2(x) = 0. The case implies that
likelihoods are such that at least one of them is
zero for every x ∈ ΩX , which is exceptional in
any properly modeled system. The exact way of
dealing with such an exceptional case is application
dependent. One technique for resolving the case is
to utilize discounting with reliability weights strictly
smaller than one (see further Sect. 5).

Note that if the operands strongly agree on some
x ∈ ΩX as being the most probable, then the op-
erator will reinforce such probability in the resulting
posterior function. As mentioned in the introduction,
such behavior is clearly different from what one would
expect from an aggregation operator. The reason for
why such behavior is reasonable is due to the assump-
tion of conditionally independence between evidences
given X, as described by Eq. 2. Let us demonstrate
this behavior of the BC operator with a simple exam-
ple:

Example 1. Assume that two sources reports the fol-
lowing probability distributions as a representation of
conditionally independent evidences regarding the ran-
dom variable X with state space ΩX :

p1(x1) = 0.7, p1(x2) = 0.2, p1(x3) = 0.1
p2(x1) = 0.8, p2(x2) = 0.1, p2(x3) = 0.1,

Applying the BC operator to p1 and p2, i.e., p1⊗B p2,
yields the following distribution:

p1,2(x1) ≈ 0.95, p1,2(x2) ≈ 0.03, p1,2(x3) ≈ 0.02,

3Arnborg [2] referred to this operator as Laplace’s parallel
composition

Hence, the result constitutes stronger evidence for x1

than any of the operands.

Now if we want to define an operator that generalizes
the BC operator, in the sense of “point-wise Bayesian-
ism”, then one can substitute the operand single dis-
tributions to credal sets and apply the BC operator
point-wise on every pair of distributions within the
sets. Indeed, such an operator exists under the name
robust Bayesian combination operator [1, 2]:

Definition 4. The Robust Bayesian Combination
(RBC) Operator 4:

P1
X ⊗R P2

X , CH

{
pi(X)⊗B pj(X) :

pi ∈ P1
X , pj ∈ P2

X

}
,

where CH denotes the convex hull, P1
X and P2

X are
interpreted as strongly conditionally independent evi-
dences, i.e., convex sets of normalized likelihoods that
are strongly conditionally independent given X (see
Def. 2). The operator is undefined if there exists pi ∈
P1

X and pj ∈ P2
X such that

∑
x∈ΩX

pi(x)pj(x) = 0.

The operator is both associative and commutative.
Note that the case regarding division by zero is inher-
ited from the BC operator (Def. 3). Discounting the
operands (see further Sect. 5) using reliability weights
strictly smaller than one, resolves such case (see fur-
ther the discussion following Def. 3). Throughout the
remainder of the paper we will assume that some tech-
nique, guaranteeing

∑
x∈ΩX

pi(x)pj(x) > 0, for all
pi ∈ P1

X and pj ∈ P2
X , has been utilized (e.g., dis-

counting).

The following theorem facilitates computation with
the RBC operator (the theorem was implicitly men-
tioned in [2], with no proof, and explicitly stated in [1,
Theorem 1], where only a “proof hint” was provided):

Theorem 1.

P1
X ⊗R P2

X = ext(P1
X)⊗R ext(P2

X)

Proof. The proof is partly inspired by Noack et al. [14,
Theorem 2]. First note that ext(P1

X) ⊗R ext(P2
X) ⊆

P1
X ⊗R P2

X is trivial. Assume that ext(P1
X) ⊗R

ext(P2
X) is strictly smaller than P1

X ⊗R P2
X , i.e.,

ext(P1
X)⊗R ext(P2

X) ⊂ P1
X ⊗R P2

X . Then there must
exists at least one u ∈ ext(P1

X ⊗R P2
X) such that

u /∈ ext(P1
X) ⊗R ext(P2

X), where u has the follow-
ing form: u = p1p2/

∑
x∈ΩX

p1(x)p2(x), p1 ∈ P1
X and

4Arnborg [2] defined the operator without the inclusion of a
convex-hull operator (however he mentioned in the discussion
following his definition that such an operator should be utilized)
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p2 ∈ P2
X , where at least one of p1 and p2 is not an

extreme point. We can express p1 and p2 as:

p1 =
m∑

i=1

λivi

p2 =
n∑

j=1

αjwj ,

(7)

where vi ∈ ext(P1
X), wj ∈ ext(P2

X), λi ≥ 0, αj ≥ 0,
1 ≤ i ≤ m, 1 ≤ j ≤ n,

∑m
i=1 λi =

∑n
j=1 αi = 1.

Therefore (remember that the denominator is as-
sumed not to be equal to zero, see the discussion fol-
lowing Def. 3 and Def. 4):

u =

m∑

i=1

n∑

j=1

λiαjviwj

∑

x∈ΩX




m∑

i=1

n∑

j=1

λiαjvi(x)wj(x)




(8)

Let us introduce the following notation:

γi,j ,
λiαj

∑

x∈ΩX

vi(x)wj(x)

∑

x∈ΩX




m∑

i=1

n∑

j=1

λiαjvi(x)wj(x)




(9)

We can now rephrase u as:

u =
m∑

i=1

n∑

j=1

γi,j
viwj∑

x∈ΩX

vi(x)wj(x)
(10)

Since:
viwj∑

x∈ΩX

vi(x)wj(x)
∈ ext(P1

X)⊗R ext(P2
X),

(11)

and γi,j ≥ 0,
∑m

i=1

∑n
j=1 γi,j = 1, we get u ∈

ext(P1
X)⊗R ext(P2

X), which is a contradiction. Hence
we must conclude that P1

X ⊗R P2
X = ext(P1

X) ⊗R
ext(P2

X).

3 Imprecision and Conflict

We here define measures for degree of imprecision and
conflict.

3.1 Degree of Imprecision

Obviously, since credal set theory belongs to the fam-
ily of theories referred to as imprecise probabilities
[23], imprecision is an important concept to define.

Walley [21, Section 5.1.4] has introduced a measure
which he refers to as the degree of imprecision for an
event xi ∈ ΩX :

∆(xi) , max
p∈PX

p(xi)− min
p∈PX

p(xi) (12)

However, the measure does not capture the impreci-
sion of a credal set, since it only operates on single
events. At first, one might be tempted to think of the
imprecision of a credal set as its volume. However, the
volume can be made arbitrarily small while a high de-
gree of imprecision for some event is preserved, some-
thing that is counterintuitive. Let us therefore base
our measure of degree of imprecision for a credal set
on Walley’s measure in the following way:
Definition 5. Degree of Imprecision:

I(PX) , 1
n

∑

x∈ΩX

∆(x)

where PX ⊆ Rn and n = |ΩX |

The optimization problems involved in the definition
of I are linear, hence, the solutions can be found by
iterating through the extreme points.

3.2 Degree of Conflict

Assume that two sources report (strongly condition-
ally independent) evidence in the form of credal sets
P1

X and P2
X and that one wants to formulate the com-

bined evidence concerning X based on these sets. If
both sources report exactly the same credal set, then
they are willing to act according to any distribution
within any of their sets. In other cases, i.e., when the
credal sets are not equal, then there exists a distribu-
tion which not both sources are willing to act upon,
i.e., a certain degree of conflict is present. Intuitively,
the degree of conflict between P1

X and P2
X should be

related to some distance between the sets. Indeed,
there exists such distance measure, which goes under
the name of Hausdorff distance [10]. Let us therefore
define a degree of conflict between two credal sets in
the following way:
Definition 6. Degree of Conflict:

K(P1
X ,P2

X) , H(P1
X ,P2

X)√
2

,

where the denominator is a constant constituting
the diameter of the set P∗X (see Def. 1), i.e.,
maxpi∈P∗X

{
maxpj∈P∗X d(pi, pj)

}
=
√

2 (the diameter
of a credal set is found in the set of distances between
extreme points [7, Theorem 12]) where d denotes the
Euclidean distance, and H is the Hausdorff distance
defined by:

H(P1
X ,P2

X) , max
{−→H(P1

X ,P2
X),
−→H(P2

X ,P1
X)
}
,
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Figure 1: P1
X (circles) and P2

X (squares) projected on
two-dimensional space. The triangle where extreme
points p(x1) = p(x2) = p(x3) = 1 have been, marked
constitutes P∗X (see Def. 1).

where
−→H is the forward Hausdorff distance defined by:

−→H(F1,F2) , max
fi∈F1

{
min

fj∈F2
d(fi, fj)

}
,

where F1 and F2 are general closed convex sets in Rn.

The forward Hausdorff-distance can be calculated in
O(|ext(F1)||fac(F2)|) [10], where fac denotes the set
of faces. Let us demonstrate the conflict measure by
a simple example:

Example 2. Consider Fig. 1 where two credal sets,
P1

X and P2
X , for a random variable X with ΩX =

{x1, x2, x3}, has been plotted. From the figure, it is
seen that

−→H(P2
X ,P1

X) >
−→H(P1

X ,P2
X), since there ex-

ists at least one point in P2
X (e.g., the lower right

extreme point) from where the minimum distance to
P1

X is larger than the distance from any point in P1
X

to a point in P2
X . Hence, the Hausdorff distance

H(P1
X ,P2

X) must be equal to the forward Hausdorff
distance

−→H(P2
X ,P1

X), which is the maximum of the
set of distances from the set of extreme points of
P2

X to P1
X ’s faces [10]. In this example, the maxi-

mum such distance, approximately equal to 0.16, is
found among the distances between the lower extreme
points of P2

X to the lower extreme points of P1
X , i.e.,

H(P1
X ,P2

X) ≈ −→H(P2
X ,P1

X) ≈ 0.16, yielding a degree
of conflict K(P1

X ,P2
X) ≈ 0.11.

Notice that if P1
X = P2

X then K(P1
X ,P1

X) = 0. Also,
if ext(P1

X) ⊆ ext(P∗X) and ext(P2
X) ⊆ ext(P∗X), and

ext(P1
X) ∩ ext(P2

X) = ∅ then K(P1
X ,P1

X) = 1 (since
the distance between two different extreme points of
the set P∗X is

√
2).

4 Examples

We will here give some examples of utilizing the robust
Bayesian combination (RBC) operator in scenarios
where there are different degrees of conflict present.
For simplicity, let us utilize the family of credal sets
that can be obtained by the imprecise Dirichlet model
(IDM) [22] for constructing the operand credal sets.
Note that these sets stem from a credal set of priors
(hence not from a set of likelihoods) and that we are
only utilizing the IDM as a convenient way of con-
structing different geometrical shapes of credal sets
for the examples. Consider a random variable X with
state space ΩX = {x1, x2, x3}. A credal set obtained
from the IDM for this state space can be parameter-
ized according to:

IDM(α, s) ,
{
p :

αi

3∑

i=1

αi + s

≤ p(xi) ≤
αi + s

3∑

i=1

αi + s

,

1 ≤ i ≤ 3,
3∑

i=1

p(xi) = 1

}
,

(13)

where αi denotes the ith component of α.

4.1 Low Conflict

Let us start with an example where there exists a low
degree of conflict between the sources. We define the
example by utilizing Eq. (13) on the following param-
eters:

P1
X = IDM((1, 5, 1), 2)

P2
X = IDM((1, 3, 1), 2)

(14)

The corresponding credal sets are shown in Fig. 2(a),
where the sets have been projected on the compo-
nents p(x1) and p(x2) (this enables one to see the
probabilities directly from the plot). The line seg-
ment defined by coordinates (0, 1) and (1, 0) corre-
sponds to the set of distributions where p(x3) = 0.
From the figure we see that there is only a slight con-
flict, K(P1

X ,P2
X) ≈ 0.11, and that both sources essen-

tially agree on “x2” as being most probable. There-
fore the result, denoted by P1,2

X (I(P1,2
X ) ≈ 0.34), is

reinforced towards a high probability for “x2”, as is
seen in Fig. 2(b).

4.2 Balanced Conflict

Consider an example where the evidences from the
sources are strongly conflicting:

P1
X = IDM((20, 10−3, 10−3), 2)

P2
X = IDM((10−3, 20, 10−3), 2)

(15)
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Since the sources expresses the same degree of im-
precision, we refer to the conflict as balanced. The
operand credal sets and result can be seen in Fig. 3.
We see that there is a high degree of conflict,
K(P1

X ,P2
X) ≈ 0.91 and that the resulting credal set

P1,2
X has a high degree of imprecision, I(P1,2

X ) ≈ 1.
The main reason for this is due to that the “point-
wise” combination of the lower left extreme points of
P1

X and P2
X results in the lower left extreme point of

P1,2
X ; a case that is similar to the well-known Zadeh’s

(counter) example for Dempster’s rule [24]. The rea-
son for such behavior is due to that the extreme points
component-wise suppress each other for events x1 and
x2.

4.3 Unbalanced Conflict

Now consider an example where one of the operand
credal set is highly imprecise while the other is not:

P1
X = IDM((20, 10−3, 10−3), 2)

P2
X = IDM((10−3, 10−3, 10−3), 2)

(16)

The corresponding credal sets can be seen in Fig. 4.
We see that the resulting credal set P1,2

X has been
strongly affected by the second source since I(P1,2

X ) ≈
1. However, since there exist distributions in P2

X

that are positioned at a large distance from any dis-
tribution in P1

X , there is a strong conflict present:
K(P1

X ,P2
X) ≈ 0.91. Since the conflict in this case is

due to differences in imprecision, we will refer to the
conflict as unbalanced.

5 Discounting

Assume that one possesses information concerning the
reliability of the sources and that one encodes this in-
formation via a convex set of reliability weights W 5,
i.e., an interval. If one knows that some source is not
fully reliable, e.g., a sensor of low quality, then one
should suppress the statement from that source ac-
cordingly, i.e., the source should have less influence
on the end result. Such procedure is commonly re-
ferred to as discounting in the literature [16]. If both
the credal set and set of reliability weights are single-
ton, then discounting is achieved by transforming the
single distribution, with respect to the weight, to a
new distribution that is more similar to the uniform
distribution. The reason for this is that the uniform
distribution represents evidence that has no influence
on the end result when combined with another distri-
bution, i.e., the latter is always returned as result in
such case.

5Imprecision in reliability weights was inspired by Troffaes
[20]

Now, if we generalize the above approach to credal
sets and set of reliability weights, preserving the idea
of “point-wise Bayesianism”, we obtain the following
discounting operator:
Definition 7. The RBC Discounting Operator:

D(PX ,W) , CH {wp+ (1− w)pu : w ∈ W, p ∈ PX} ,

where PX ⊆ Rn, W ⊆ [0, 1]2 is an interval of relia-
bility weights, and pu ∈ Rn, n = |ΩX |, is the uniform
distribution over ΩX .

The RBC discounting operator collapses a credal set
“towards” the uniform distribution. Note that when
the uniform distribution is combined, using the RBC
operator, with any other credal set, the latter is ob-
tained as result. Hence, by applying the RBC dis-
counting operator on an operand, the end result will
be less influenced by that operand, depending on W
(the collapse towards the uniform distribution should
therefore not be interpreted as a “bias” towards the
uniform distribution as it would have been for an ag-
gregation operator). The following theorem allows
one to perform computation with the RBC discount-
ing operator:
Theorem 2.

D(PX ,W) = D(ext (PX) , ext (W))

Proof. First note that D (ext (PX) , ext (W)) ⊆
D (PX ,W) is trivial. Assume that
D (ext (PX) , ext (W)) is strictly smaller than
D (PX ,W), i.e., D (ext (PX) , ext (W)) ⊂ D (PX ,W).
Then there must exists at least one u ∈
ext(D (PX ,W)) such that u /∈ D (ext (PX) , ext (W))
where u has the following form: u = wp+ (1− w)pu,
w ∈ W, and p ∈ PX , where at least one of w and p is
not an extreme point. There are three cases:

Case 1 – p ∈ ext (PX), w /∈ ext (W):
We know that w can be expressed as:

w = λw1 + (1− λ)w2, (17)

where w1 6= w2, w1, w2 ∈ ext (W), λ ∈ (0, 1). We get:

u = wp+ (1− w)pu

= pu + (λw1 + (1− λ)w2)(p− pu)
= pu + λw1(p− pu) + (1− λ)w2(p− pu)

+ λpu − λpu

= λ(pu + w1(p− pu)) + (1− λ)pu

+ (1− λ)w2(p− pu)
= λ(pu + w1(p− pu))

+ (1− λ)(pu + w2(p− pu))
= λ(w1p+ (1− w1)pu)

+ (1− λ)(w2p+ (1− w2)pu)

(18)
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Hence u ∈ D (ext (PX) , ext (W)), which is a contra-
diction.

Case 2 – p /∈ ext (PX), w ∈ ext (W):
We know that p can be expressed as:

p =
n∑

i=1

αipi, (19)

where pi ∈ ext (PX), αi ≥ 0,
∑n

i=1 αi = 1. Therefore:

u = w

(
n∑

i=1

αipi

)
+ (1− w)pu

=

(
n∑

i=1

wαipi

)
+ (1− w)pu

+

(
n∑

i=1

αi(1− w)pu

)

−
(

n∑

i=1

αi(1− w)pu

)

=

(
n∑

i=1

αi(wpi + (1− w)pu)

)

+ (1− w)pu −
(

n∑

i=1

αi(1− w)pu

)

=
n∑

i=1

αi(wpi + (1− w)pu)

(20)

Hence u ∈ D (ext (PX) , ext (W)), which is a contra-
diction.

Case 3 – p /∈ ext (PX)), w /∈ ext (W):
As is explained in case 1 and 2, we know that:

w = λw1 + (1− λ)w2

p =
n∑

i=1

αipi,
(21)

We get:

u = (λw1 + (1− λ)w2)

(
n∑

i=1

αipi

)

+ (1− (λw1 + (1− λ)w2))pu

(22)

From Case 1 we know that Eq. (22) is equivalent to:

u = λ

(
w1

(
n∑

i=1

αipi

)
+ (1− w1)pu

)

+ (1− λ)

(
w2

(
n∑

i=1

αipi

)
+ (1− w2)pu

) (23)

From Case 2 we know that Eq. (23) is equivalent to:

u = λ

(
n∑

i=1

αi(w1pi + (1− w1)pu)

)

+ (1− λ)

(
n∑

i=1

αi(w2pi + (1− w2)pu)

) (24)

Hence u ∈ D (ext (PX) , ext (W)), which is a contra-
diction.

Since all cases lead to contradictions we must conclude
that D(PX ,W) = D(ext (PX) , ext (W)).

Let us now revisit the previous presented examples
where a strong conflict was present.

5.1 Balanced Conflict – Revisited

Assume that the following set of reliability weights
regarding the sources is available:

W1 = [0.80, 0.90]
W2 = [0.90, 0.95]

(25)

The result of applying the RBC discounting operator
on the operands in Sect. 4.2, utilizing the above set
of reliability weights, is seen in Fig. 5, where we de-
note the discounted resulting credal set as P1d,2d

X . We
get I(P1d,2d

X ) ≈ 0.53, hence, a significant difference
compared to the non-discounted case in Fig. 3(b).

5.2 Unbalanced Conflict – Revisited

Assume that the following reliability weights regard-
ing the sources are available:

W1 = [1.00, 1.00]
W2 = [0.75, 0.80],

(26)

The result of applying the RBC discounting operator
on the operands in Sect. 4.3, utilizing the above set of
reliability weights, is seen in Fig. 6, where I(P1d,2d

X ) ≈
0.56. The lower bound of W2 will in this case not
have any effect since P2

X is centered on the uniform
distribution.

6 Summary and Conclusions

We have studied the combination problem for credal
sets via the robust Bayesian combination operator.
We extended Walley’s notion of degree of imprecision
and introduced a measure for degree of conflict be-
tween two credal sets. We investigated the behavior
of the operator through a number of examples where
different degrees of conflict between the operands were

266 Alexander Karlsson, Ronnie Johansson, Sten F. Andler



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p((x1))

p((x2))

(a) D
(
P1

X ,W1

)
(circles) and D

(
P2

X ,W2

)

(squares)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p((x1))

p((x2))

(b) P1d,2d
X

Figure 5: D
(
Pi

X ,Wi

)
, i ∈ {1, 2}, and P1d,2d

X for Example 2 – Revisited.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p((x1))

p((x2))

(a) D
(
P1

X ,W1

)
(circles) and D

(
P2

X ,W2

)

(squares)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p((x1))

p((x2))

(b) P1d,2d
X

Figure 6: D
(
Pi

X ,Wi

)
, i ∈ {1, 2}, and P1d,2d

X for Example 3 – Revisited.

present. We proposed the RBC discounting operator
to be used with the combination operator when a set
of reliability weights for the sources are available. We
showed that the result of the operators can be com-
puted by utilizing the extreme points of the operand
sets. Both operators preserve the intuitive paradigm
of “point-wise Bayesianism”.

An important aspect to recognize when using the ro-
bust Bayesian combination operator is that a source,
which reports a credal set that is highly imprecise,
can considerably affect the result of the combination
(see Fig. 4). If a strong conflict is present among the
sources, then additional information about the reli-
ability of the sources can be encoded as reliability
weights to be used by the RBC discounting operator.

If no such information is available, the conflict may be
regarded as irrelevant, if a sufficient number of sources
make strong statements that are not in conflict (i.e.,
the sources have made similar observations). For ex-
ample, if a large number of credal sets similar to P1

X

in Fig. 4(a), are combined with P2
X in the same figure,

then the conflict can be sufficiently suppressed to be
regarded as irrelevant

Our next step is to evaluate the robust Bayesian com-
bination and discounting operators against other com-
bination operators, e.g., the Bayesian combination op-
erator and Dempster’s rule. Such an evaluation must
also concern different modeling strategies for obtain-
ing the reliability weights. We are convinced that if
credal set theory is going to be accepted by a broader
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body of researchers and practitioners, it is necessary
to thrust towards research where it can be shown that
the theory yields measurable advantages in compari-
son to other broadly accepted theories, e.g., Bayesian
theory.
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Abstract

The credal set operator is studied as a set-valued map-
ping that assigns the set of dominating probabilities
to a coherent lower prevision on some set of gam-
bles. It is shown that this mapping is affine on certain
classes of coherent lower previsions, which enables to
find a decomposition of credal sets. Continuity of the
credal set operator is investigated on finite universes
with the aim of approximating credal sets.

Keywords. credal set, coherent lower prevision, su-
perdifferential, Hausdorff metric

1 Introduction

The main purpose of this paper is to investigate the
geometrical-topological relations between the two im-
portant classes of imprecise probability models of
Walley [12]: coherent lower previsions and credal sets
of linear previsions. The credal set operator is stud-
ied as a set-valued mapping that sends every coher-
ent lower prevision to the nonempty, weak∗-compact
and convex set of dominating linear previsions. Since
the set of all coherent lower previsions is a convex
subset of a linear topological space, the basic ques-
tion is whether the credal set operator acts as a mor-
phism between the corresponding mathematical ob-
jects. Precisely, the question is if the credal set oper-
ator is

(i) an affine mapping, that is, convex combina-
tions of coherent lower previsions are mapped
to the corresponding “convex combinations” of
the credal sets,

(ii) homeomorphism, provided a topology is intro-
duced on the set of all credal sets.

In Section 2 we introduce basic notions and notations.
The main tool used in this paper are the elements of
subdifferential (superdifferential) calculus developed
for continuous convex (concave) functions [10]. Theo-
rem 2 in Section 3 shows that every credal set can be

represented as the superdifferential. This idea goes
back to the solution of coalition games by core and
appears already in Aubin’s work [1]. Further, it is
proven that the credal set operator is an affine map-
ping on the class of all coherent lower probabilities de-
fined on the set of all subsets of some universe (Theo-
rem 3) and on the class of all coherent lower previsions
defined on the set of all the gambles (Corollary 1). It
is demonstrated in section 3.1 how the former result
can be used to obtain a decomposition of credal sets
of belief measures.

Section 4 is devoted to the topological properties. The
exposition is confined to the case of finite universes.
If the Hausdorff metric is introduced on the set of
all nonempty compact convex subset of the set of
all linear previsions, then the credal set operator is
a homeomorphism (Theorem 7). The consequence of
this result mentioned in section 4.1 makes possible
to approximate an arbitrary credal set by a “simple”
credal set in the Hausdorff metric. The study of con-
tinuity of credal set operator need not be limited to
finite universes. The principal difficulty in the general
non-metrizable case is how to define a topology on the
set of all nonempty, weak∗-compact convex subsets of
the dual of the Banach space of all gambles considered
in its weak∗ topology. Only a brief discussion of this
issue would, however, lead to introducing quite com-
plicated mathematical apparatus such as uniformities
defined on spaces of credal sets (cf. [2, Chapter II]).
Since such considerations go far beyond the intended
scope of the paper, the general case is left for separate
future investigations.

2 Basic Notions

In this section we introduce the notation and repeat
the notions and basic results from Walley’s theory of
imprecise probabilities [12]. Let Ω be a nonempty
set. A gamble is a bounded function Ω→ R. If a ∈ R,
then we use the same symbol a to denote a constant
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gamble on Ω. By L we denote the Banach space of
all gambles endowed with the supremum norm ‖.‖∞,
that is,

‖f‖∞ = sup {|f(ω)| | ω ∈ Ω}, f ∈ L .

Let K ⊆ L . A lower prevision P is a real function
defined on K . If the set K contains only charac-
teristic functions of subsets of Ω, then P is called
a lower probability. The conjugate upper prevision
P is defined on −K = {f | −f ∈ K } by letting
P (f) = −P (−f) for every f ∈ −K . A coherent
lower prevision on L is a lower prevision P defined
on L that satisfies the following conditions for every
f, g ∈ L :

(i) P (f) ≥ inf {f(ω) | ω ∈ Ω},
(ii) P (λf) = λP (f), for every λ ≥ 0,
(iii) P (f + g) ≥ P (f) + P (g).

In particular, every coherent lower prevision on L
is a continuous concave function on the Banach
space L . If P is a lower prevision defined on K ,
then P is called coherent provided there exists a co-
herent lower prevision defined on L and coinciding
with P on K .

A linear prevision P on L is a self-conjugate coher-
ent lower prevision on L , that is, P (−f) = −P (f) for
every f ∈ L . Every linear prevision P is a positive lin-
ear functional on L with P (1) = 1. A real functional
defined on K is called a linear prevision on K if it
can be extended to a linear prevision on L . By L ∗

we denote the dual Banach space of L : the elements
of L ∗ are precisely the continuous linear functionals
L → R. Every linear prevision belongs to L ∗.

The sets of linear previsions appearing in the theory
of imprecise probabilities are usually not compact in
the norm topology of L ∗. If the Banach space L ∗ is
considered with the weak∗ topology, then the set P of
all linear previsions on L becomes a weak∗-compact
subset of L ∗ [12, p.610]. Let P be a coherent lower
prevision on K . The credal set of P is the set

M(P ) = {P ∈ P | P (f) ≥ P (f), f ∈ K }.

The terminology is not unified so M(P ) is called a core
or a structure by some authors. The credal set M(P )
is a nonempty, convex and weak∗ compact subset
of L ∗.

Given a coherent lower prevision P on K , put

EP (f) = inf{P (f) | P ∈M(P )}, for every f ∈ L ,

and call the function EP the natural extension of P .
Every natural extension EP is the (pointwise) small-
est coherent lower prevision that extends P to the
set L .

3 Superdifferential of Coherent Lower
Prevision

The notion of superdifferential of a continuous con-
cave function is one of the generalizations of the clas-
sical concept of Gâteaux derivative of a differentiable
function. In the next paragraph only basic definitions
and results are needed. The reader is referred to [10]
for details. Although the theory is developed for sub-
differentials of convex functions in [10], the analogous
definitions and theorems for superdifferentials of con-
cave functions are derived straightforwardly.

Let X be a Banach space and E be a nonempty open
convex subset of X. By X∗ we denote the dual space
of X. In this paragraph we always assume that ϕ is
a concave function E → R: for every x1, x2 ∈ E and
every α ∈ [0, 1], we have

ϕ(αx1 + (1− α)x2) ≥ αϕ(x1) + (1− α)ϕ(x2).

For every x0 ∈ E and x ∈ X, put

d+ϕ(x0)(x) = lim
t→0+

ϕ(x0 + tx)− ϕ(x0)
t

and call d+ϕ(x0)(x) the right-hand directional deriva-
tive of ϕ at x0. If follows from [10, Lemma 1.2] that
the limit defining d+ϕ(x0)(x) exists for every x0 ∈ E
and every x ∈ X, and that d+ϕ(x0) is a positively ho-
mogeneous concave function on X. The function ϕ is
said to be Gâteaux differentiable at x0 if the functional
d+ϕ(x0) : X → R is actually linear (not necessarily
continuous). Equivalently, the function ϕ is Gâteaux
differentiable at x0 ∈ E iff the limit

dϕ(x0)(x) = lim
t→0

ϕ(x0 + tx)− ϕ(x0)
t

exists for each x ∈ X, and in this case dϕ(x0) =
d+ϕ(x0). The functional dϕ(x0) is the Gâteaux
derivative of ϕ at x0.

Definition 1. Let x ∈ E. The superdifferential of ϕ
at x is the set

∂ϕ(x) = {ϕ∗ ∈ X∗ | ϕ∗(y) ≥ d+ϕ(x)(y), y ∈ X}.

The superdifferential of ϕ at x can be equivalently
expressed as

∂ϕ(x) = {ϕ∗ ∈ X∗ | ϕ∗(y−x) ≥ ϕ(y)−ϕ(x), y ∈ E}.
(1)

The elements of ∂ϕ(x) are called supergradients of
ϕ at x. Each supergradient ϕ∗ ∈ X∗ is viewed as
a plausible candidate for a derivative of ϕ at x. The
following existence result is well-known ([10, Proposi-
tion 1.11]).
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Theorem 1. Let X be a Banach space and E be
a nonempty open convex subset of X. If the concave
function ϕ is continuous at x ∈ E, then ∂ϕ(x) is
a nonempty, convex and weak∗-compact subset of X∗.

For example, let X = E = R2 and ϕ(x) = ϕ(x1, x2) =
−|x1| − |x2|, for every x = (x1, x2) ∈ R2. Since
ϕ is continuous and concave, the superdifferential
of ϕ at 0 exists. The direct calculation shows that
∂ϕ(0) equals the convex hull of the set of vectors
{(1, 1), (1,−1), (−1, 1), (−1,−1)}.
The next theorem enables to identify the credal set of
P with the set of all supergradients at 1 of the natural
extension of P .
Theorem 2. Let K ⊆ L . If P is a coherent lower
prevision on K and EP is the corresponding natural
extension, then

M(P ) = ∂EP (1).

Moreover, if EP is Gâteaux differentiable at 1, then
P is a linear prevision on K .

Proof. Let P ∈M(P ). Then P ≥ EP and P (1) = 1 =
EP (1), which implies for every gamble f that

P (f)− P (1) ≥ EP (f)− EP (1).

Since every linear prevision is a norm continuous lin-
ear functional, the inequality above means that P is
a supergradient of EP at 1 by (1).

Suppose, on the other hand, that P ∗ ∈ ∂EP (1). The
equation (1) gives that for every gamble f ∈ L we
have

P ∗(f − 1) ≥ EP (f)− 1. (2)

Hence for every real α > 0,

P ∗(αf − 1) ≥ EP (αf)− 1,

and after dividing by α,

P ∗(f)− P ∗(1)
α
≥ EP (f)− 1

α
.

Letting α→ 0 leads to P ∗(f) ≥ EP (f). If f = 0, then
P ∗(−1) ≥ −1 from (2) so that P ∗(1) = 1. The func-
tional P ∗ is a linear prevision as P ∗ is self-conjugate
and satisfies

P ∗(f) ≥ EP (f) ≥ inf{f(ω) | ω ∈ Ω}

for every f ∈ L . Since EP (f) = P (f) whenever
f ∈ K , we get P ∗ ∈M(P ).

To prove the second assertion, assume that EP is
Gâteaux differentiable at 1. It follows from [10,
Proposition 1.8] that this is equivalent to

∂EP (1) = {dEP (1)}.

Since M(EP ) = ∂EP (1), this means that the con-
tinuous concave function EP is dominated by the
unique continuous linear functional dEP (1). The
Hahn-Banach theorem then implies that EP itself
must be linear and hence, a fortiori, P must be a lin-
ear prevision.

The second assertion of the previous theorem can not
be reversed: if P is a linear prevision on K , then
the natural extension EP is not in general Gâteaux
differentiable at 1.

On the set 2L ∗
of all subsets of L ∗ we consider the

multiplication of a set A ⊆ L ∗ by a real number
α and the (Minkowski) sum of sets A1 ⊆ L ∗ and
A2 ⊆ L ∗:

αA = {αP ∗ | P ∗ ∈ A},
A1 ⊕A2 = {P ∗1 + P ∗2 | P ∗1 ∈ A1, P

∗
2 ∈ A2}.

Let K1,K2 be convex subsets of linear spaces X1, X2,
respectively. A mapping a : K1 → K2 is affine, when-
ever for every convex combination

∑n
i=1 αixi of ele-

ments x1, . . . , xn ∈ K1, we have

a

(
n∑

i=1

αixi

)
=

n∑

i=1

αia(xi).

Let 2Ω be the set of all subsets of Ω. A lower proba-
bility P on 2Ω is supermodular if

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B)

for every A,B ∈ 2Ω.

Theorem 3. If P 1, . . . , Pn are supermodular coher-
ent lower probabilities on 2Ω and αi ∈ [0, 1], i =
1, . . . , n, are such that

∑n
i=1 αi = 1, then

M

(
n∑

i=1

αiP
i

)
=

n⊕

i=1

αiM(P i). (3)

Proof. The lower probability
∑n
i=1 αiP

i is coherent
[12, Theorem 2.6.4]. The coherent lower probability∑n
i=1 αiP

i is supermodular since each P i is super-
modular, so the set of all supermodular coherent lower
probabilities on 2Ω is a convex subset of R2Ω

. It fol-
lows from [8, Theorem 5.2] that the natural extension
EP of any supermodulat coherent lower probability P
on 2Ω coincides with the asymmetric Choquet integral
IaP : L → R, where

IaP (f) =
∫ 0

−∞
P (f−1((t,∞)))− P (Ω) dt

+
∫ ∞

0

P (f−1((t,∞))) dt,
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for every f ∈ L . A routine verification shows that the
mapping sending each supermodular coherent lower
probability P to IaP is affine, hence

EPn
i=1 αiP i = IaPn

i=1 αiP i =
n∑

i=1

αiI
a
P i =

n∑

i=1

αiEP i

Theorem 2 together with the preceding equality give

M

(
n∑

i=1

αiP
i

)
= ∂

(
EPn

i=1 αiP i

)
(1) =

= ∂

(
n∑

i=1

αiEP i

)
(1).

It follows directly from the definition of superdiffer-
ential that for every i = 1, . . . , n,

∂(αiEP i)(1) = αi∂(EP i)(1). (4)

By the Moreau-Rockafellar theorem [10, Theorem
3.23], the equality (4) and Theorem 2, we obtain

∂

(
n∑

i=1

αiEP i

)
(1) =

n⊕

i=1

∂(αiEP i)(1) =

=
n⊕

i=1

αi∂(EP i)(1) =
n⊕

i=1

αiM(P i).

One of key ingredients in the above proof is the affin-
ity of the natural extension operator P 7→ EP de-
rived from the representation of the natural extension
by the assymetric Choquet integral [8, Theorem 5.2].
This suggests the following general result.

Theorem 4. Let K be a set of gambles and CK be
the convex set of all coherent lower probabilities on
K . If the mapping

P ∈ CK 7→ EP

is affine, then the equality (3) holds true for every
P 1, . . . , Pn ∈ CK .

Proof. Let P 1, . . . , Pn ∈ CK and αi ∈ [0, 1], i =
1, . . . , n, be such that

∑n
i=1 αi = 1. Then

EPn
i=1 αiP i =

n∑

i=1

αiEP i ,

so

M

(
n∑

i=1

αiP
i

)
= ∂

(
n∑

i=1

αiEP i

)
(1),

and the equality (3) again follows from the Moreau-
Rockafellar theorem [10, Theorem 3.23] together
with (4) and Theorem 2.

Let S be the set of all nonempty weak∗-compact con-
vex subsets of P. In the sequel we will study the
properties of the set-valued mapping

M(.) : P 7→M(P )

that sends a coherent lower probability on some set
of gambles K to a credal set from S. A superficial
look at the equality (3) would then suggest that this
mapping is affine on the class of coherent lower prob-
abilities mentioned in Theorem 3. A necessary con-
dition is that the codomain S of M is a convex set.
But this notion of convexity is not even defined in the
present framework since the set 2L ∗

endowed with the
Minkowski sum of sets and the scalar multiplication of
a set is not a linear space. The main difficulty is that
the algebra (2L ∗

,⊕) is not a group but only a commu-
tative monoid. The properties of the Minkowski sum
and the scalar multiplication of sets defined above can
be summarized as follows.

Proposition 1. The set 2L ∗
together with the

Minkowski sum ⊕ is a real semilinear space, that is:

(i) the algebra (2L ∗
,⊕) is a commutative monoid

with the neutral element {0},
(ii) α(βA) = (αβ)A, for every α, β ∈ R

and every A ∈ 2L ∗
,

(iii) 1A = A,
(iv) 0A = {0},
(v) α(A1 ⊕A2) = (αA1)⊕ (αA2),

for every A1,A2 ∈ 2L ∗
.

Semilinear spaces, which generalize linear spaces, are
algebraic structures close to semirings [5]. The defi-
nitions of convexity and affine maps can be directly
carried over to a more general framework of semilin-
ear spaces. In that follows these generalized defini-
tions are tacitly assumed. Thus we will say that S is
convex (as a subset of 2L ∗

) if

αA1 ⊕ (1− α)A2 ∈ S

holds true for every A1,A2 ∈ S and every α ∈ [0, 1].

Proposition 2. The set S is a convex subset of the
real semilinear space 2L ∗

.

Proof. Consider any A1,A2 ∈ S and a real number
α ∈ [0, 1]. Put A = αA1 ⊕ (1 − α)A2. Then A is
a nonempty convex subset of P since both A1,A2 are
nonempty and convex. As both αA1 and (1 − α)A2

are weak∗-closed, their Minkowski sum A is a weak∗-
closed subset of P, and thus weak∗-compact.

With these facts in mind, it is safe to interpret the
conclusions of Theorem 3 and 4 as expressing the fact
that “the mapping M is affine”. We will show that
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the mapping M is an affine isomorphism1 from the
convex set C of all coherent lower previsions on L to
S. The essential result is the following theorem [12,
Theorem 3.6.1].

Theorem 5 (Walley). The mapping M is a bijection
from C to S. The inverse mapping M−1 sends A ∈ S
to the coherent lower prevision

M−1(A)(f) = inf{P (f) | P ∈ A}, f ∈ L .

Corollary 1. The mapping M is an affine isomor-
phism of C and S.

Proof. The mapping M is one-to-one by Theorem 5.
It suffices to show that P ∈ C 7→ EP is affine since
this gives the affinity of M by Theorem 4. However,
this is trivial as P = EP for every P ∈ C.

Hence the mutual correspondence between the two
different models of imprecise probabilities (coherent
lower previsions and credal sets) introduced by Walley
is retained also on the geometric level.

3.1 Decomposition of credal sets

Theorem 3 can be useful in situations in which a co-
herent lower probability P on 2Ω is a convex combina-
tion of the coherent lower probabilities whose credal
sets have a special shape (such as simplices). In this
case, the credal set of P is decomposed into the con-
vex combination of the respective “basic” credal sets.
In particular, Theorem 3 is an infinite-dimensional
generalization of Corollary 4 from [3], where a similar
result is achieved for finite Ω and totally monotone set
functions investigated in the framework of cooperative
games. We will explicitly show how Theorem 3 can
be applied to the credal sets of belief measures [11]
by reformulating [3, Corollary 4] as a consequence of
Theorem 3 in this paper.

Theorem 6. Let Ω be finite, P be a belief measure
on 2Ω and µP its Möbius transform. Then

M(P ) =
⊕

A⊆Ω

µP (A)SA,

where SA is the simplex of probabilities on 2Ω sup-
ported by A, that is, SA = {P ∈ P | P (A) = 1}.

Proof. The set SA is a simplex since it is a face of the
simplex of all probabilities on 2Ω. A belief measure P
is a supermodular coherent lower probability on 2Ω, so

1An affine isomorphism is a bijective affine mapping be-
tween two convex subsets of real semilinear spaces. Its inverse
is then necessarily an affine mapping too.

Theorem 3 can be employed. Since
∑
A⊆Ω µ

P (A) = 1,
where µP (A) ≥ 0 for each A ⊆ Ω, and

P =
∑

A⊆Ω

µP (A)PA,

where the set functions

PA(B) =

{
1, A ⊆ B,
0, otherwise,

are belief functions, it suffices to realize that
M(PA) = SA.

4 Continuity of Credal Set Mapping

The main purpose of this section is to study the topo-
logical properties of the credal set operator. We will
confine the investigations to the case of finite Ω. The
first necessary step is an introduction of topologies on
both C and S.

If Ω = {1, . . . , n}, then the set of all gambles L can
be identified with the Euclidean space Rn. A gam-
ble is then viewed as an n-dimensional vector f =
(f1, . . . , fn) ∈ Rn. The dual space L ∗ is identified
with Rn. If 〈., .〉 denotes the usual scalar product on
Rn, then every linear prevision P on L canonically
corresponds to the vector of reals p = (p1, . . . , pn)
such that 〈p, 1〉 = 1 and pi ≥ 0 for each i = 1, . . . , n.
We have

P (f) = 〈p, f〉, f ∈ L . (5)

The pointwise limit of coherent lower previsions on
any set of gambles K is a coherent lower prevision
on K . Consequently, the set C is a closed convex
subset of the locally convex space RL . Let ‖.‖ be the
Euclidean norm on Rn. The topology of pointwise
convergence on C is described by the metric

∆(P 1, P 2) = max {|P 1(f)− P 2(f)| | ‖f‖ ≤ 1}.

Precisely, the sequence (Pn) in C pointwise con-
verges to P ∈ C iff ∆(Pn, P ) → 0 (see [7, Theorem
1.3.5,p.133]).

The set S contains all the nonempty compact convex
subsets of

P = {p ∈ Rn | 〈p, 1〉 = 1, pi ≥ 0, i = 1 . . . , n}.

The topology on S can be introduced by the Hausdorff
metric [2, Chapter II]. For every A ∈ S and every
p ∈ P, define

dA(p) = min {‖p− p′‖ | p′ ∈ A}. (6)

If A1,A2 ∈ S, then denote

eH(A1,A2) = sup {dA2(p1) | p1 ∈ A1}.
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The Hausdorff metric ∆H on S is defined as

∆H(A1,A2) = max {eH(A1,A2), eH(A2,A1)},

for every A1,A2 ∈ S.

The topology corresponding to the metric ∆H is
called the Hausdorff metric topology. The Hausdorff
metric topology depends only on the topology of P:
if any metric equivalent to the Euclidean metric is
used in place of ‖.‖ in (6), the resulting metric topol-
ogy on S would coincide with the Hausdorff metric
topology. Indeed, it follows from [2, Theorem II-6]
that the Hausdorff metric topology on the family K of
nonempty compact subsets of P is generated by the
sets

{K ∈ K | K ⊆ U, U open in P}
and

{K ∈ K | K ∩ V 6= ∅, V open in P}.
The Hausdorff metric topology of S arises as a sub-
space topology from K. Hence it is immaterial if the
Euclidean norm or the supremum norm originally de-
fined on the space of gambles is used.

Theorem 7. Let Ω = {1, . . . , n}. If S is endowed
with the Hausdorff metric topology, then the mapping
M : C → S is an affine isomorphism and homeomor-
phism.

Proof. The mapping M is an affine isomorphism by
Corollary 1 so that it remains to prove the continuity
in both directions. To this end, we use the following
convergence result, which can be easily deduced from
[7, Corollary 3.3.8, p.156]: if (An) is a sequence in S
and A ∈ S, then An → A in the Hausdorff metric iff
the sequence of functions

((f ∈ Rn 7→ inf {〈p, f〉 | p ∈ An})n)

pointwise converges to the function

f ∈ Rn 7→ inf {〈p, f〉 | p ∈ A}.

To show that the mapping M is continuous, consider
a sequence (Pn) converging to P in C. Theorem 5
and (5) together yield

Pn(f) = M−1(M(Pn))(f) = inf {〈p, f〉 | p ∈M(Pn)}

and

P (f) = M−1(M(P ))(f) = inf {〈p, f〉 | p ∈M(P )}.

This implies M(Pn) → M(P ) in the Hausdorff met-
ric. Continuity of the inverse mapping M−1 is shown
similarly.

4.1 Approximation of credal sets

By Theorem 5 of Walley every nonempty compact
convex subset A ∈ S is a credal set of the coher-
ent lower prevision M−1(A). Although every credal
set is characterized by the Krein-Milman theorem as
the closed convex hull of its vertices, it can be con-
venient to find a class of subsets of S whose mem-
bers have a particular geometric structure and which
is sufficient for an approximation of every credal set.
The polytopes from S are natural candidates for such
a task. A polytope is the convex hull of finitely-many
points in Rn. For our purposes it will be even enough
to focus on so-called simple polytopes. A polytope is
called simple if each of its vertices is contained in the
same number of facets. For example, a cube or a sim-
plex are simple polytopes, an Egyptian pyramid is not
a simple polytope. It was proven in [9] that the credal
set of every possibility measure is a simple polytope.
The class of simple polytopes is considered to be com-
putationally tractable: see [13] or the discussion in [9,
p.243-244] and the references therein.

Theorem 8. Let Ω = {1, . . . , n} and S be endowed
with the Hausdorff metric topology. If P is any co-
herent lower prevision on a set of gambles K ⊆ Rn,
then there exists a sequence (Sn) of simple polytopes
in S such that

(i) Sn →M(P ) in the Hausdorff metric,
(ii) M−1(Sn)→ P pointwise on K ,

(iii) M−1(Sn) → P uniformly on each compact sub-
set of K .

Proof. (i) is basically Theorem 2.8 in [4], which says
that simple polytopes form a dense set in S. The
assertion (ii) follows from (i) in conjunction with
Theorem 7: the sequence of coherent lower previ-
sions M−1(Sn) pointwise converges to P on K as
M−1 is continuous. The last assertion (iii) is a well-
known property of the convergence of concave func-
tions Rn → R (see [7, Theorem B.3.1.4], for in-
stance).

The proof of [4, Theorem 2.8] is based on a strong
compactness argument: given any open cover of
a polytope K by balls with a given diameter and with
centers in the extreme boundary of K, there exists
a finite refinement of this cover. The idea is analo-
gous to inscribing a polygon into a circle. Hence the
theorem does not give an algorithm for finding the
convergent sequence of simple polytope. Nevertheless,
at least in case that M(P ) is a polytope, it is possible
to explicitly find a simple polytope “sufficiently close
to M(P )” [13].
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5 Conclusions

In this contribution we identified two main cases in
which the credal set mapping is affine (Theorem 3
and Corollary 1). Yet none of them covers the whole
variety of coherent lower previsions since “complete-
ness” of their domains is required: the set of gambles
is required to be the set of all events or the set of all
the gambles. Theorem 4 then gives a sufficient condi-
tion enabling to get rid of those assumptions: it is the
affinity of the natural extension operator. In general,
the natural extension operator is not stable under the
usual operations with imprecise probabilities: it need
not preserve neither convex combinations nor limits
of convergent sequences of coherent lower previsions
[6, Section 5]. In future investigations our aim will
be to single out the sets of gambles satisfying the as-
sumption of Theorem 4 and to extend the material
presented in Section 4 to infinite universes.
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Dept. of Maths, Stats and Compt.

University of Cantabria
Santander, Spain

ines.gonzalez@unican.es

Yongchuan Tang
College of Computer Science,

Zhejiang University,
Hangzhou 310027, PR China

tyongchuan@gmail.com

Abstract

A prototype theory interpretation of the label seman-
tics framework is proposed as a possible model of
imprecise descriptions of real numbers. It is shown
that within this framework conditioning given impre-
cise descriptions of a real variable naturally results in
imprecise probabilities. An inference method is pro-
posed from data in the form of a set of imprecise de-
scriptions, which naturally suggests an algorithm for
estimating lower and upper probabilities given impre-
cise data values.

Keywords. Label Semantics, Prototype Theory,
Random Sets, Lower and Upper Distributions, Sec-
ond Order Distributions

1 Introduction

The label semantics framework [3], [4] is an epistemic
theory of the uncertainty associated with vague or
imprecise descriptions of an object or value. In label
semantics the focus is on the decision making pro-
cess an intelligent agent must go through in order to
identify which labels or expressions can actually be
used to describe an object or value. In other words,
in order to make an assertion describing an object in
terms of some set of linguistic labels, an agent must
first identify which of these labels are appropriate or
assertible in this context. Given the way that indi-
viduals learn language through an ongoing process of
interaction with the other communicating agents and
with the environment, then we can expect there to
be considerable uncertainty associated with any de-
cisions of this kind. Furthermore, there is a subtle
assumption central to the label semantic model, that
such decisions regarding appropriateness or assertibil-
ity are meaningful. For instance, the fuzzy logic view
is that vague descriptions like ‘John is tall’ are gener-
ally only partially true and hence it is not meaningful
to consider which of a set of given labels can truth-
fully be used to described John’s height. However,

we contest that the efficacy of natural language as a
means of conveying information between members of
a population lies in shared conventions governing the
appropriate use of words which are, at least loosely,
adhered to by individuals within the population.

In our everyday use of language we are continually
faced with decisions about the best way to describe
objects and instances in order to convey the informa-
tion we intend. For example, suppose you are witness
to a robbery, how should you describe the robber so
that police on patrol in the streets will have the best
chance of spotting him? You will have certain labels
that can be applied, for example tall, short, medium,
fat, thin, blonde, etc, some of which you may view
as inappropriate for the robber, others perhaps you
think are definitely appropriate while for some labels
you are uncertain whether they are appropriate or
not. On the other hand, perhaps you have some or-
dered preferences between labels so that tall is more
appropriate than medium which is in turn more ap-
propriate than short. Your choice of words to describe
the robber should surely then be based on these judg-
ments about the appropriateness of labels. Yet where
does this knowledge come from and more fundamen-
tally what does it actually mean to say that a label
is or is not appropriate? Label semantics proposes
an interpretation of vague description labels based on
a particular notion of appropriateness and suggests a
measure of subjective uncertainty resulting from an
agent’s partial knowledge about what labels are ap-
propriate to assert. Furthermore, it is suggested that
the vagueness of these description labels lies funda-
mentally in the uncertainty about if and when they
are appropriate as governed by the rules and conven-
tions of language use.

The above argument brings us very close to the epis-
temic view of vagueness as expounded by Timothy
Williamson [12]. Williamson assumes that for the
extensions of a vague concept there is a precise but
unknown dividing boundary between it and the ex-
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tension of the negation of that concept. However,
while there are marked similarities between the epis-
temic theory and the label semantics view, there are
also some subtle differences. For instance, the epis-
temic view would seem to assume the existence of
some objectively correct, but unknown, definition of
a vague concept. Instead of this we argue that indi-
viduals when faced with decision problems regarding
assertions find it useful as part of a decision making
strategy to assume that there is a clear dividing line
between those labels which are and those which are
not appropriate to describe a given instance. We re-
fer to this strategic assumption across a population of
communicating agents as the epistemic stance [5], a
concise statement of which is as follows:

Each individual agent in the population as-
sumes the existence of a set of labeling con-
ventions, valid across the whole population,
governing what linguistic labels and expres-
sions can be appropriately used to describe
particular instances.

In practice these rules and conventions underlying the
appropriate use of labels would not be imposed by
some outside authority. In fact, they may not exist
at all in a formal sense. Rather they are represented
as a distributed body of knowledge concerning the as-
sertability of predicates in various cases, shared across
a population of agents, and emerging as the result of
interactions and communications between individual
agents all adopting the epistemic stance. The idea is
that the learning processes of individual agents, all
sharing the fundamental aim of understanding how
words can be appropriately used to communicate in-
formation, will eventually converge to some degree on
a set of shared conventions. The very process of con-
vergence then to some extent vindicates the epistemic
stance from the perspective of individual agents. Of
course, this is not to suggest complete or even ex-
tensive agreement between individuals as to these ap-
propriateness conventions. However, the overlap be-
tween agents should be sufficient to ensure the effec-
tive transfer of useful information.

In this paper we consider the application of label se-
mantics to model the description of real numbers us-
ing vague or imprecise labels. In particular, given a
real valued variable x and a label L for real numbers
we attempt to understand the nature of the informa-
tion provided by assertions of the form ‘x is L’. Indeed
we will argue that from an epistemic perspective such
assertions naturally result in imprecise probabilities.
The model we propose will be based on a new inter-
pretation of label semantics linking random set theory
and Rosch’s [9] prototype theory of concepts.

2 The Prototype Interpretation of
Label Semantics

Label semantics proposes two fundamental and inter-
related measures of the appropriateness of labels as
descriptions of an object or value. Given a finite set
of labels LA a set of compound expressions LE can
then be generated through recursive applications of
logical connectives. The labels Li ∈ LA are intended
to represent words such as adjectives and nouns which
can be used to describe elements from the underlying
universe Ω. In other words, Li correspond to descrip-
tion labels for which the expression ‘x is Li’ is mean-
ingful for any x ∈ Ω. For example, if Ω is the set of
all possible rgb values then LA could consist of the
basic colour labels such as red, yellow, green, orange
etc. In this case LE then contains those compound
expression such as red & yellow, not blue nor orange
etc. The measure of appropriateness of an expression
θ ∈ LE as a description of instance x is denoted by
µθ (x) and quantifies the agent’s subjective belief that
θ can be used to describe x based on his/her (partial)
knowledge of the current labeling conventions of the
population. From an alternative perspective, when
faced with an object to describe, an agent may con-
sider each label in LA and attempt to identify the
subset of labels that are appropriate to use. Let this
set be denoted by Dx. In the face of their uncer-
tainty regarding labeling conventions the agent will
also be uncertain as to the composition of Dx, and
in label semantics this is quantified by a probability
mass function mx : 2LA → [0, 1] on subsets of labels.
The relationship between these two measures will be
described below.

Definition 1. Label Expressions
Given a finite set of labels LA the corresponding set of
label expressions LE is defined recursively as follows:

• If L ∈ LA then L ∈ LE

• If θ, ϕ ∈ LE then ¬θ, θ ∧ ϕ, θ ∨ ϕ ∈ LE

The mass function mx on sets of labels then quan-
tifies the agent’s belief that any particular subset of
labels contains all and only the labels with which it is
appropriate to describe x.

Definition 2. Mass Function on Labels
∀x ∈ Ω a mass function on labels is a function mx :
2LA → [0, 1] such that

∑
F⊆LA mx (F ) = 1

The appropriateness measure, µθ (x), and the mass
function mx are then related to each other on the ba-
sis that asserting ‘x is θ’ provides direct constraints
on Dx. For example, asserting ‘x is L1 ∧ L2’, for
labels L1, L2 ∈ LA is taken as conveying the infor-
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mation that both L1 and L2 are appropriate to de-
scribe x so that {L1, L2} ⊆ Dx. Similarly, ‘x is ¬L’
implies that L is not appropriate to describe x so
L /∈ Dx. In general we can recursively define a map-
ping λ : LE → 22LA

from expressions to sets of sub-
sets of labels, such that the assertion ‘x is θ’ directly
implies the constraint Dx ∈ λ (θ) and where λ (θ) is
dependent on the logical structure of θ.

Definition 3. λ-mapping
λ : LE → 22LA

is defined recursively as follows:
∀Li ∈ LA, ∀θ, ϕ ∈ LE

• λ(Li) = {F ⊆ LA : Li ∈ F}

• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)

• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)

• λ(¬θ) = λ(θ)c

Based on the λ mapping we then define µθ (x) as the
sum of mx over those sets of labels in λ (θ).

Definition 4. Appropriateness Measure
The appropriateness measure defined by mass func-
tion mx is a function µ : LA× Ω → [0, 1] satisfying

∀θ ∈ LE, ∀x ∈ Ω µθ (x) =
∑

F∈λ(θ)

mx (F )

where µθ(x) is used as shorthand notation for µ(θ, x).

Prototype theory and imprecise probabilities have al-
ready been linked by Walley and de Cooman [11] who
identified labels based on prototypes as a special case
of monotonic predicates which they argue naturally
induce possibility distributions. A prototype theory
interpretation of Label Semantics has recently been
proposed [6], [7], [10] in which the basic labels LA
correspond to natural categories each with an asso-
ciated set of prototypes. A label Li is then deemed
to be an appropriate description of an element x ∈ Ω
provided x is sufficiently similar to the prototypes of
Li. The requirement of being ‘sufficiently similar’ is
clearly imprecise and is modelled here by introducing
an uncertain threshold on distance from prototypes.

A distance function d is defined on Ω such that d :
Ω2 → [0,∞) and satisfies d(x, x) = 0 and d(x, y) =
d(y, x) for all elements x, y ∈ Ω. This function is then
extended to sets of elements such that for S, T ⊆ Ω,
d(S, T ) = inf{d(x, y) : x ∈ S and y ∈ T}. For each
label Li ∈ LA let there be a set Pi ⊆ Ω corresponding
to prototypical elements for which Li is certainly an
appropriate description. Within this framework Li

is deemed to be appropriate to describe an element
x ∈ Ω provided x is sufficiently close or similar to

a prototypical element in Pi. This is formalized by
the requirement that x is within a maximal distance
threshold ǫ of Pi. i.e. Li is appropriate to describe
x if d(x, Pi) ≤ ǫ where ǫ ≥ 0. From this perspective
an agent’s uncertainty regarding the appropriateness
of a label to describe a value x is characterised by his
or her uncertainty regarding the distance threshold
ǫ. Here we assume that ǫ is a random variable and
that the uncertainty is represented by a probability
density function δ for ǫ defined on [0,∞). Within
this interpretation a natural definition of the complete
description of an element Dx and the associated mass
function mx can be given as follows:

Definition 5. Prototype Interpretations of Dx and
mx

For ǫ ∈ [0,∞) Dǫ
x = {Li ∈ LA : d(x, Pi) ≤ ǫ} and

∀F ⊆ LA mx(F ) = δ({ǫ : Dǫ
x = F})1

Appropriateness measures can then be evaluated ac-
cording to definition 4. Alternatively, we can de-
fine a random set neighbourhood for each expression
θ ∈ LE corresponding to those elements of Ω which
can be appropriately described as θ, and then define
µθ(x) as the single point coverage function of this ran-
dom set as follows:

Definition 6. Random Set Neighbourhood of an Ex-
pression
For θ ∈ LE and ǫ ∈ [0,∞), N ǫ

θ ⊆ Ω is defined recur-
sively as follows: ∀Li ∈ LA, ∀θ, ϕ ∈ LE

• N ǫ
Li

= {x ∈ Ω : d(x, Pi) ≤ ǫ}

• N ǫ
θ∧ϕ = N ǫ

θ ∩N ǫ
ϕ

• N ǫ
θ∨ϕ = N ǫ

θ ∪N ǫ
ϕ

• N ǫ
¬θ = (N ǫ

θ )c

Theorem 1. Random Neighbourhood Representation
Theorem [7]

∀θ ∈ LE, ∀x ∈ Ω µθ(x) = δ({ǫ : x ∈ N ǫ
θ})

Proof. Initially we show by induction that ∀θ ∈ LE,
∀ǫ ≥ 0 N ǫ

θ = {x : Dǫ
x ∈ λ(θ)}. Let LE(1) = LA and

for k > 1 LE(k) = LE(k−1) ∪ {θ ∧ ϕ, θ ∨ ϕ,¬θ : θ, ϕ ∈
LE(k−1)}. We now proceed by induction on k.
Limit Case: k = 1 For Li ∈ LA we have by defi-
nition 6 that N ǫ

Li
= {x : d(x, Pi) ≤ ǫ} = {x : Li ∈

Dǫ
x} = {x : Dǫ

x ∈ λ(Li)} by definition 3.
Inductive Step: Assume true for k For Ψ ∈

1For Lesbegue measurable set I ⊆ [0,∞), we denote δ(I) =R
I δ(ǫ)dǫ i.e. we also use δ to denote the probability measure

induced by density function δ.
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LE(k+1) either Ψ ∈ LE(k), in which case the result
holds trivially by the inductive hypothesis, or one of
the following holds for θ, ϕ ∈ LE(k):

• Ψ = θ ∧ ϕ so that N ǫ
Ψ = N ǫ

θ∧ϕ = N ǫ
θ ∩ N ǫ

ϕ (by
definition 6) = {x : Dǫ

x ∈ λ(θ)}∩{x : Dǫ
x ∈ λ(ϕ)}

(by the inductive hypothesis) = {x : Dǫ
x ∈ λ(θ)∩

λ(ϕ)} = {x : Dǫ
x ∈ λ(θ ∧ ϕ)} (by definition 3).

• Ψ = θ ∨ ϕ so that N ǫ
Ψ = N ǫ

θ∨ϕ = N ǫ
θ ∪ N ǫ

ϕ (by
definition 6) = {x : Dǫ

x ∈ λ(θ)}∪{x : Dǫ
x ∈ λ(ϕ)}

(by the inductive hypothesis) = {x : Dǫ
x ∈ λ(θ)∪

λ(ϕ)} = {x : Dǫ
x ∈ λ(θ ∨ ϕ)} (by definition 3).

• Ψ = ¬θ so that N ǫ
Ψ = N ǫ

¬θ = (N ǫ
θ )c (by defi-

nition 6) = {x : Dǫ
x ∈ λ(θ)}c (by the inductive

hypothesis) = {x : Dǫ
x 6∈ λ(θ)} = {x : Dǫ

x ∈
λ(θ)c} = {x : Dǫ

x ∈ λ(¬θ)} (by definition 3).

Now by definition 4 we have that ∀θ ∈ LE µθ(x) =∑
F∈λ(θ) mx(F ) =

∑
F∈λ(θ) δ({ǫ : Dǫ

x = F}) (by defi-
nition 5) = δ({ǫ : Dǫ

x ∈ λ(θ)}) = δ({ǫ : x ∈ N ǫ
θ }) (by

above).

For example, for Li ∈ LA N ǫ
Li

= {x : d(x, Pi) ≤ ǫ}.
Hence, µLi

(x) = ∆(d(x, Pi)) where ∆(ǫ) = δ([ǫ,∞)).

Theorem 1 shows a clear link between appropriateness
measures and Goodman and Nguyen’s characterisa-
tion of fuzzy set membership functions as single point
coverage functions of random sets [1], [2], [8].
Theorem 2. Restricted Consonance [7]
Let LE∧,∨ be those expressions in LE which can be
generated from LA using only the connectives ∧ and
∨. Then ∀θ ∈ LE∧,∨, ∀0 ≤ ǫ ≤ ǫ′ N ǫ

θ ⊆ N ǫ′
θ

Proof. Let LE∧,∨,(1) = LA and for k > 1 let
LE∧,∨,(k) = LE∧,∨,(k−1) ∪ {θ ∧ ϕ, θ ∨ ϕ : θ, ϕ ∈
LE∧,∨,(k−1)}. We now proceed by induction on k.
Limit Case: k = 1 For Li ∈ LA, since ǫ′ ≥ ǫ then
trivially N ǫ

Li
= {x : d(x, Pi) ≤ ǫ} ⊆ {x : d(x, Pi) ≤

ǫ′} = N ǫ′
Li

Inductive Step: Assume true for k For Ψ ∈
LE(k+1) either Ψ ∈ LE(k), in which case the result
holds trivially by the inductive hypothesis, or one of
the following holds for θ, ϕ ∈ LE(k):

• Ψ = θ ∧ ϕ: In this case N ǫ
Ψ = N ǫ

θ∧ϕ = N ǫ
θ ∩ N ǫ

ϕ

(by definition 6) ⊆ N ǫ′
θ ∩ N ǫ′

ϕ (by the inductive
hypothesis) = N ǫ′

Ψ (by definition 6).

• Ψ = θ ∨ ϕ: In this case N ǫ
Ψ = N ǫ

θ∨ϕ = N ǫ
θ ∪ N ǫ

ϕ

(by definition 6) ⊆ N ǫ′
θ ∪ N ǫ′

ϕ (by the inductive
hypothesis) = N ǫ′

Ψ (by definition 6).

3 Imprecise Descriptions of Real
Numbers

In this section we apply label semantics and prototype
theory to model inference from imprecise descriptions
of real numbers. Adopting random set neighbour-
hoods to represent extensions of concepts we will con-
sider what imprecise probabilities result from condi-
tioning given linguistic descriptions of a real variable.
This approach is grounded in a clear interpretation
of vague linguistic descriptions, in contrast to fuzzy
methods in which membership functions and conse-
quently probabilities of fuzzy events have no clear op-
erational semantics [4].

Here we take Ω = R and d(x, y) = ‖x− y‖ and we
consider descriptions based on number labels of the
following form:
Definition 7. Number Labels
We consider a set LA of number labels Li describ-
ing R with prototype sets Pi each corresponding to an
interval of R

The appropriateness measure for a number expres-
sions θ ∈ LE (generated as in definition 1) is defined
directly as the single point coverage function of N ǫ

θ as
in theorem 1. This allows us to relax the requirement
in label semantics that LA is finite.

Here we particularly consider appropriateness mea-
sures generated by two types of density δ; normal dis-
tributions and uniform distributions.

Let f(c, σ, ǫ) denote the normal density function with
mean c and standard deviation σ so that:

f(c, σ, ǫ) =
1√
2πσ

e−
(ǫ−c)2

2σ2

From this we can define a density δ as a normalised
normal density of the form:

δ(c, σ, ǫ) =
f(c, σ, ǫ)

1− k
where k =

∫ 0

−∞
f(c, σ, ǫ)dǫ

From this we also have that:

∆(c, σ, ǫ) =
erfc( ǫ−c

σ
√

2
)

erfc( −c
σ
√

2
)

where erfc is the complementary error function

erfc(x) =
2√
π

∫ ∞

x

e−t2dt

Now let µ
(c,σ)
θ (x) denote the appropriateness measure

for θ generated by a normalised normal distribution δ
with mean c and standard deviation σ. Figure 1 shows
the appropriateness measure for a number label with
prototypes Pi = [5, 7] based on a normalised normal
distribution with c = 2 and σ = 1.
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Figure 1: Appropriateness for label with prototypes
[5, 7] generated by a normalised normal distribution
with mean c = 2 and standard deviation σ = 1

Theorem 3. Let c ≤ c′ then for Li ∈ LA it holds
that:

∀x ∈ R,∀σ ∈ R µ
(c,σ)
Li

(x) ≤ µ
(c′,σ)
Li

(x)

Proof. It is sufficient to show that ∆(c, σ, ǫ) is an in-
creasing function of c. Let t = c

σ
√

2
and s = ǫ

σ
√

2

then:

∆(c, σ, ǫ) = h(t, s) =
erfc(s− t)
erfc(−t)

Hence it is sufficient to show that h is an increasing
function of t.

∂h

∂t
=

2e−(s−t)2

√
2erfc(t)

+
2erfc(s− t)e−t2

erfc(t)2
√

π
≥ 0

as required.

Another interesting case is where δ is the uniform dis-
tribution on an interval [k, r] for r > k ≥ 0. This
results in trapezoidal (or triangular) appropriateness
measures. In this case we have:

δ(k, r, ǫ) =





0 : ǫ < k
1

r−k : ǫ ∈ [k, r]
0 : ǫ > r

and ∆(k, r, ǫ) =





1 : ǫ < k
r−ǫ
r−k : ǫ ∈ [k, r]
0 : ǫ > r

Now let µ
(k,r)
θ (x) denote the appropriateness measure

for θ generated by a uniform distribution δ on [k, r].
Figure 2 shows the appropriateness for a number label
with prototypes [a, b] based on a uniform δ.

a b
r r

k k

1

Figure 2: Appropriateness for label with prototypes
[a, b] generated by a uniform distribution δ on [k, r]

Theorem 4. Let 0 ≤ k < r, 0 ≤ k′ < r′, k ≤ k′, and
r ≤ r′ then for Li ∈ LA it holds that:

∀x ∈ R µ
(k,r)
Li

(x) ≤ µ
(k′,r′)
Li

(x)

Proof. Trivially from the above it holds that ∀ǫ ≥ 0
∆(k, r, ǫ) ≤ ∆(k′, r′, ǫ) and hence ∆(k, r, d(x, Pi)) ≤
∆(k′, r′, d(x, Pi)) as required.

4 Information from Imprecise
Descriptions

In this section we discuss the issue of conditioning
given information in the form of imprecise descrip-
tions of a real valued variable x. In other words,
suppose we learn that ‘x is high’ or ‘x is high ∧
¬very high’ or more generally ‘x is θ’, what can we
infer from such information about the value of x? To
answer this question it is necessary to have a clear
operational interpretation of statements ‘x is θ’. For
example, Zadeh [14] proposes that such statements
define a possibility distribution on x when imprecise
descriptions are represented by fuzzy sets. However,
such a claim remains unconvincing while there is no
clear operational meaning for fuzzy set membership
functions. For the prototype model proposed in this
paper a statement ‘x is θ’ is clearly interpreted as
x ∈ N ǫ

θ . In other words, an imprecise description of x
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restricts x to a random set neighbourhood generated
by that description. Consequently, given the infor-
mation ‘x is θ’ the remaining uncertainty concerning
the value of x has two distinct sources. Firstly, for a
specific value of ǫ, N ǫ

θ is imprecise in the sense that
typically it is a union of intervals of R rather than a
precise value. Secondly, the value of the threshold ǫ
is uncertain resulting in uncertainty about the defini-
tion of N ǫ

θ . Here, we shall argue that in the absence
of any further information about x these two sources
of uncertainty naturally result in lower and upper cu-
mulative distributions. Furthermore, in the presence
of a known prior probability distribution on x, condi-
tioning on ‘x is θ’ results in a second order probability
distribution on the cumulative probabilities for x.

Definition 8. Upper and Lower Distributions
Given a real valued random variable x for which we
know only that ‘x is θ’ for some θ ∈ LE we define
upper and lower cumulative distribution functions for
the probability that x ≤ y as follows:

F (y|θ) = δθ({ǫ : N ǫ
θ ⊆ (−∞, y]}) and

F (y|θ) = δθ({ǫ : N ǫ
θ ∩ (−∞, y] 6= ∅}) and where

δθ(ǫ) =





δ(ǫ)R
ǫ:Nǫ

θ
6=∅ δ(ǫ)dǫ

: N ǫ
θ 6= ∅

0 : otherwise

In definition 8 δθ is the posterior density on ǫ resulting
from updating δ based on the information that N ǫ

θ 6=
∅. A possible justification for this normalisation of
δ is that if we learn ‘x is θ’ this would intuitively
imply that N ǫ

θ 6= ∅ since otherwise our information
would be contradictory. In other words, accepting the
assertion ‘x is θ’ implicitly implies accepting that the
threshold ǫ must be such that N ǫ

θ 6= ∅. Clearly such
conditioning is only possible if δ({ǫ : N ǫ

θ 6= ∅}) > 0
otherwise the lower and upper probabilities given in
definition 8 are undefined.

Theorem 5. For θ ∈ LE∧,∨ then ∀y ∈ R

F (y|θ) = sup{wµθ(x) : x ≤ y}
F (y|θ) = 1− sup{wµθ(x) : x > y}

where w =
1∫

ǫ:N ǫ
θ 6=∅

δ(ǫ)dǫ

Proof. Straightforward from theorem 2 and definition
8

Theorem 5 shows that for θ not involving negation
F (y|θ) and F (y|θ) are necessity and possibility mea-
sures respectively generated by the normalised possi-
bility distribution wµθ(x).

Corollary 1. Let F
(c,σ)

and F (c,σ) be the upper and
lower cumulative distributions as given in definition
8 and where δ is the normalised normal distribution
with parameters c and σ. Then ∀Li ∈ LA, ∀c ≤ c′,
∀σ ∈ R, ∀y ∈ R

F (c′,σ)(y|Li) ≤ F (c,σ)(y|Li) and

F
(c,σ)

(y|Li) ≤ F
(c′,σ)

(y|Li)

Proof. Straightforward from theorems 5 and 3

Corollary 2. Let F
(k,r)

and F (k,r) be the upper and
lower cumulative distributions as given in definition
8 and where δ is the a uniform distribution on [k, r].
Then ∀Li ∈ LA, 0 ≤ k < r, 0 ≤ k′ < r′, k ≤ k′, and
r ≤ r′, ∀y ∈ R

F (k′,r′)(y|Li) ≤ F (k,r)(y|Li) and

F
(k,r)

(y|Li) ≤ F
(k′,r′)

(y|Li)

Proof. Straightforward from theorems 5 and 4

Now suppose we have prior information that x is dis-
tributed according to density function p(x). In this
case if we learn ‘x is θ’ then we should generate a
posterior distribution by updating p(x) given the new
constraint that x ∈ N ǫ

θ . Let F (y|N ǫ
θ ) denote the cor-

responding updated cumulative distribution. How-
ever, the values of F (y|N ǫ

θ ) are uncertain given the
remaining uncertainty about the value of the thresh-
old ǫ. Hence, updating a prior distribution on x given
an imprecise description of x results in a second order
probability distribution as follows:

Definition 9. Second Order Distribution
Given a prior density p(x) for x we define a second
order cumulative distribution on the cumulative prob-
ability that x ≤ y as follows: ∀p ∈ [0, 1]

F̃y,θ(p) = δθ({ǫ : F (y|N ǫ
θ) ≤ p}) where

F (y|N ǫ
θ) =

∫ y

−∞
p(x|N ǫ

θ )dx and where

p(x|N ǫ
θ ) =





p(x)R
Nǫ

θ
p(x)dx

: x ∈ N ǫ
θ

0 : otherwise

If a precise posterior distribution is required condi-
tional on θ, then one possibility is to take the expected
value of posterior distributions given N ǫ

θ , as ǫ varies.

Definition 10. Expected Density
Given prior density p(x) for x we can define an ex-
pected density for x conditional on θ by taking the
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expected value of p(x|N ǫ
θ ) as ǫ varies:

p(x|θ) = Eδθ
(p(x|N ǫ

θ ))

Notice that the above is a clearly motivated definition
of conditional probability given imprecise linguistic
information, consistent with a random set and proto-
type theory view of vague concepts. This is a distinct
advantage over earlier work on the probability of fuzzy
events [13], in which definitions do not appear to be
linked to any underlying interpretation of fuzziness.

The following theorem shows that the expected cumu-
lative distribution obtained from definition 10 is con-
sistent with the lower and upper distributions given
in definition 8.

Theorem 6. For y ∈ R and θ ∈ LE, F (y|θ) ≤
F (y|θ) ≤ F (y|θ) where F (y|θ) =

∫ y

−∞ p(x|θ)dx =
Eδθ

(F (y|N ǫ
θ )).

Proof.

F (y|θ) =
∫ y

−∞
p(x|θ)dx =

∫ y

−∞

∫ ∞

0

p(x|N ǫ
θ )δθ(ǫ)dǫdx

=
∫ ∞

0

F (y|N ǫ
θ )δθ(ǫ)dǫ

=
∫

ǫ:N ǫ
θ∩(−∞,y] 6=∅

F (y|N ǫ
θ )δθ(ǫ)dǫ

≤
∫

ǫ:N ǫ
θ∩(−∞,y] 6=∅

δθ(ǫ)dǫ = F (y|θ)

Alternatively

F (y|θ) =
∫

ǫ:N ǫ
θ⊆(−∞,y]

F (y|N ǫ
θ )δθ(ǫ)dǫ+

∫

ǫ:N ǫ
θ 6⊆(−∞,y]

F (y|N ǫ
θ )δθ(ǫ)dǫ

=
∫

ǫ:N ǫ
θ⊆(−∞,y]

δθ(ǫ)dǫ +
∫

ǫ:N ǫ
θ 6⊆(−∞,y]

F (y|N ǫ
θ )δθ(ǫ)dǫ

≥
∫

ǫ:N ǫ
θ⊆(−∞,y]

δθ(ǫ)dǫ = F (y|θ)

Example 1. Consider the number label Li = about 2

for which Pi = {2}. Let δ(ǫ) =

{
1 : ǫ ∈ [0, 1]
0 : otherwise

then

the lower and upper cumulative distributions given the

information ‘x is about 2’ are as follows:

F (y|Li) =

{
0 : y ≤ 2
1− µLi

(y) : y > 2
and

F (y|Li) =





0 : y ≤ 1
µLi

(y) : 1 < y ≤ 2
1 : y > 1

and where

µLi
(y) =





0 : x < 1
x− 1 : x ∈ [1, 2]
3− x : x ∈ (2, 3]
0 : x > 3

Suppose we now further learn that x is distributed
according to a uniform distribution on [0, 10] then
we can infer a second order distribution the prob-
ability that x ≤ y as follows: Initially note that
N ǫ

Li
= [2− ǫ, 2 + ǫ] so that for ǫ ≤ 1

p(x|N ǫ
Li

) =

{
1
2ǫ : x ∈ [2− ǫ, 2 + ǫ]
0 : otherwise

and hence

F (y|N ǫ
Li

) =





1 : y > 2 + ǫ
y+ǫ−2

2ǫ : y ∈ [2− ǫ, 2 + ǫ]
0 : y < 2− ǫ

From this we obtain four cases of F̃y,Li
as follows:

For y < 1

∀p ∈ [0, 1] F̃y,Li
(p) = 1

For 1 ≤ y ≤ 2 (see figure 3)

F̃y,Li
(p) =

{
1 : p > y−1

2
2−y
1−2p : p ≤ y−1

2

For 2 < y ≤ 3 (see figure 4)

F̃y,Li
(p) =





0 : p < y−1
2

2p−y+1
2p−1 : y−1

2 ≤ p < 1
1 : p = 1

For y > 3

F̃y,Li
(p) =

{
0 : p < 1
1 : p = 1

The expected density p(x|Li) is given by (figure 5):

p(x|Li) =





0 : x < 1
− 1

2 ln(2− x) : 1 ≤ x < 2
− 1

2 ln(x− 2) : 2 < x ≤ 3
0 : x > 3

Figure 6 shows the upper and lower cumulative distri-
butions given ‘x is about 2’ together with the expected
cumulative distribution assuming that x is distributed
according to a uniform distribution on [0, 10].
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Figure 3: F̃y,Li
for 1 < y ≤ 2
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Figure 5: Expected density for x conditional on Li

5 Information from Imprecise Data

In this section we consider inference on the basis of
data taking the form of imprecise descriptions of real

 
0 1 2 3 4

 

0

0.2

0.4

0.6

0.8

1.0
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F (y|Li)

Figure 6: Lower and upper cumulative distribution
F (y|Li), F (y|Li) together with expected cumulative
distribution F (y|Li) assuming a uniform prior on x

values. Let x be a real valued random variable, and
let DB = {θ1, . . . , θN} where θi ∈ LE be a set of
independently generated descriptions of x. Given DB
we define lower and upper cumulative distributions for
x as follows:

Definition 11.

∀y ∈ R F (y|DB) =
1
N

N∑

i=1

F (y|θi)

F (y|DB) ==
1
N

N∑

i=1

F (y|θi)

Definition 12. Given a density p(x) we can define
a expected density cumulative distribution conditional
on DB according to:

∀x ∈ R p(x|DB) =
1
N

N∑

i=1

p(x|θi) and

∀y ∈ R F (y|DB) =
1
N

N∑

i=1

F (y|θi)

The underlying intuition behind these definitions is as
follows: In order to estimate x one approach would be
to randomly select a description θi from DB and then
condition on the information ‘x is θi’. Assuming that
each element of DB is equally likely to be selected (i.e.
has equal weighting) then the expected information
we would learn about x is as given in definitions 11
and 12.

One natural example of this approach is where we
have an independent sample {x1, . . . , xN} of values of
x for which we are assuming there is an associated

284 Jonathan Lawry, Inés González-Rodŕıguez, Yongchuan Tang



uncertain error ǫ with density δ, so that each xi effec-
tively identifies a random set interval [xi − ǫ, xi + ǫ].
In this case we define DB = {L1, . . . , LN} where
Li is a number label with prototype Pi = {xi} (i.e.
Li = about xi ).
Example 2. A sample of 100 values was drawn at
random from the normal mixture distribution g =
N(2,3)+N(8,0.5)

2 . DB was then taken to correspond to
the set of labels Li with prototype Pi = {xi} for each
value xi in the sample. δ was assumed to be a uni-
form distribution on [k, r] where k and r are effec-
tively treated as parameters in the estimating of dis-
tributions from DB.

To compare the upper and lower cumulative distribu-
tions obtained from DB with that of the generating
distribution g we introduce two measure as follows:

IE :=
1
N

N∑

i=1

χ[F (xi|DB),F (xi|DB)](G(xi))

where χ[F (xi|DB),F (xi|DB)] is the characteristic func-
tion for the interval [F (xi|DB), F (xi|DB)] and G
is the cumulative distribution function for density
g. Hence, IE provides a measure of the extent to
which the generating cumulative density G is con-
tained within the estimated upper and lower envelope
across the original sample.

We also evaluate the average range of the upper and
lower distribution envelope according to:

Range =
1
N

N∑

i=1

(F (xi|DB)− F (xi|DB))

Table 1 shows the IE and Range values for a number
of different k, r values. Notice that by corollary 2 it
follows immediately that as k and r increase the IE
values decrease. Figure 7 shows the upper and lower
envelope together with G for k = 0 and r = 2.2, these
corresponding to the values in table 1 for which IE is
0 and Range is minimal.

Table 2 compares p(x|DB) with g(x) according to
MSE defined as follows:

MSE =
1
N

N∑

i=1

(p(xi|DB)− g(xi))2

Figure 8 shows p(x|DB) and g(x) for k = 0.4, r = 0.5
these corresponding to the values in table 2 with lowest
MSE.

6 Summary and Conclusions

The prototype theory interpretation of label seman-
tics has been introduced as a possible model for im-

Table 1: Table showing IE and Range for different
values of k and r

k r IE Range
0.7 1.1 0.1 0.2926
0.8 1.1 0.09 0.3036
0.9 1.1 0.07 0.31324
1 1.1 0.03 0.3221

0.8 1.2 0.04 0.3122
0.9 1.2 0.02 0.3213
1 1.2 0.01 0.3298

1.1 1.2 0 0.3584
0.9 1.3 0.01 0.3286
1 1.3 0 0.3367

0.9 1.4 0.01 0.3286
0.7 1.4 0.02 0.3171
0.8 1.4 0 0.3245
0.6 1.5 0.02 0.31413
0.7 1.5 0 0.3245
0.6 1.6 0 0.3212
0.5 1.7 0 0.3176
0.4 1.8 0 0.3135
0.3 1.9 0 0.3087
0.2 2 0 0.3034
0.1 2.1 0 0.2979
0 2.2 0 0.2920

x
K6 K4 K2 0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Figure 7: Upper and lower cumulative distributions
based on uniform δ with k = 0 and r = 2.2, com-
pared with cumulative distribution for the generating
distribution g (dashed line)

precise descriptions of real numbers. Based on this in-
terpretation it has been shown that conditioning given
information in the form ‘x is θ’, for θ ∈ LE, naturally
results in imprecise probabilities. Also, within this
framework, we have proposed a possible approach to
inference from data in the form of imprecise descrip-
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Table 2: Table showing MSE for different values of k
and r

k r MSE
0.1 0.2 0.0039
0.1 0.3 0.00229
0.2 0.3 0.001689
0.1 0.4 0.001596
0.2 0.4 0.001224
0.3 0.4 0.001005
0.1 0.5 0.00119
0.2 0.5 0.000929
0.3 0.5 0.00077
0.4 0.5 0.000698
0.1 0.6 0.000968
0.2 0.6 0.000817
0.3 0.6 0.000733
0.4 0.6 0.0007535
0.5 0.6 0.000925

x
K6 K4 K2 0 2 4 6 8 10 12

0.1

0.2

0.3

0.4

Figure 8: Density estimate based on uniform δ with
k = 0.4 and r = 0.5 (dashed line), compared with
generating distribution g

tions of a real variable. This naturally suggests an
algorithm of estimating distributions given imprecise
data values.
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Abstract
In many applications, there is a need to model and rea-
son with imprecise probabilistic knowledge. In this paper,
we discuss how to model imprecise probabilistic knowl-
edge obtained from experiments in biological sciences on
enzymes for rapid screening of potential substrate or in-
hibitor structures. Each imprecise probabilistic knowledge
base is modelled as a probabilistic logic program (PLP).
To predict a meaningful substrate structure, we have de-
veloped a framework (and a tool) in which a user (biosci-
entist) can query against a PLP (or a collection of PLPs),
can examine how relevant a PLP is for answering a query,
and can select a query result that is more satisfactory. This
framework is implemented by integrating an optimizer in
MatLab to solve the optimization problems subject to lin-
ear constraints. A preliminary version of the tool was
demonstrated in the ECAI08 Demo session. Experimental
results on evaluating the tool with probabilistic knowledge
on enzymes for rapid screening of potential substrates or
inhibitor structures demonstrate that this tool has a great
potential to be used in many similar areas for the initial
screening of compound structures in drug discovery.
Keywords. Imprecise probabilistic knowledge, predic-
tion, substrate structure, enzymes, rapid screening.

1 Introduction
Most of the knowledge that is used, for example, for ad-
vanced knowledge base systems or for cognitive modeling
is uncertain, incomplete, imprecise and subject to changes.
Very often, this uncertainty and incompleteness is charac-
terized by probabilities, especially, when the knowledge
concerned is elicited from experiments. Therefore, there
is a need to develop adequate theories and frameworks to
model and reason with such probabilistic knowledge.

Probabilistic logic programming is a framework to repre-
sent and reason with imprecise (conditional) probabilis-
tic knowledge. An agent’s knowledge is represented by a
probabilistic logic program (PLP) which is a set of (con-
ditional) logical formulae with probability intervals. The
impreciseness of the agent’s knowledge is explicitly repre-

sented by assigning a probability interval (or a single prob-
ability) to every logical formula indicating that the proba-
bility of the formula shall be in the given interval. Proba-
bilistic logic programming has been used to represent and
reason with probabilistic knowledge in many real world
applications, e.g., [2, 5, 9]. Among various types of proba-
bilistic logic programming, conditional probabilistic logic
programming (PLP for short) [7, 8] is particularly tailored
to represent conditional events with probabilities of the
form (C|A1 ∧ ... ∧ An)[l, u] where Ais are conditions, C
is a conclusion. (C|A1∧ ...∧An)[l, u] is interpreted as the
probability of conditional event C|A1 ∧ ...∧An falling in
interval [l, u].

To illustrate the use of conditional probabilistic logic pro-
gramming, let us consider medical treatments for certain
medical conditions (diseases), such as a patient is diag-
nosed with liver cancer. There are various types of treat-
ments for cancers, such as, (A) surgery only to remove
the organ; (B) surgery plus Radiotherapy; (C) Radiother-
apy only, depending on the stage of the cancer, the health
condition of the patient and possibly other factors. Then
statistical summaries from clinical trials studied on the re-
lationship between mortality and treatments can be repre-
sented as conditional events shown below.

Mortality(X, Y ear10)|LiverCancer(X, Y ear0) ∧
CancerStage(X, early) ∧ Surgery(X, Y ear0) ∧
RT (X; Y ear0)[0.223; 0.225]

This piece of imprecise probabilistic knowledge says that
from this trial (or the meta-analysis of many trials), the
probability of a patient’s 10-year mortality, given that the
patient is in his/her early liver cancer stage, undergoing a
surgery plus Radiotherapy, is in between 0.223 to 0.225.

Conditional events like above cannot always be simply in-
terpreted as cause-effect relationships. For the above ex-
ample, it is not that the surgery and RT caused a patient
to die in 10-years, rather, it says that if those actions are
taken place (given that the patient’s liver cancer stage is
early), then what the probability of this patient being dead
in 10-years could be. Of course, if no action was taken
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place, the probability of the patient being dead in 10-years
would be much greater than 22.5%. Therefore, condi-
tional probabilistic logic programming offers a much more
suitable framework for capturing imprecise probabilistic
scientific knowledge of this kind than other approaches.
Given a PLP and a query against the PLP, traditionally, a
probability interval is returned as the answer. This inter-
val implies that the true probability of the query shall be
within the given interval. However, when this interval is
too wide, it provides no useful information. For instance,
if a PLP contains knowledge {(fly(X)|bird(X)[0.98, 1],
(bird(X)|magpie(X))[1, 1]}, then the answer to the
query Can a magpie fly? (i.e., ?(fly(t)|magpie(t))) is
a trivial bound [0, 1].

One way to enhance the reasoning power of a PLP is to ap-
ply the maximum entropy principle [6]. From this princi-
ple, a single probability distribution is selected and it is as-
sumed to be the most acceptable one for the query among
all possible probability distributions. As a consequence,
a precise probability is given for a query even when the
agent’s original knowledge is imprecise. In the above ex-
ample, by applying the maximum entropy principle, 0.98
is returned as the answer for the query. Intuitively, ac-
cepting such a precise probability from (a prior) impre-
cise knowledge can be risky. When an agent’s knowledge
is rich enough then a single probability could be reliable,
however, when an agent’s knowledge is (very) imprecise,
an interval is more appropriate than a single probability.

Therefore, how useful a probabilistic logic program (PLP)
is to answering a given query? This question is important
in two fold: first, it helps to analyze if a PLP is adequate
to answer a query and second, if a PLP is sufficiently rele-
vant to a query, then shall a single probability be obtained
or shall a probability interval be more suitable? To answer
these questions, in [18], we proposed two concepts, the
measure of ignorance and the measure of degree of satis-
faction, w.r.t. a PLP and a query. The former analyzes the
impreciseness of the PLP w.r.t. the query, and the latter
measures which (tighter) interval is sufficiently informa-
tive to answer the query.

In this paper, we present our investigation about how to use
PLPs to represent and reason with imprecise probabilistic
knowledge obtained from experiments, especially on sub-
strates prediction in biomedical sciences. We first discuss
the importance of evaluating the relevance of a knowledge
base w.r.t a query, focusing on how reliable a query result
returned from querying a PLP could be, knowing that the
knowledge contained in the PLP is imprecise. To quanti-
tatively measure the reliability of a query result, we in-
troduce our formal analysis of ignorance and degree of
satisfaction about a query result obtained from the PLP
[18]. We then present our implementation of a proba-
bilistic querying system which takes PLPs as input knowl-
edge bases and produces probabilistic results for queries

(against a chosen PLP). The results are either in the form
of pure probabilistic terms (an interval or a maximum en-
tropy), or the maximum entropy plus its ignorance, or an
interval plus its degree of satisfaction. The first form of
output is the traditional type of output from probabilistic
logic programming, whilst the latter two are our exten-
sions – adding extra information about a query result to
tell a user how reliable this result could be when using this
particular knowledge base.

We apply our theory and system to enzymes for rapid pre-
diction of potential substrate or inhibitor structures. We
conducted two sets of experiments, one is on the human
enzyme galactokinase, which uses galactose as a substrate,
and the other is on substrate prediction for NQO1. The ex-
perimental results demonstrate that using imprecise proba-
bilistic knowledge as a first step in screening for substrates
can be very useful and significant in many similar applica-
tions, since this initial prediction could allow bioscientists
to selectively experiment on more hopeful candidates, sav-
ing both time and money in the whole process.

This paper is organized as follows. In Section 2, we briefly
review probabilistic logic programming. In Section 3, we
describe how to analyze the quality of knowledge in a PLP
and in Section 4 we introduce a general theory and an in-
stantiation on measuring the ignorance and the degree of
satisfaction w.r.t. a PLP and a query. In Section 5, we
describe our system architecture and efficient implemen-
tation. In Section 6, we illustrate our framework with two
case studies in bioscience. Finally, we conclude the paper
in Section 7.

2 Preliminary

We briefly review conditional probabilistic logic program-
ming here [7, 8].

We use Φ to denote the finite set of predicate symbols, V
to denote the set of object variables, and B to denote the
set of bound constants which describe the bound of prob-
abilities, and bound constants are in [0,1]. We use a, b, . . .
to denote constants from Φ and X,Y . . . to denote object
variables from V . An object term t is a constant from
Φ or an object variable from V . An atom is of the form
p(t1, . . . , tk), where p is a predicate symbol and t1, . . . , tk
are object terms. We use Greek letters φ, ϕ, ψ, . . . to de-
note events (or formulae) which are obtained from atoms
by logic connectives ∧,∨,¬ as usual. A conditional event
is of the form (ψ|φ) where ψ and φ are events, and ϕ is
called the antecedent and ψ is called the consequent. A
probabilistic formula, denoted as (ψ|ϕ)[l, u], means that
the probability of conditional event ψ|ϕ is between l and
u, where l, u are bound constants. A set of probabilistic
formulae is called a conditional probabilistic logic pro-
gram (PLP), a PLP is denoted as P in the rest of the paper.

A ground term, (resp. event, conditional event, probabilis-
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tic formula, or PLP) is a term, (resp. event, conditional
event, probabilistic formula, or PLP) that does not contain
any object variables in V .

All the constants in Φ form the Herbrand universe, denoted
as HUΦ, and the Herbrand base, denoted as HBΦ, is the
finite nonempty set of all events constructed from the pred-
icate symbols in Φ and constants in HUΦ. A subset I of
HBΦ is called a possible world and IΦ is used to denote
the set of all possible worlds over Φ. A function σ that
maps each object variable to a constant is called an as-
signment. It is extended to object terms by σ(c) = c for
all constant symbols from Φ. An event ϕ satisfied by I
under σ, denoted by I |=σ ϕ, is defined inductively as:
• I |=σ p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ I;
• I |=σ φ1 ∧ φ2 iff I |=σ φ1 and I |=σ φ2;
• I |=σ φ1 ∨ φ2 iff I |=σ φ1 or I |=σ φ2;
• I |=σ ¬φ iff I 6|=σ φ

An event ϕ is satisfied by a possible world I , denoted by
I |=cl ϕ, iff I |=σ ϕ for all assignments σ. An event ϕ is
a logical consequence of event φ, denoted as φ |=cl ϕ, iff
all possible worlds that satisfy φ also satisfy ϕ.

In this paper, we use > to represent (ground) tautology,
and we have that I |=cl > for all I and all assignments σ.
And we use ⊥ to denote ¬>.

If Pr is a function (or distribution) on IΦ (i.e., as IΦ

is finite, Pr is a mapping from IΦ to the unit interval
[0,1] such that

∑
I∈IΦ

Pr(I) = 1), then Pr is called
a probabilistic interpretation. For an assignment σ, the
probability assigned to an event ϕ by Pr, is denoted as
Prσ(ϕ) where Prσ(ϕ) =

∑
I∈IΦ,I|=σϕ Pr(I). When

ϕ is ground, we simply written it as Pr(ϕ). When
Prσ(φ) > 0, the conditional probability, Prσ(ψ|φ), is
defined as Prσ(ψ|φ) = Prσ(ψ ∧ φ)/Prσ(φ). When
Prσ(φ) = 0, Prσ(ψ|φ) is undefined. Also, when (ψ|φ) is
ground, we simply write Pr(ψ|φ).

A probabilistic interpretation Pr satisfies or is a proba-
bilistic model of a probabilistic formula (ψ|φ)[l, u] un-
der assignment σ, denoted as Pr |=σ (ψ|φ)[l, u], iff l ≤
Prσ(ψ|φ) ≤ u or Prσ(φ) = 0. A probabilistic interpreta-
tion Pr satisfies or is a probabilistic model of a probabilis-
tic formula (ψ|φ)[l, u] iff Pr satisfies (ψ|φ)[l, u] under all
assignments. A probabilistic interpretation Pr satisfies or
is a probabilistic model of a PLP P iff for all assignment
σ, ∀(ψ|φ)[l, u] ∈ P, Pr |=σ (ψ|φ)[l, u]. A probabilistic
formula (ψ|ϕ)[l, u] is a consequence of PLP P , denoted
by P |= (ψ|ϕ)[l, u], iff all probabilistic models of P sat-
isfy (ψ|ϕ)[l, u]. A probabilistic formula (ψ|ϕ)[l, u] is a
tight consequence of P , denoted by P |=tight (ψ|ϕ)[l, u],
iff P |= (ψ|ϕ)[l, u], P 6|= (ψ|ϕ)[l, u′], P 6|= (ψ|ϕ)[l′, u]
for all l′ > l and u′ < u (l′, u′ ∈ [0, 1]). It is worth noting
that if P |= (φ|>)[0, 0] then P |=tight (ψ|φ)[1, 0] where
[1, 0] stand for the empty set.

A query is of the form ?(ψ|φ) or ?(ψ|φ)[l, u], where ψ and

φ are ground events and l, u ∈ [0, 1]. For query ?(ψ|φ),
by the tight consequence relation, a bound [l, u] is given
as the answer, such that P |=tight (ψ|φ)[l, u]. For query
?(ψ|φ)[l, u], a bound [l, u] is given by the user. A PLP
returns True (or Yes) if P |= (ψ|φ)[l, u] and False (or No)
if P 6|= (ψ|φ)[l, u] [8].

The principle of maximum entropy is a well known
techniques to represent probabilistic knowledge. En-
tropy quantifies the indeterminateness inherent to a dis-
tribution Pr by H(Pr) = −ΣI∈IΦPr(I) log Pr(I).
Given a logic program P , the principle of maxi-
mum entropy model (or me-model), denoted by me[P ],
is defined as: H(me[P ]) = max H(Pr) =
maxPr|=P −ΣI∈IΦPr(I) log Pr(I)

me[P ] is the unique probabilistic interpretation Pr that is
a probabilistic model of P and that has the greatest entropy
among all the probabilistic models of P .

Let P be a ground PLP, we say that (ψ|ϕ)[l, u] is a me-
consequence of P , denoted by P |=me (ψ|ϕ)[l, u], iff P
is unsatisfiable, or me[P ] |= (ψ|ϕ)[l, u].

We say that (ψ|ϕ)[l, u] is a tight me-consequence of P ,
denoted by P |=me

tight (ψ|ϕ)[l, u], iff either P is unsatisfi-
able, l = 1, u = 0, or P |= ⊥ ← ϕ, l = 1, u = 0, or
me[P ](ϕ) > 0 and me[P ](ψ|ϕ) = l = u.

3 A Formal Analysis of PLPs
In information theory, the information entropy is a mea-
sure of the uncertainty associated with a random variable.
Entropy quantifies information in a piece of data. Infor-
mally, − log p(X = xi) means the degree of surprise1

when one observes that the random variable turns out to be
xi. In another word, − log p(X = xi) reflects the infor-
mation one receives from the observation. The entropy is
an expectation of the information one may receive from a
random domain by observing random events. Inspired by
this, we define a knowledge entropy, which reflects how
much an agent knows the truth value of ψ given φ prior
any observations. Informally, more surprised an agent is
by the observation, more knowledge it learns from the ob-
servation, and thus, less knowledge it has about ψ given φ
before observing ψ or ¬ψ given φ.

Definition 1 Let P be a PLP, and (ψ|φ) be a conditional
event. Suppose that Pr is a probabilistic model for P ,
then the knowledge entropy of inferring ψ from φ under
Pr, denoted as KPr(ψ|φ), is defined as KPr(ψ|φ)

= 1+
1

2
(Pr(ψ|φ) log Pr(ψ|φ)+Pr(¬ψ|φ) log Pr(¬ψ|φ))

It is obvious that KPr(ψ|φ) = KPr(¬ψ|φ) and
KPr(ψ|φ) ∈ [0, 1]. Trivially, KPr(φ|φ) = 1 and
KPr(¬φ|φ) = 1, since from Pr, the truth values of an
event and its negation are known, when the event is given.

1http://en.wikipedia.org/wiki/Self-information
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By extending the above definition, we can define a knowl-
edge measurement for a PLP.

Definition 2 Let P be a PLP, and (ψ|φ) be a conditional
event. Suppose that Pr is a probabilistic model for P and
Pr(φ) > 0, then the knowledge measurement KP (ψ|φ) is
defined by:

minKP (ψ|φ) = minPr|=P KPr(ψ|φ)
maxKP (ψ|φ) = maxPr|=P KPr(ψ|φ)
KP (ψ|φ) = [minKP (ψ|φ),maxKP (ψ|φ)]

The measurement KP (ψ|φ) is used to characterize the
usefulness of knowledge contained in PLP P for infer-
ring ψ when knowing or observing φ. When ψ or ¬ψ
can be inferred from φ under P , P contains all the nec-
essary knowledge for inferring ψ given φ, and so we have
minKP (ψ|φ) = 1. When knowledge in P excludes the
possibility that the probability of ψ (or¬ψ) may be 1 given
φ, i.e., P ∪ {(ψ|φ)[1, 1]} (or P ∪ {(ψ|φ)[0, 0]}) is unsat-
isfiable, then the knowledge contained in P can not fully
support ψ given φ, so maxKP (ψ|φ) < 1. Specifically, if
it can not be inferred that ψ is more (or less) likely to be
true than ¬ψ (i.e. the probability of ψ given φ is bigger (or
smaller) than ¬ψ given φ), then minKP (ψ|φ) = 0.

We can define a partial order ¹ over the set {[x, y]|x, y ∈
[0, 1]} as [a, b] ¹ [c, d] iff a ≥ c, b ≤ d, and [a, b] ≺
[c, d] iff [a, b] ¹ [c, d] and a > c or b < d. We say a
PLP P is more precise than P ′ about ψ|φ, if KP (ψ|φ) ¹
KP ′(ψ|φ), denoted as P ¹k

(ψ|φ) P ′.

If minKP (ψ|φ) 6= maxKP (ψ|φ) given P , then the
knowledge contained in P is not sufficient to decide the
probability of ψ given φ, that is, the knowledge contained
in P about inferring ψ given φ is imprecise. In order to
infer the actual probability of ψ given φ under P , we need
more knowledge.

Proposition 1 Let P and P ′ be two PLPs. If P |= P ′ then
P ¹k

(ψ|φ) P ′ for any conditional event (ψ|φ).

This proposition suggests that the consequence relation
|= considers all statements in the PLP while the knowl-
edge measurement focuses only on the knowledge about
ψ given φ.

In the view of knowledge entropy, reasoning under the
maximum entropy principle implicitly introduces some
extra knowledge to enhance the reasoning power of PLP.
We should be aware that although this assumption seems
intuitive, it may be wrong, as shown below.

Example 1 Let P1 = {(headUp(X)|toss(X))
[0.5, 0.5]}, P2 = {(headUp(X)|toss(X)) [0, 1]} be
two PLPs. Here, P1 states that tossing a fair coin may
result in head up with probability 0.5, however, in P2, we
do not know whether the coin is fair.

In this example, the knowledge in P1 is richer than
that in P2 since from P1 we know the coin is fair.
With the maximum entropy principle, we get that
P1 |=me (headUp(coin)|toss(coin))[0.5, 0.5], P2 |=me

(headUp(coin)|toss(coin))[0.5, 0.5]. This result sug-
gests that the difference between P1 and P2 is ig-
nored under the maximum entropy reasoning. By cal-
culating the knowledge entropy of P1 and P2, we
have KP1(headUp(coin)|toss(coin)) = [0, 0] and
KP2(headUp(coin)|toss(coin)) = [0, 1]. Thus we know
that P1 is more precise than P2. Obviously, the conclusion
(headUp(coin)|toss(coin))[0.5, 0.5] is more acceptable
under P1 than under P2.

4 Ignorance and Degree of Satisfaction
The knowledge measurement defined above is not suf-
ficient either. Intuitively, the knowledge measurement
KP (ψ|φ) indicates the ignorance about the conditional
event (ψ|φ). Unfortunately, such an interval cannot suf-
ficiently reflex the ignorance about (ψ|φ). This is not sur-
prising, since KP (ψ|φ) is determined only by the tight
probability bound of the conditional event (ψ|φ), and
other knowledge is not considered in KP (ψ|φ).

Example 2 Let a PLP P be defined as

P =





(fly(X)|bird(X))[0.9, 1],
(bird(X)|magpie(X))[1, 1]
(sickMagpie(X)|magpie(X))[0, 0.1],
(magpie(X)|sickMagpie(X))[1, 1]





From P , we can infer that

P |=tight (fly(t)|magpie(t))[0, 1],
P |=tight (fly(t)|sickmagpie(t))[0, 1],
P |=me

tight (fly(t)|magpie(t))[0.9, 0.9],
P |=me

tight (fly(t)|sickMagpie(t))[0.9, 0.9].

Here, we have KP (fly(t)|sickmagpie(t)) =
KP (fly(t)|magpie(t)). However, since the propor-
tion of sick magpies in birds is smaller than the proportion
of magpies in birds, the knowledge about birds can
fly should be cautiously applied to sick magpies than
magpies. In another word, more than 90% birds can fly
is more about magpies than sick magpies. Therefore,
accepting that 90% magpies can fly is more rational
than accepting that 90% sick magpies can fly. However,
knowledge measurement cannot differentiate this. Below,
we introduce two measures to overcome this weakness.
These two measures are the instantiated measures from
the general framework for analyzing and reasoning with
imprecise PLPs proposed in [18].

In probabilistic theory and information theory, how to
measure the distance between probability distributions is a
major topic. One of the most common measures for com-
paring probability distributions is the KL-divergence.
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Definition 3 Let Pr and Pr′ be two probability distribu-
tions over the same set IΦ. The KL-divergence between
Pr and Pr′ is defined as:

KL(Pr‖Pr′) = −ΣI∈IΦPr(I) log
Pr′(I)

Pr(I)

It is worth noting that KL-divergence is asymmetric. KL-
divergence is also called relative entropy.2 An important
conclusion is that H(Pr) = KL(Pr||Prunif ), where
Prunif is the uniform distribution.

From the KL-divergence, we can measure the amounts
of the information that should be received to believing
lower and upper bounds for (ψ|φ) other than the proba-
bility given by maximum entropy.

νpos
P,(ψ|φ)(v) = min

Pr|=P,Pr(ψ|φ)=v
KL(Pr||me[P ]),

where v ≥ me[P ]
νneg

P,(ψ|φ)(v) = min
Pr|=P,Pr(ψ|φ)=v

KL(Pr||me[P ]),

where v ≤ me[P ]

dispos
P,(ψ|φ)(u, v) = |νpos

P,(ψ|φ)(u)− νpos
P,(ψ|φ)(v)|

disneg
P,(ψ|φ)(u, v) = |νneg

P,(ψ|φ)(u)− νneg
P,(ψ|φ)(v)|

Definition 4 Let P be a PLP and (ψ|φ) be a conditional
event. Suppose that P |=tight (ψ|φ)[l, u] and P |=me

tight

(ψ|φ)[pme, pme], then we have that:

SATKL
P ((ψ|φ)[a, b]) =




0.5 ∗ (
dis

pos
P,(ψ|φ)(pme,min(u,b))

dis
pos
P,(ψ|φ)(pme,u)

+
dis

neg
P,(ψ|φ)(pme,max(a,l))

dis
neg
P,(ψ|φ)(pme,l)

),

if pme ∈ [a, b]
0, otherwise

It is proved in [18] that SATKL
P (ψ|φ)[a, b] can be inter-

preted as the second order probability that the actual prob-
ability of (ψ|φ) falls in the interval [a, b].

Example 3 Let P be a PLP:

P =





(fly(X)|bird(X))[0.9, 1]
(bird(X)|magpie(X))[1, 1]
(magpie(X)|sickmagpie(X))[1, 1]





Let two queries be ?(fly(t)|magpie(t)) and
?(fly(t)|sickmagpie(t)). The we have (c.f. [18])

P |=tight (fly(t)|magpie(t))[0, 1],
P |=me

tight (fly(t)|magpie(t))[0.9, 0.9] and
P |=tight (fly(t)|sickmagpie(t))[0, 1],
P |=me

tight (fly(t)|sickMagpie(t))[0.9, 0.9].

So, we cannot differentiate magpies from sick magpies in
their ability of flying, although sick magpies are more a
special kind of magpies, and therefore they are less likely

2It should be noted that KL(Pr‖Pr′) is undefined if Pr′(I) = 0
and Pr(I) 6= 0. This means that Pr has to be absolutely continuous
w.r.t. Pr′ for KL(Pr‖Pr′) to be defined.

to be able to fly than magpies. In contract, in our frame-
work, we have SATKL

P ((fly(t)|magpie(t))[0.8, 1]) =
0.58, and SATKL

P ((fly(t)|sickmagpie(t))[0.8, 1]) =
0.53 for two queries ?(fly(t)|magpie(t))[0.8, 1] and
?(fly(t)|sickmagpie(t))[0.8, 1]. By comparing their KL
degrees of satisfaction, it is clear that magpies are more
likely able to fly than sick magpies.

5 A System for Answering Queries
5.1 Efficient implementation

To efficiently return a query result given a PLP, we imple-
mented the efficient algorithms proposed in [6, 8]. Using
these algorithms, a PLP can be translated into a liner or
nonlinear optimization problem. We implemented these
algorithms in Java and solved the underlying optimization
problem using a component in Matlab. In addition, we
also implemented the calculation of ignorance and degree
of satisfaction with the algorithms given below. These al-
gorithms rely on the algorithms provided in [6, 8] as well
as the software Matlab to optimize a PLP.

Algorithm 1 (KLIgnorance)
Input: PLP P and a ground query Q =?(ψ|φ)
Output: Ignorance value for Q

1. IFP is unsatisfiable THEN return 1

2. IFP |=tight (φ|>)[0, 0] THEN return 1

3. Compute the tight bound [l, u] for (ψ|φ) by Algorithm
Tight 0 Consequence in Fig. 5. in [6].

4. Compute the simplified PLP D index sets R and associate
numbers ar and optimal solution y?

r (r ∈ R) by Algorithm
Tight me Consequence in Fig. 7. in [6].

5. Compute the optimal value igneg of the optimization prob-
lem:

igneg = max

(
−
∑

r∈R

yl
r(log yl

r − log ar)

)

subject to: yl
r satisfies LC(>, Dl, R), where Dl = D ∪

{(ψ|φ)[l, l]}
6. Compute the optimal value igpos of the optimization prob-

lem:

igpos = max

(
−
∑

r∈R

yu
r (log yu

r − log ar)

)

subject to: yu
r satisfies LC(>, Du, R), where Du = D ∪

{(ψ|φ)[u, u]}.
7. Compute optimal solution y′r (r ∈ R) for P ′ = ∅ by Al-

gorithm Tight me Consequence in Fig. 7. in [6]. pme :=
me[P ′](ψ|φ).

8. Compute the optimal value ig′neg of the optimization prob-
lem:

ig′neg = max

(
−
∑

r∈R

yl
r(log yl

r − log ar)

)

subject to: yl
r satisfies LC(>, Dl

0, R), where Dl
0 =

{(ψ|φ)[l, l]}
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9. Compute the optimal value ig′pos of the optimization prob-
lem:

ig′pos = max

(
−
∑

r∈R

yu
r (log yu

r − log ar)

)

subject to: yu
r satisfies LC(>, Du

0 , R), where Du
0 =

{(ψ|φ)[u, u]}.
10. IF pme < u THEN s1 := 1 ELSE s1 := −1

11. IF pme > l THEN s2 := 1 ELSE s2 := −1

12. ig := (s1 ∗ igpos + s2 ∗ igneg)/(ig′pos + ig′neg)

13. RETURN ig

Algorithm 2 (KLDivergence)
Input: PLP P , me[P ], a conditional event (ψ|φ), and a proba-
bility value v.
Output: kl = minPr|=P,Pr(ψ|φ)=v KL(Pr||me[P ])

1. me[P ] is obtained from Algorithm 1 and is represented as
yme.

2. Compute the tight bound [l′, u′] for (ψ|φ) by Algorithm
Tight 0 Consequence in Fig. 5. in [6].

3. IF v /∈ [l′, u′] THEN return ERROR.
4. Compute the optimal value kl of the optimization problem:

kl = min

(∑

r∈R

yr log yr −
∑

r∈R

yr log yme

)

subject to: yr satisfies LC(>, DV , R), where DV = D ∪
{(ψ|φ)[v, v]}.

5. return kl

Algorithm 3 (KLSatisfaction)
Input: PLP P and a ground query Q =?(ψ|φ)[l, u]
Output: KL degree of satisfaction for Q

1. IF P |=tight (φ|>)[0, 0] THEN return 1.
2. IF l ≥ uTHEN return 0.
3. Compute the tight bound [l′, u′] for (ψ|φ) by Algorithm

Tight 0 Consequence in Fig. 5. in [6].
4. IF l < l′ THEN l := l′.
5. IF u > u′ THEN u := u′.
6. Compute sp = νpos

P,(ψ|φ)(u
′) by Algorithm 2.

7. Compute sn = νneg
P,(ψ|φ)(u

′) by Algorithm 2.

8. Compute s′p = νpos
P,(ψ|φ)(l) by Algorithm 2.

9. Compute s′n = νneg
P,(ψ|φ)(u) by Algorithm 2.

10. sat := 0.5 ∗ (s′p/sp + s′n/sn)

11. return sat

In our querying system, shown in Figure 1, we have obser-
vations, background knowledge, as well as the knowledge
obtained from sources (e.g. experts). Background knowl-
edge and the knowledge from different sources are merged
to obtain a PLP. Observations are used when constructing
queries. Each PLP can be analyzed with the measures de-
fined/introduced previously. The details on other compo-
nents (like merging and revision) are omitted here due to
space limitation.

5.2 Additional information used in querying PLPs
Observation vs. a priori facts: In PLPs, ground formu-
lae of the form (φ(t)|>)[1, 1] are used to state a priori facts
from statistics, i.e., something must be true (statistically)
is regarded as a fact. From (φ(t)|>)[1, 1], we know that
object t must possess property φ even before we observe
it. This is different from observing t having property φ.
Observing an event (such as a test result) about an indi-
vidual does not infer that the event would happen for sure
(for another individual). So, observations cannot be rep-
resented as formulae of the form (ψ(a)|>)[1, 1] in a PLP.
Doing so implies that we know ψ(a) being true even be-
fore it is observed. In another word, taking ψ(a) as a prob-
abilistic event, we cannot predict if ψ(a) is true or false
before we observe it. In our System, all observations are
stored in a separate database (named OBS). When query-
ing (ψ|φ)[l, u] on PLP P , this observation database OBS
is automatically called, so querying (ψ|φ)[l, u] is equiva-
lent to querying (ψ|φ ∧∧OBS)[l, u] on P .

Background knowledge: In practice, source knowledge
bases (PLPs) can be obtained from experts, from some ex-
periments, or are elicited from data in published papers.
However, given an application, there is richer knowledge
that is normally not included in a paper or stated in an
experiment, but this knowledge may have been implicitly
used. When such knowledge is present, we include it in
a PLP when appropriate. For example, knowledge about
some general population statistics should be treated as
background knowledge, while the effectiveness of a new
drug should be treated as specialized knowledge.

6 Application to Substrates Prediction
Considerable investment has been made into the in sil-
ico prediction of substrates, and especially, inhibitors of
enzymes. This investment has been driven by a funda-
mental desire to understand more about how biomolecules
recognize their ligands and by the commercial imperative
to develop new drugs. Almost all pharmaceutical com-
panies include an element of target-based approaches in
their drug discovery programmes. The aim of our analyz-
ing/querying system is to provide a very rapid screening
for likely ligands (either substrates or inhibitors, depend-
ing on the context). It will be particularly useful in situ-
ations where a number of similar compounds have been
screened experimentally, but information is not available
for all possible members of that group of compounds. By
providing a simple means to encode existing experimental
knowledge and return results within minutes we see this
as a valuable addition to initial computational screening
approaches.

6.1 Case study I: Rapid sugar kinase enzymes
prediction

Our first example is from biochemistry on the human en-
zyme galactokinase, which uses galactose as a substrate.
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Figure 1: System Architecture

Figure 2: The α-D-Galactose molecule

Galactose has the molecular formula C6H12O6, but other
compounds have the same or similar formula. Since not
all possible substrates for the enzyme have been tested, the
information regarding this enzyme and its substrates is in-
complete, can we then predict which will be the substrates
for the human enzyme galactokinase based on incomplete
and imperfect information? Many factors lead to the infor-
mation being imperfect including different research labo-
ratories using different criteria for scoring a compound as a
substrate and some information is based on galactokinases
from other species, so we cannot be certain that substrate
specificity is conserved for humans.

Each galactose molecule is arranged as a hexagonal ring
(e.g., the α-D-Galactose molecule in Figure 2). There are
six carbon atoms in a galactose molecule and one oxygen
atom. These six carbon atoms are numbered from 1 to 6
with the right-most carbon atom numbered 1, and then the
remaining carbons are numbered clockwise round the ring.
The oxygen atom is not numbered. The other atoms can be
regarded as coming off these carbon atoms. The first four
of the carbon atoms each has an OH molecule attached to
it, and the fifth one has the sixth carbon atom attached to
it from outside the ring, forming a CH2OH group. The
OH group can either be up or down (i.e. they are chiral).
The combination of ups and downs gives a specific form

of the molecule (in effect, each form of the molecule is a
different compound), and the actual combination can sig-
nificantly affect the biochemical behavior of the molecule.
Therefore, for the OH groups attached to these atoms, we
need to know if they are up, down or absent. The sixth
carbon is not chiral, and so the OH is neither up nor down.
Hence, the OH for the sixth carbon is marked as either
present or absent. Current experimental results published
in the literature provide a set of conditional events with
probabilities suggesting how likely a particular structure
is a substrate for the enzyme. Table 1 contains this knowl-
edge collected from papers [14, 15, 16, 17], which is then
translated into a PLP. For instance, the 5th row of the table
(Talose) defines a probabilistic formula as

(sub(X)|c1(X, d) ∧ c2(X, u) ∧ c3(X, u)
∧c4(X, u) ∧ c5(X, u) ∧ c6(X, p))[0.4, 0.6]

Initially probabilities were estimated using experimental
data and an element of intuition. Where a particular sub-
strate had been demonstrated experimentally to be a sub-
strate of human galactokinase it was assigned a probability
of 1.0. Where there was experimental data indicating that a
substrate was not phosphorylated by human galactokinase,
a value of 0 was assigned. Compounds which had been
shown to be substrates of galactokinase from other species
were assigned probabilities between 0 and 1. However, not
all substrates are equally good. Therefore a second mea-
sure, the product was calculated. To calculate this value,
the specificity constant kcat/Km was used [4], scaled such
that the product value with galactose (which is expected to
be the best substrate) was equal to 1.0.

Therefore, in Table 1, we have a column representing their
probabilities (or intervals) and another column represent-
ing their products of the corresponding compounds to be
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Sugar C1 C2 C3 C4 C5 C6 P(substrate) Product Source
-OH -OH -OH -OH -CH2OH -OH

Galactose D D U U U P 1.0 1 [15]
Glucose D D U D U P 0.0 0 [15]
2-Deoxygalactose D A U U U P 1.0 0.47 [15]
Fucose D D U U U A 0.0 0 [15]
Talose D U U U U P [0.4, 0.6] [0.056,0.084] [17, 14]
4-deoxygluocse D D U A U P [0, 0.5] [0,0.021] [16]
3-deoxygalactose D D A D U P [0.6, 0.9] [0.036,0.054] [16]

Table 1: The compounds and their probabilities and products to be substrates, obtained from published papers.

(good) substrates. Column Source indicates from which
published paper this knowledge is obtained. Based on the
probabilistic knowledge in the probabilistic logic program,
we can predict the probability for any combination of these
six carbons. Twenty-six queries detailed in Table 2 were
executed against this PLP and the query results are pre-
sented in Table 2. Below we analysis these query results.

By querying the tight bounds for the twenty-six queries
detailed in Table 6.1, we can only obtain a trivial inter-
val [0, 1] for all of these queries. This trivial interval indi-
cates that we know nothing about the probability of a com-
pound being a substrate. Reasoning under the maximum
entropy principle, we can get probabilities as listed in Ta-
ble 6.1. One question is that how reliable these values are
to guide us finding most possible substrate from these pos-
sible compounds. With the analysis of knowledge entropy
in Section 3, we have KP (sub(s)|φs) = [0, 1] for any
compound s where the compound structure is stated by
φs. So this measurement does not provide us with useful
information either. Now we look into the ignorance mea-
sures of these query results. The ignorance values of the
query results of the twenty-six compounds w.r.t. this PLP
are around 0.005, a very low value. These ignorance val-
ues suggest that the probabilities obtained by applying the
maximum entropy principle are acceptable and can serve
as good indicators about how likely a compound can be
a substrate. Since in substrate prediction, the comparisons
of probabilities are much more important than actual prob-
ability values, we do not need to calculate the degrees of
satisfaction for these queries with intervals.

Overall, the predictions appear to over-estimate the proba-
bilities for each possible substrate. For example, given that
the Fucose (which has the OH group attached to the sixth
carbon atom absent) has been shown experimentally not to
be a substrate, it is surprising to see compounds which also
lack this OH group predicted as having high probabilities
as substrates. Of course in compiling the data in Table
1, all the information was weighted equally - for exam-
ple the presence or absence of the OH group at position 6
was considered of equal worth to the information about the
OH at position 2. In fact it is likely that some positions are
more important than others in determining substrate speci-

(a) (b)

Figure 3: Examples of NAD(H)-quinone oxidoreductase 1
(NQO1) substrates.

ficity. However, in implementing screens such as these,
the amount of knowledge to be included will always be a
balance between including enough to enable valid predic-
tions, but not so much that the initial knowledge collection
and tabulation becomes unreasonably time consuming.

Despite these limitations, the predictions do appear to have
some value in that the ranking of the compounds in terms
of their probability of being a substrate seems mostly rea-
sonable and in line with chemical intuition. Ultimately
for such a system to be useful to bioscientists, it is this
ranking which must be reliable. The most likely use of
such a system is to act as a preliminary screen for poten-
tial substrates or inhibitors followed by experimental test-
ing of those compounds. Time and expense can be saved
if those compounds most likely to be good substrates (or
inhibitors) appear at the top of the list and are, therefore,
prioritized in the experimental work. Thus the absolute
values of the predicted probabilities are less important than
the rank order of the compounds.

6.2 Case Study II: Substrate prediction for NQO1
NAD(H)-quinone oxidoreductase 1 (NQO1) is a broad
specificity enzyme which catalyses the reduction of a
range of aromatic compounds. It was chosen for the sec-
ond case study as a large variety of different compounds
(including quinones, nitroaromatics and benzimidazoles)
have been tested as substrates. In contrast to Case study
I, the chemical diversity of the known substrates is wider
leading to a greater number of variables to consider.

Two of the many compounds which have been tested ex-
perimentally as substrates for NQO1 are a quinone com-
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Sugar C1 C2 C3 C4 C5 C6 P(substrate) Product
-OH -OH -OH -OH -CH2OH -OH

2dAll D A D D U P 0.6529 0.4611
2dGlc D A U D U P 0.6154 0.3939
2dGul D A D U U P 0.6694 0.5000
I D A A D U P 0.5869 0.4083
II D A A U U P 0.6676 0.5376
2,3,4d D A A A U P 0.5509 0.4721
3dAll D D A D U P 0.6003 0.1138
3dMan D U A D U P 0.5539 0.5000
3dTal D U A U U P 0.5636 0.4282
III D D A A U P 0.5321 0.3503
IV D U A A U P 0.5134 0.4785
4dAll D D D A U P 0.5314 0.4611
4dMan D U U A U P 0.4706 0.4282
V D A D D U A 0.5463 0.4811
VI D A U D U A 0.5481 0.4514
VII D A D U U A 0.5481 0.5000
VIII D A A D U A 0.5703 0.4572
IX D A A U U A 0.5682 0.5020
X D A A A U A 0.5233 0.4814
XI D D A D U A 0.5451 0.3518
XII D U A D U A 0.5234 0.5000
XIII D U A U U A 0.5278 0.4670
XIV D D A A U A 0.5146 0.4179
XV D U A A U A 0.5064 0.4895
XVI D D D A U A 0.5144 0.4811
XVIII D U U A U A 0.4879 0.4670

Table 2: The probabilities and products of some compounds being a substrate by querying on the PLP.

pound, benzo-1,4-quinone (Figure 3(a)) and a nitroaro-
matic compound 1,4-dinitrobenzene (Figure 3(b)). Rep-
resenting these compounds in tabular form required as-
signing each position in the six-membered ring a letter de-
scriptor from A to F. For each molecule, the most oxidised
substituent was placed at the top of the structural represen-
tation and designated A. Positions B through F were then
defined by moving round the ring sequentially in an anti-
clockwise fashion. In these initial studies we concentrated
on six membered rings substituted with ketone, methyl and
nitro groups.

A B C D E F Probability
NO2 H H H H H [0,0]
NO2 H NO2 H H H [0,0]
NO2 H H CHO H H [0,0]
NO2 NO2 H H H H [0,0]
NO2 H H NO2 H H [0,0]
O H H O H H [0.20,0.28]
O CH3 H O H H [0.17,0.31]
O CH3 H O CH3 H [0.19,0.33]
O CH3 CH3 O CH3 H [0.20,0.28]

Table 3: The compounds and their probability intervals,
obtained from published papers [1, 3].

In this initial case study, knowledge was collected from

a limited number of papers [1, 3] which described the
activity of the enzyme towards a number of structurally
related compounds (Table 3). Probabilities were derived
from published data in these papers on specificity con-
stants in which the error in the experimental determination
was used to define the range of values. When used to make
predictions about unknown compounds (Table 4), the re-
sults were broadly similar to those seen in Case Study I.
Table 4 gives the summary of sixteen queries based on the
probabilistic knowledge given in Table 3. There appeared
to be a tendency to over-estimate probabilities (especially
for compounds closely related in structure to those with
low, or zero, experimentally determined activity). Never-
theless, if these compounds are excluded the rank order of
the remaining ones appears sensible.

7 Related Work and Conclusion
Some systems are provided for modeling and querying on
probabilistic knowledge, for example, SPIRIT [12] and
PIT [13]. These two systems work on propositional prob-
abilistic logics while our system works on PLPs. The
main advantage of our framework is its ability to ana-
lyze the knowledge contained in PLPs, especially w.r.t.
queries. For analyzing probabilistic knowledge bases, in
[11, 10], the authors provided a second order uncertainty
to measure the reliability of accepting the precise prob-
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A B C D E F Probability
NO2 H H H NO2 H 0.0000
NO2 H H NO2 CH3 H 0.3194
NO2 H H CHO CH3 H 0.3194
NO2 H H O CH3 H 0.3294
NO2 H NO2 H CH3 H 0.3217
NO2 H NO2 NO2 H H 0.1949
NO2 H NO2 O H H 0.2235
NO2 NO2 H O H H 0.2172
O H H H NO2 H 0.2949
O H H NO2 CH3 H 0.3917
O H H CHO CH3 H 0.3197
O H H O CH3 H 0.3629
O H NO2 H CH3 H 0.4000
O H NO2 NO2 H H 0.3612
O H NO2 O H H 0.3477
O NO2 H O H H 0.3338

Table 4: The Predictions for some compounds.

ability obtained by applying maximum entropy principle
as the answer to a query in propositional probabilistic
logic. Their second order uncertainty is directly computed
from the probability interval of the query inferred from P ,
and therefore is independent of the knowledge base. In
contrast, our ignorance provides more information about
the underlying knowledge base and is more accurate in
terms of reflecting the knowledge in a PLP. In Example 3,
the second order probabilities of (fly(t)|magpie(t)) and
(fly(t)|sickMagpie(t)) are the same. However the igno-
rance values for the two queries are different.

In this paper, we provided a framework and a tool for rea-
soning with imprecise probabilistic logic programs. In
our framework, background knowledge and application-
specific knowledge are combined to create a PLP (or
maybe multiple PLPs), and observations are represented
in a separate set. In this tool, a user has an option to ana-
lyze the quality of a PLP by retrieving the ignorance val-
ues with respect to application-specific queries. Also, the
reasoning power is enhanced because reliable informative
bounds can be extracted for any query. Two case studies
are deployed to demonstrate how this framework and the
tool can be used in real world applications. Our system
can also perform merging when multiple PLPs concerning
the same application are available, and perform revision
(of a PLP) when some sure new evidence is collected.
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Abstract

In this paper, we propose a novel approach for quanti-

fying the noise level at each location of a digital signal.

This method is based on replacing the conventional kernel-

based approach extensively used in signal filtering by an

approach involving another kind of kernel: a possibility

distribution. Such an approach leads to interval-valued re-

sulting methods instead of point-valued ones. We show,

on real and artificial data sets, that the length of the ob-

tained interval and the local noise level are highly corre-

lated. This method is non-parametric and advantageous

over other methods since no assumption about the nature

of the noise has to be made, except its local ergodicity.

Keywords. Signal processing, kernel methods, possibility

distribution, noise quantization, Choquet integral.

1 Introduction

The reliability of a great number of signal processing

methods inherently relies on the possibility of adjusting

their parameters to account for noise level over the input

signal. Examples of such procedures are image restora-

tion, edge detection [18], motion estimation [1], denoising

[26, 27], super-resolution [14], shape-from-shading [34],

sensor fusion [3, 29] and feature extraction or segmenta-

tion [22].

Noise in a signal is usually referred to random variations of

the measured signal. These variations can be produced by

several factors including thermal effect, saturation, sam-

pling, quantization and transmission. Since repeating the

acquisition process is usually not possible, the noise level

has to be estimated by means of a single signal occurrence.

Noise is generally considered as being independent from

the signal level and added to it. One of the most widely

encountered model assumes this random noise as being

centered and normally distributed. However, phenomena

like film grain, speckle, impulse noise, sampling effect,

quantization or saturation induce a fluctuation of signal’s

value that cannot be modelled by a Gaussian zero mean

process. For example, in medical images produced by a

gamma camera, the noise is rather described by a Poisson

process (i.e. the noise level depends on the signal level).

In early approaches (see e.g [25]), noise estimation con-

sisted in assuming stationarity of the random variations of

the signal. The computation of the standard deviation of

the noise were performed by analyzing the signal obtained

by high-pass filtering of the original signal. The main chal-

lenge in these estimations is to be able to tell whether a

signal variation is due to the noise or to the signal itself,

which can involve significant variations.

In more recent papers, some authors propose to abandon

either stationarity or additivity of the noise. Rangayyan

et al. [28] consider an adaptive neighbourhood approach

that is able to account for an additive non-stationary noise.

Corner et al. show that analyzing the Laplacian of the

signal allows to deal with both additive and multiplicative

noise [5].

Unfortunately, neither additive nor multiplicative random

noise are good models for real signal contamination, even

for instance, for conventional CCD sensor [18]. There-

fore, many approaches [18, 16, 23] propose to model the

acquisition noise as being Poisson distributed.

In these model-based approaches, the noise is assumed to

follow a hypothetically known distribution and noise level

estimation consists in estimating the different parameters

on which the variance of the assumed distribution depends.

Moreover, any model-based method assumes the type of

the acquisition machine to be known.

If nothing can be assumed about the nature of the noise,

except its local ergodicity, only a very local approach has

to be considered to estimate the noise level for each lo-

cation or, at least, for each user-selected homogeneous

region of the signal. Moreover, since signal processing

mainly consists of extracting or estimating some physi-

cally meaningful characteristics from intensity values of

the signal, it should be important to understand how

the uncertainty due to random perturbation propagates

through any algorithm step.
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A wide range of those signal processing methods relies

on a kernel-based approach [20] for direct or iterative,

linear or non-linear algorithms and for filtering (stochas-

tic, band pass, anti-aliasing, ...), geometrical transforma-

tions (rescaling, rotations, homographies, anamorphosis,

...), sampling rate conversion, fusion, for enhancing or

removing details, etc. The kernels usually encountered

are probability distributions: they are positive functions

whose total weight (their integral in the infinite domain

and their sum in the finite domain) sums to 1. The main

difficulty in these kernel-based methods is that the nature

of both signal and perturbation can change during the com-

plete analysis, from step to step.

By switching from probability theory to possibility the-

ory, we propose new methods that take into account a lack

of knowledge on the proper kernel to be used [21]. In-

deed, a possibility distribution represents a convex hull

of probability distributions and hence of kernels. In this

adaptation of the usual kernel methods, the conventional

Lebesgue integral operator is replaced by a pair of Cho-

quet integrals according to the possibility measure and the

necessity measure associated with the chosen possibility

distribution. The resulting interval (and more precisely its

length) reflects the lack of knowledge of the modeller on

the most adequate kernel to use.

As an example, the use of the interval-valued gradient esti-

mation of an image, proposed in [17], leads to a threshold-

free robust edge detector. This robustness is due to the fact

that the length of the interval-valued estimation is highly

correlated with the input image random noise. The infor-

mation (about the noise) contained in the resulting interval

is properly taken into account in the edge detector, thus

enabling an automatic rejection of the “false” edges due to

noise.

In this paper, we propose to study the link between the

length of the interval-valued result of a possibilistic filter-

ing on a signal and the input signal random noise. Actu-

ally, we discuss the fact that this approach is, to our opin-

ion, in its spirit, better founded than the usual noise level

estimators. Furthermore, we propose to highlight the em-

pirical correlation between the length of the output of the

interval-valued filtering and the input signal random noise

on repeated acquisitions of real and synthetic images.

The paper is organized as follows. In section 2, we present

how the digital filtering is performed by means of convolu-

tion kernels with unitary gains. We present the possibility

distribution-based filtering, which is theoretically justified

by Theorem 1. In section 3, we describe our method for

estimating the noise level at each sample location of a sig-

nal. In section 4, we compare our method to three other

usual noise level estimates on synthetic and real noisy im-

ages, before concluding in section 5.

2 A possibilistic extension of convolution

kernel-based linear filtering

2.1 Convolution kernel-based signal filtering

Let S = (Si)i=1,...,N be a digital signal defined on N
locations {ω1, ..., ωN} of an underlying infinite domain Ω.

Note that the locations {ω1, ..., ωN} can be identified with

their indices {1, ..., N}. Processing S by a filter, defined

by its impulse response κ, mathematically corresponds to

the discrete convolution of S by κ. This is why κ can also

be called a convolution kernel. The value Ŝn of the filtered

signal at the nth location of {1, ..., N} is thus obtained by:

Ŝn =
N∑

i=1

Siκn−i.

κn−• = (κn−i)i=1,...,N is the convolution kernel κ shifted

to the location n of {1, ..., N}. We propose to denote this

particular shifted kernel by κn = (κn
i )i=1,...,N . Ŝn is thus

obtained by:

Ŝn =
N∑

i=1

Siκ
n
i . (1)

In many applications like low-pass filtering, the used con-

volution kernels are positive and have a unitary gain, i.e.

N∑

i=1

κi = 1.

In that case, the convolution kernel can be seen as a proba-

bility distribution that induces a discrete probability mea-

sure Pκ, computed in this way:

∀A ⊆ Θ, Pκ(A) =
∑

i∈A

κi.

For each location n, its associated shifted convolution ker-

nel κn is still a probability distribution. Thus, expression

(1) is equivalent to computing the expected value Ŝn of

the signal S at the location n, considering the probability

measure Pκn on {1, ..., N}, i.e.:

Ŝn = EPκn (S). (2)

In that case, the filtered value of the signal can be inter-

preted as the expected value of the signal, knowing that the

uncertainty concerning the location is modelled by Pκn .

This interpretation is not very relevant because the aim of

the filtering is not to try to evaluate the real value of a sig-

nal under uncertainty. The aim of the filtering is to modify

the input signal according to the practitioner’s needs. The

only reason why we propose to rewrite the linear filtering

with the expectation operator is that it enables us to deal

with a family of convolution kernels by switching from the

usual probability theory to imprecise probability theory.
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2.2 Extension of signal filtering to possibility theory

By writing the linear filtering with a unitary gain filter

as an expectation according to a probability measure, we

open new perspectives to this approach by repositioning

it in the field of new uncertainty theories. Instead of us-

ing an additive measure for each neighbourhood of a sam-

ple location, i.e. a probability measure, we propose to use

the simple non-additive confidence measure called a pos-

sibility measure [9]. We propose to use this theory among

others because of its computational simplicity. First, the

possibility distribution is a tool that can be simply mod-

elled by just a set of N weights on the locations {1, ..., N},

whereas most of the other imprecise probability theories

[33] require more assessments. Besides, we propose to

use the Choquet integral, that extends the usual linear ex-

pectation operator, by extending the convolution operator

to possibility measures in place of probability measures.

This tool is well know and very simply computed.

This section presents and interprets this new filtering ap-

proach, based on possibility measures and Choquet inte-

grals, that enables a signal to be filtered by means of a

family of convolution kernels.

2.2.1 A possibility distribution is a family of filters

A possibility measure is non-additive and possesses a dual

confidence measure, called a necessity measure, denoted

by N and computed in this way:

∀A ⊆ Θ, N(A) = 1−Π(Ac). (3)

The two measures, Π and N , encode a family of probabil-

ity measures, denoted by M(Π), and defined by:

M(Π) = {P | ∀A ⊆ Θ, N(A) ≤ P (A) ≤ Π(A)}.

This encoding property is due to the sensitivity analysis

interpretation [32] of possibility theory.

A possibility measure can be defined from a possibility

distribution πn. Such a distribution is normalized in the

sense that

max
i∈Θ

πn
i = 1.

Its associated possibility measure is obtained by:

∀A ⊆ Θ, Ππn(A) = max
i∈A

πn
i .

Thus a unique possibility distribution πn can encode a

whole family of convolution kernels κn with unitary gain,

denoted by M(πn) and defined by:

M(πn) = {κn | ∀A ⊆ Θ, Nπn(A) ≤ Pκn(A) ≤ Ππn(A)}.

This family of convolution kernels being defined, the ex-

tension of the convolution (or expectation) operator has to

be studied.

2.2.2 The possibilistic extension of the linear filtering

Since a possibility measure is non-additive, the conven-

tional expectation operator cannot be used for filtering.

The expectation operator must be replaced by its general-

ization, called the Choquet integral [6]. Using a Choquet

integral and a possibility distribution leads to an interval-

valued expectation, instead of a single value, whose upper

and lower bounds are given by:

Sn = CΠπn (S), (4)

Sn = CNπn (S). (5)

The Choquet integral can be considered as a generalization

of the conventional expectation operator since, when the

used confidence measure is a probability measure, expres-

sions (4) and (5) coincide and are equal to the conventional

expectation operator (2).

The key point of this approach is that the interval-valued

expectation obtained by means of a possibility distribution

is the set of all the single-valued expectations obtained by

using all the convolution kernels encoded by the consid-

ered possibility distribution.

As a preliminary to the theorem (and its proof) justify-

ing this assertion, some notations are necessary. Let us

denote by L({1, ..., N}) the set of bounded sequences

of weights on {1, ..., N}, i.e. ∀I = (Ii)i=1,...,N ∈
L({1, ..., N}), maxi=1,...,N |Ii| < ∞. In [32], this

set is called the set of bounded gambles on {1, ..., N}.

Denote B({1, ..., N}), the set of binary (i.e. {0, 1}-

valued) sequences of weights on {1, ..., N}. Obviously,

B({1, ..., N}) ⊂ L({1, ..., N}). B({1, ..., N}) can be

seen as the set of events on {1, ..., N}.

Theorem 1. Let πn be a possibility distribution. ∀S ∈
L({1, ..., N}), ∀κn ∈M(πn),

CNπn (S) ≤ EPκn (S) ≤ CΠπn (S). (6)

Moreover, the bounds are reached: ∀S ∈ L({1, ..., N}),
∃κn

1 , κn
2 ∈M(πn), such that

CNπn (S) = EPκn
1
(S),

CΠπn (S) = EPκn
2
(S).

Proof. The natural extension principle [32] is required to

prove Theorem 1. Note that the natural extension of a

probability measure P , defined for all the events A of

B({1, ..., N}), is the expectation according to P , defined

for all S of L({1, ..., N}). Similarly, the natural extension

of a possibility measure Π, defined for all the events A of

B({1, ..., N}), is the Choquet integral with respect to Π,

defined for all S of L({1, ..., N})1.

1This remark is true for the more general belief functions
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The natural extension, as defined by Walley, is conserva-

tive concerning the imprecision of a possibility measure.

The family of natural extensions of the probability mea-

sures of the familyM(πn), noted E(M(πn)), is the same

as the family of expectations dominated by the Choquet in-

tegral according to πn, noted M(CΠπn ). This property

of the natural extension can be found in Walley’s book

[32] for an upper prevision P and its associated set of

linear previsions M(P ). It is enough to conclude that

∀S ∈ L({1, ..., N}), ∀κn ∈M(πn),

CNπn (S) = min{EPκn (S) : κn ∈M(πn)},
CΠπn (S) = max{EPκn (S) : κn ∈M(πn)}.

This theorem is also valid for infinite domains. The proof

is derived from domination theorems proved by Den-

neberg [7], proposition 10.3 and Schmeidler [30], propo-

sition 3.

This propagation of the imprecision in the choice of the

possibility distribution representing a family of kernels to

the result of this new possibilistic filtering operation is

very interesting. Using a possibility distribution allows the

modelling of a lack of knowledge on the proper convolu-

tion kernel to be used. Using the generalized expectation

operator (4) and (5) directly impacts this ill-knowledge on

the output.

Note that in the case of a positive signal S (which is the

case of the images that will be processed in section 4), the

Choquet integrals, forming the upper and lower expecta-

tions, can be explicitely computed by :

Sn = CΠπn (S) =
N∑

i=1

Ππn(A(i))(S(i) − S(i−1)), (7)

Sn = CNπn (S) =
N∑

i=1

Nπn(A(i))(S(i) − S(i−1)). (8)

The index notation (.) indicates a permutation that sorts

the sample locations such that S(1) ≤ S(2) ≤ ... ≤ S(N)

and A(i) is a set of samples locations whose value is

greater than S(i), i.e. A(i) = {j ∈ {1, ..., N}|Sj > S(i)}.

By convention, S(0) = 0.

2.2.3 How to choose the possibilistic filter?

The use of a possibility distribution as a family of linear

filters is new in signal processing. This approach does

not offer clues (especially to possibility theory novices) for

choosing the possibility distribution that matches the prac-

titioner’s knowledge on the proper convolution kernel to

be used. Two hints for helping him to choose a possibility

distribution are explored and provided in this paragraph.

First, we propose to use the triangular possibility distri-

bution since it encodes (among others) all the symmetric

convolution kernels with the same support [13]. Indeed,

many algorithms (for example low-pass filtering) exten-

sively use symmetric convolution kernels.

Second, probability/possibility transformations studied by

Dubois et al. [13] can be used, when the practitioner has a

vague idea of the convolution kernel to be used. The possi-

bility distributions obtained by these transformations form

families of convolution kernels including the kernel to ap-

proximate [10, 8]. The objective transformation results in

the smallest family containing the original kernel and the

subjective transformation [11, 12] results in a larger family

of convolution kernels. The latter transformation should

be preferred in case of little confidence in the choice of

the original convolution kernel.

3 Noise estimation

3.1 Nuggets effect and local estimation by

neighbourhood

Geostatistic is the branch of applied statistics that concen-

trates on the description of spatial patterns [4, 24, 15]. The

central tool of geostatistic is the random function which

describes the uncertainty of a given spatial characteristic

over a domain. The structural assumption underlying most

of the geostatistical methods is based on the intuitive idea

that, the closer are the regions of interest, the more similar

are their associated characteristic values.

However, this intuitive idea is no more so obvious when

looking at the closest pairs of sample locations of a spa-

tial data set. Indeed, in general, when plotting the em-

pirical increment of a particular observed property, func-

tion of the distance, between different sample locations,

this increment2 does not seem to vanish when the distance

tends to 0. This discontinuity, which is supposedly due to

geostatical noise, is called the “nuggets effect”. This de-

nomination comes from the fact that in gold deposits, gold

commonly occurs as nuggets of pure gold that are much

smaller than the size of a sample.

When translating this concept from geostatistics to signal

processing, the nuggets effect can be illustrated as follows:

the variability of a subset A of the signal domain is sup-

posed to reflect the co-occurrence of the intrinsic local

variability of the supposed continuous signal underlying

the samples and a measurement error. This measurement

error sums up the systematic error due to the impulse re-

sponse of the sensor, the imprecision due to sampling and

quantization of the signal and a random variability due to

noise. Typically, the variability due to signal increases

with the radius ∆ of the subset A. On the contrary, the

2Generally, the curve of the halve squared increments is plotted. This

curve is called the sample variogram [4]
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Figure 1: Qualitative example of variogram.

variability due to the measurement error is usually sup-

posed not to depend on ∆. This assumption is reasonable

when the sampling is regular and the random noise is sup-

posed to be locally stationary. Thus, if An
∆ is a neigh-

bourhood of radius ∆ of the nth location ωn, V (An
∆), the

variability of An
∆ is such that :

lim
∆→0

V (An
∆) = vn, (9)

with vn being the variability due to measurement error at

location n. This limit is known as the nuggets effect in

the geostatistic field [15]. However, due to sampling, vn

cannot be computed because the local variability cannot be

estimated for a scale smaller than the sampling distance h.

A standard technique for catching this variability is to plot

a variogram, i.e. to plot the variability of all the sampling

locations of n ∈ {1, ..., N}, V (An
∆), as a function of ∆.

A manual fitting3 is generally performed to provide an es-

timation of the nuggets effect, which is the value of the

regression equation for a radius ∆ = 0. This estimation is

denoted by v.

However, this method presupposes that the error is station-

ary all over the signal. Moreover, the choice to be made for

a particular variogram equation is not generally justified in

signal processing. The expert’s knowledge is generally not

available in this scientific domain to evaluate local depen-

dencies, whereas in geostatistic, the expert, according to

the physical nature of the studied area, can provide such

information.

A more pointwise estimation of these measurement er-

rors can be obtained by means of a small neighbourhood

around each sampled location. This approach is based on

assuming local ergodicity. Local ergodicity states that the

local variability of the signal in a small neighbourhood of

a sampling point reflects the statistical variations of the

signal at this location, due to measurement errors. The

neighbourhood commonly used is a probability distribu-

tion defined over the set of pixels by κn = (κn
i )i=1,...,N .

3Sometimes, automatic fitting procedures (which are not recom-

manded by geostatisticians), as regression analysis, are performed

The local variability computation leads to a weighted sum

due to the additivity of the probability measure. Estima-

tions of the nuggets effect are given by:

vn =

√√√√
N∑

k=1

(Sk − Ŝn)2κn
k , (10)

if variability is measured by the standard deviation. And:

vn =
N∑

k=1

|Sk − Ŝn|κn
k , (11)

if variability is measured by the mean error.

Most of the kernels used to perform this estimation are

unimodal, centered and symmetric around the sample lo-

cation n.

3.2 Noise quantization via possibilistic filtering

Our approach is also based on the assumption of local er-

godicity. On top of that, it exploits the domination proper-

ties presented in section 2, i.e. of the fact that a possibility

distribution can be seen as a family of convolution kernels.

Suppose you want to low-pass filter a signal with two dif-

ferent filters having the same cutoff frequency fc. Such a

filter eliminates from the input signal its component with

a frequency higher than the cutoff frequency fc (this is the

explanation for the origin of the denomination “low-pass

filter”). Suppose that the maximal frequency of the input

signal is lower than fc. Then the two output signals will

be approximately equal. Now, suppose that we apply this

same filtering procedure to an input signal having frequen-

cies beyond fc. Then, generally, the output signals will be

different, depending on the shape of the convolution ker-

nel.

Now, consider the same procedure with a family of low-

pass filters (instead of just two). The previous remark still

holds. Moreover, the dispersion in the outputs of this fam-

ily of low-pass filters is a direct consequence of the high

frequency level of the input signal. If we now suppose

that the high frequencies of the input signal are only due

to noise4, then the dispersion in the outputs of this fam-

ily of low-pass filters can be considered as a marker of the

variability of the input signal.

As mentioned before, the impulse responses of the usual

linear low-pass filters are convolution kernels (uniform,

Gaussian filters...). Since a possibility distribution is

equivalent to a family of convolution kernels, we propose

to replace the usual low-pass filtering based on a convo-

lution kernel by a possibility distribution-based low-pass

filtering procedure.

4This is the hypothesis underlying the low-pass filters
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The imprecision or the dispersion in the result of a pos-

sibility distribution-based filtering is quantified by the

length of the interval [Sn, Sn], as defined by expressions

(8) and (7).

Therefore, under the assumption of local ergodicity, we

propose to estimate the noise level by :

λn = Sn − Sn. (12)

As the most usual low-pass filters have impulse responses,

which are unimodal and symmetric convolution kernels

around n, the triangular possibility distribution plays a

central role in possibility-distribution-based filtering. In-

deed, as already mentionned, the triangular possibility dis-

tribution is the most specific possibility distribution that

dominates the class of all unimodal symmetric convolu-

tion kernels with the same mode and support.

In the case of image processing, i.e. with a 2D signal, the

used triangular neighbourhood of each pixel can be simply

represented by the possibilistic 3× 3 matrix:

π3×3 =




0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25


 (13)

In the case of 1D signal processing, the used triangular

neighbourhood of each sample location can be simply rep-

resented by the vector:

π3 =




0.5
1

0.5


 (14)

In order to weaken the influence of the signal variations

on the noise level estimator that we propose, we have to

choose the smallest possible neighbourhood. Under a π3

or a π3×3 possibilistic neighbourhood, is only the Kro-

necker possibility distribution that is equal to 1 on the es-

timation’s location that would have led to a canonical es-

timation of Sn on the location n. This is why we propose

to use π3 or π3×3 to estimate the noise level.

We conjecture that the length of the interval-valued esti-

mate [Sn, Sn] obtained with π3×3 or with π3 is an esti-

mate of the noise level at the location n. This conjecture

is illustrated by the experiments in section 4.

4 Experiments

4.1 Simulated noise experiment

For this first experiment, we synthesized a set of noisy im-

ages from the benchmark image Lena. A Gaussian noise

is simulated for standard deviations ranging from 0 to 60
and added to the original Lena image. With this set of

Figure 2: images of Lena with simulated Gaussian noise

with standard deviations of 0, 30 and 60.

Figure 3: Usual and possibilistic local estimates of the

noise level.

noisy images, we can directly compare the noise level es-

timates presented in this paper (10), (11) and (12) with the

simulated added noise.

This experiment attempts to show the ability of the pos-

sibility distribution based approach, presented in subsec-

tion 3.2, to quantify the noise level on an image when the

noise is supposed to be locally ergodic. The noise level

is known and represented by the standard deviation of the

added Gaussian noise.

The average over all the pixels of the noisy images of the

noise level estimates (10), (11) and (12) is plotted on Fig-

ure 3 versus the level of the simulated added noise. The

highest curve corresponds to the standard deviation esti-

mate, i.e. expression (10) with a 3 × 3 convolution ker-

nel, the curve in the middle, corresponds to the mean error

estimate, i.e. expression (11) with a 3 × 3 convolution

kernel and the lowest curve corresponds to the possibil-

ity distribution-based noise level estimate, i.e. expression

(12).

As can be seen on Figure 3, all these estimators are good

markers of the noise level, since the three plotted curves

are linear functions of the noise level. The part of the

curves with small simulated noise levels (i.e. with stan-

dard deviation lower than 5) is not fully in agreement with

this remark. This is due to the fact that for low noise levels,
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Figure 4: six images of the 1000 HBP direct acquisitions.

the signal to noise ratio is high and the observed variations

of the noisy image are mainly due to the image, and not to

the noise.

From this experiment, we can not pretend that our esti-

mator is better than the other existing local estimators to

quantify the noise level, since the three curves are very

similar. However, put in a more general context, our ap-

proach looks more appropriate to handle the noise in fur-

ther processing. In any usual method, an additional step

is necessary to handle the noise in the processing. The

advantage of the possibilistic approach is that noise level

quantization is part of the processing (in that case the fil-

tering) of the data without any additional computation.

4.2 Real noise experiment

A Hoffman 2D brain phantom (Data Spectrum Cor-

poration) was filled with a 99m technetium solution

(148MBq/L) and placed in front of one of the detec-

tors of a dual-head gamma camera using a low-energy

high-resolution parallel-hole collimator (INFINIA, Gen-

eral Electric Healthcare). A dynamic study was performed

to provide 1000 planar acquisitions (acquisition time: 1

second; average count per image 1.5 kcounts, 128 × 128
images to satisfy the Shannon condition), representing

1000 measures of a random 2D image supposedly ruled

by a Poisson process.

The acquisition time being very short, the images are very

noisy, i.e. the signal to noise ratio is very low. More pre-

cisely, the average pixel value in the brain corresponds to

a coefficient of variation of the Poisson noise of 69%. In,p

is the measured activity of the nth pixel within the pth ac-

quired image. Note that Figure 4 only shows the 40 × 35
central parts of the images that contains the HBP projec-

tion.

This experiment attempts to show that the possibility

distribution-based noise level estimator (12) is more cor-

related to the statistical variations of the image than the

standard deviation noise estimation approach.

The randomness of the radioactive decay being statisti-

cally described by the Poisson probability, it cannot really

be assumed to be stationary all over the image. Since the

signal to noise ratio is very low, the local variation of the

activity level, in the neighbourhood of each pixel, is still

highly correlated with the statistical variations due to ac-

quisition noise.

On the one hand, the statistical variation of the activity of

the nth pixel can be estimated by its standard deviation σn

all over its different realizations:

σn =

√√√√ 1
999

1000∑

p=1

(In,p −mn)2, (15)

with mn, the weighted mean of the image at the nth pixel:

mn =
1

1000

1000∑

p=1

In,p. (16)

On the other hand, the local variation of the measurement

in the neighbourhood of the nth pixel within the pth im-

age can be estimated by computing the standard deviation

via the expression (10) with a highly specific kernel (the

same experiment made with expression (11) led to similar

results). In this experiment, we propose two estimates of

this standard deviation: γn,p is computed by using a 3× 3
uniform neighbourhood, and δn,p is computed by using a

Gaussian kernel with a standard deviation equal to 1.6, i.e.

a kernel whose bandwidth has been adapted to equal the

bandwidth of the uniform kernel [20, 31].

In the meantime, we compute, for each image, an interval

valued activity [In,p, In,p] by using the possibility distri-

bution based method described in subsection 3.2. The lo-

cal variation in the neighbourhood of the nth pixel within

the pth image is estimated by the length λn,p of each in-

terval:

λn,p = In,p − In,p. (17)

We aim at testing whether the distribution of the estimated

standard deviation σn is correlated or not with γn,p, δn,p

and λn,p. To provide a clear illustration, we compute, for

each n, the mean of the distributions of the deviation mea-

sures: γ̃n = 1
1000

∑1000
p=1 γn,p, δ̃n = 1

1000

∑1000
p=1 δn,p and

λ̃n = 1
1000

∑1000
p=1 λn,p.

Figure 5 plots γ̃n versus σn, as well as the straight line of

equation σn = γ̃n, figure 6 plots δ̃n versus σn, as well as

the straight line of equation σn = δ̃n and figure 7 plots λ̃n

versus σn, as well as the straight line of equation σn = λ̃n.

These figures clearly show that all these estimations are,

on average, correlated with σn. The choice of the value
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Figure 5: local variation measured by using a 3×3 uniform

kernel versus the statistical variation.

Figure 6: local variation measured by using a Gaussian

kernel with a 1.6 standard deviation versus the statistical

variation.

1.6 for the Gaussian kernel is appropriate since the esti-

mated local standard deviations δ̃n are in the same range

as the statistical standard deviations σn. Indeed, the points

(σn, δ̃n) are close to the straight line σn = δ̃n. Actu-

ally for values smaller than 1.6, nothing is caught by the

Gaussian neighbourhood for this estimation, whereas for

greater values, the estimation depends more on the signal

than on the variability. The same remarks can be made

about the choice of the size of the uniform kernel that

seems to be appropriate. When comparing Figure 7 with

both Figure 5 and 6, it can be seen that the range of λ̃n is

slightly higher than the range of γ̃n and δ̃n. This is due to

the fact that the measure λ̃n is just correlated to the noise

level and is not an estimation of the standard deviation.

To objectively compare those three dispersion measures,

we compute three correlation coefficients: Pearson, Spear-

man and Kendall. As can be seen in Table 1, the three

averaged variability measures γ̃n, δ̃n and λ̃n are highly

Figure 7: local variation measured by the length of the

interval provided by the possibility distribution based

method versus the statistical variation.

γn,p γ̃n δn,p δ̃n λn,p λ̃n

Pearson 0.70 0.93 0.64 0.90 0.71 0.96

Spearman 0.64 0.92 0.63 0.90 0.67 0.95

Kendall 0.47 0.77 0.47 0.75 0.51 0.81

Table 1: Correlation coefficients between the statistical

standard deviation and the different measures of disper-

sion.

correlated with σn. The correlations between σn and the

variability measures γn,p, δn,p and λn,p are lower but are

sufficient to show a dependency between these measures

and the statistical variations of the set of images. We can

notice that λn,p is always more correlated with σn than

the other variability measures γn,p and δn,p. The same re-

mark is also true for γ̃n, δ̃n and λ̃n. We can conclude that,

in this experiment, the possibilistic approach that we pro-

pose seems to better quantify the noise level than the usual

local approach.

As we conjecture that λn,p could be regarded as a spread

factor measuring the local noise level, we expect that two

intervals [In,p, In,p] and [In,q, In,q] intersect for most of

pairs (p, q) of images. We propose to complete this ex-

perimentation, by computing, for each pixel n, the ratio

of the intervals that intersect versus the total number of

tested intervals. We compute the same ratio using γn,p

and δn,p considered as spread factors measuring statistical

standard deviations: we then test each couple of intervals

[In,p−3γn,p, In,p+3γn,p] and [In,p−3δn,p, In,p+3δn,p].
Since the 3σ interval is usually assumed to be the 99%
confidence interval, one can expect a high rate of overlap-

ping. Table 2 presents the average ratio for all the pixels

of the image and for only the pixels with a value greater

than three.
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with all pixels only with pixels

such that In > 3
Uniform kernel 0.11 0.88

gaussian kernel 0.13 0.89

possibility distribution 0.98 0.92

Table 2: Ratio of intersecting confidence intervals.

As can be seen easily on Table 2, the possibility distri-

bution based confidence interval fulfils a 98% intersecting

intervals while the usual probabilistic based confidence in-

tervals are far from this 99% ratio. The bad ratio of the

other methods is mainly due to the fact that the spread fac-

tor is underestimated by these methods for low values (as

it can be easily seen on Figures 5 to 7). In fact, select-

ing only the pixels whose level always exceeds a certain

level over the different realizations increases the score of

the probabilistic based methods. In fact, by assuming that

the measured values are Poisson distributed, a local Gaus-

sian approximation can be valid except for small values of

the illumination signal.

5 Conclusion

In this article, we have presented a method for quantifying

the noise level at each sample location of a signal. This

method is based on replacing the conventional probabilis-

tic by a possibilistic filtering approach. One of the main

advantage of this method is the fact that nothing has to be

assumed on the nature of the noise except its local ergod-

icity. Moreover, when a possibilistic approach is used in

signal processing, the noise estimation is propagated all

along the different steps of the algorithm by the model it-

self, which is an advantage compared to usual kernel based

approaches, where the noise estimation requires a parallel

computation.

6 Acknowledgment

The authors would like to thank Dr Mariano-Goulard for

providing them the data used in the experiments.

References

[1] S. Baker and I. Matthews, Lucas-Kanade 20 years on:

a unifying framework, International Journal on Com-

puter Vision, vol. 56(3), 2004, pp. 221255.

[2] I. Bloch and H. Maitre, Fuzzy mathematical mor-

phologies: A comparative study, Pattern Recognition,

vol. 28, 1995, pp. 1341-1387.

[3] I. Bloch and H. Maitre, Fusion in image processing,

In: Information Fusion in Signal and Image Process-

ing, I. Bloch (Ed.), Wiley, 2008.

[4] J.P. Chilès et P. Delfiner, Geostatistics (Modeling Spa-

tial Uncertainty), Wiley, New-York, U.S.A., 1999.

[5] B.R. Corner, R.M. Narayanan, and S.E. Reichenbach,

Noise estimation in remote sensing imagery using data

masking, International Journal of Remote Sensing,

vol. 24, 2003, pp. 689-702.

[6] G. de Cooman, Integration and conditioning in numer-

ical possibility theory, Annals of Mathematics and Ar-

tificial Intelligence, vol. 32, 2001, pp. 87-123.

[7] D. Denneberg, Non-Additive Measure and Integral,

Kluwer Academic Publishers, 1994.

[8] D. Dubois, Possibility theory and statistical reasoning,

Computational Statistics and Data Analysis, vol. 51,

2006, pp. 47-69.

[9] D. Dubois and H. Prade, Possibility theory: an ap-

proach to computerized processing of uncertainty,

Plenum Press, 1988.

[10] D. Dubois, H. Prade, and S. Sandri, On possibil-

ity/probability transformations, Proceedings of Fourth

IFSA Conference, Kluwer Academic Publ, 1993, pp.

103-112.

[11] D. Dubois, H. Prade, and P. Smets, New seman-

tics for quantitative possibility theory, ISIPTA01, 2nd

International Symposium on Imprecise Probabilities

and Their Applications, Ithaca, New York, USA, June,

2001.

[12] D. Dubois, H. Prade, and P. Smets, A definition

of subjective possibility, International Journal of Ap-

proximate Reasoning, vol. 48, 2008, pp. 352-364.

[13] D. Dubois, L. Foulloy, G. Mauris, and H. Prade,

Probability-Possibility Transformations, Triangular

Fuzzy Sets, and Probabilistic Inequalities, Reliable

Computing, vol. 10, 2004, pp. 273-297.

[14] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael,

Learning low-level vision, International Journal on

Computer Vision, vol. 40(1), 2000, pp. 2547.

[15] P. Goovaerts, Geostatistics for natural resources eval-

uation, Oxford University Press New York, 1997.

[16] G.E. Healey and R. Kondepudy, Radiometric CCD

camera calibration and noise estimation, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

vol. 16, 1994, pp. 267-276.

[17] F. Jacquey, K. Loquin, F. Comby, and O. Strauss,

Nonadditive approach for gradient-based edge detec-

tion, ICIP07, Int. Conf. on Image Processing, San An-

tonio, Texas, USA, September, 2007, pp. 16-19.

ISIPTA’09: Noise Quantization via Possibilistic Filtering 305



[18] C. Liu, W.T. Freeman, R. Szeliski, and S.B. Kang,

Noise Estimation from a Single Image, IEEE Com-

puter Society Conference on Computer Vision and

Pattern Recognition, 2006.

[19] K. Loquin, De l’utilisation des noyaux maxitifs en

traitement de l’information, PhD report, LIRMM,
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Abstract

This paper provides an overview of nonparametric
predictive inference for comparison of multiple groups
of data including right-censored observations. Differ-
ent right-censoring schemes discussed are early ter-
mination of an experiment, progressive censoring and
competing risks. Theoretical results are briefly stated,
detailed justifications are presented elsewhere. The
methods are illustrated and discussed via examples
with data from the literature.

Keywords. Competing risks, early termination, non-
parametric predictive inference, precedence testing,
progressive censoring, right-censored data.

1 Introduction

This paper presents a brief overview of recent results
on nonparametric predictive inference (NPI) for mul-
tiple comparisons in situations with right-censored ob-
servations. Such data typically occur in reliability or
survival analysis, due to several reasons. For exam-
ple, when interest is in a specific failure mode for a
technical unit, it may fail due to a different failure
cause. If multiple failure modes are of interest, and
failure will be due to only a single failure mode, then
this situation is known as ”competing risks”, where
an observed failure time is actually a right-censoring
time with regard to all failure modes that did not
cause the failure. Another reason for right-censoring
may be removal of units from a lifetime experiment,
normally to save time or reduce cost, but this also
occurs if, at some point, one wishes to study units
which have not yet failed in an experiment in more
detail. If right-censoring is due to an experiment
being terminated before all units have failed, mul-
tiple comparisons of different groups of units based
on such data is known as ”precedence testing”. If
non-failing units are removed from the experiment at
several possible stages it is known as ”progressive cen-
soring”. Recently, we have developed NPI for mul-

tiple comparisons for precedence testing, progressive
censoring, and competing risks, and these results are
briefly presented here and illustrated and discussed
via examples. Detailed justifications of the results are
presented elsewhere. It should be emphasized that,
throughout the paper, unspecified reasons for right-
censoring are assumed to be based on processes that
are independent of the residual lifetimes of the cen-
sored units.

NPI is a statistical method that aims at using rela-
tively few modelling assumptions, it uses lower and
upper probabilities to quantify uncertainty. Some ba-
sic applications of NPI in reliability were summarized
by Coolen, et al [12], recently a variety of further ap-
plications in this area have been presented, includ-
ing probabilistic safety assessment if zero failures have
been observed [7], prediction of not-yet occurred fail-
ure modes [8], comparison of success-failure data [17],
and system reliability with optimal redundancy allo-
cation [18]. NPI has also been developed for replace-
ment problems, with specific attention to age replace-
ment of technical units [19, 21]. Imprecise probabilis-
tic methods are attractive in reliability, as their flex-
ibility for dealing with limited information is a par-
ticular advantage for dealing with practical aspects
of many reliability situations. Utkin and Coolen [35]
present an extensive overview of the literature, for a
concise overview see [13].

In Section 2 of this paper NPI is briefly introduced,
followed in Section 3 by explanation of the way in
which NPI deals with right-censored data. Recent de-
velopments of NPI for multiple comparisons with the
different right-censoring schemes discussed above are
presented in Sections 4, 5 and 6, and illustrated and
discussed in examples in Section 7. The same nota-
tion is used for different quantities in Sections 4-6, but
in the general NPI approach to multiple comparisons
they all relate to similar concepts, just the interpre-
tations in the specific applications are different per
section.
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2 Nonparametric predictive inference

Nonparametric predictive inference (NPI) is based
on Hill’s assumption A(n) [25], which implies di-
rect (lower and upper) probabilities for a future ob-
servable random quantity, based on observed values
of n related random quantities [6]. Suppose that
X1, . . . , Xn, Xn+1 are positive, continuous and ex-
changeable random quantities representing lifetimes.
Let the ordered observed values of X1, . . . , Xn be de-
noted by x1 < x2 < . . . < xn < ∞, and let x0 = 0
and xn+1 = ∞ for ease of notation, note that the lat-
ter is not considered to be an observation for Xn+1.
We assume that no ties occur, our results can be gen-
eralised to allow ties [26]. For positive Xn+1, repre-
senting a future observation, based on n observations,
A(n) assigns P (Xn+1 ∈ (xi, xi+1)) = 1/(n + 1) for
i = 0, 1, . . . , n. A(n) does not assume anything else,
and is a post-data assumption related to exchange-
ability [22]. Hill [24] discusses A(n) in detail, and he
also provided a Bayesian justification for A(n) under
finite additivity [26]. Inferences based on A(n) can be
considered suitable if there is hardly any knowledge
about the random quantity of interest, other than the
n observations, or if one does not want to use such in-
formation. A(n) is not sufficient to derive precise prob-
abilities for many events of interest, but it provides
bounds for probabilities via the ‘fundamental theorem
of probability’ [22], which are lower and upper prob-
abilities in interval probability theory [36, 37]. NPI
has strong consistency properties within the theory of
interval probability [1], attractive frequentist proper-
ties, and compares favourably to objective Bayesian
methods [6, 24].

3 NPI for right-censored data

Coolen and Yan [16] presented rc-A(n) as a general-
ization of A(n) for right-censored data, using the addi-
tional assumption that, at a moment of censoring, the
residual lifetime of a right-censored unit is exchange-
able with the residual lifetimes of all other units that
have not yet failed or been censored.

Suppose that there are n observations consisting of u
event times, x1 < x2 < . . . < xu, and υ(= n − u)
right-censored observations, c1 < c2 < . . . < cυ. Let
x0 = 0 and xu+1 = ∞, and suppose that there are si

right-censored observations in the interval (xi, xi+1)
at times ci

1 < ci
2 < . . . < ci

si
, where

∑u
i=0 si = υ.

These data can also be denoted by pairs (ti, δi) for
i = 1, . . . , n, where ti = xi (so a failure time, or time
of other actual event of interest) if δi = 1 and ti = ci

(a right-censored observation) if δi = 0. For ease of
notation, let (t0, δ0) = (0, 1) and xn+1 = ∞. The
assumption rc-A(n) partially specifies the probability

distribution for Xn+1 by the following M -functions
[16], for i = 1, . . . , n:

MXn+1(ti, xi+1) =
1

n + 1
(ñti

)δi−1
∏

{r:cr<ti}

ñcr
+ 1

ñcr

(1)

where ñcr and ñti are the numbers of units in the
risk set (i.e. that have not yet failed or been cen-
sored) just prior to time cr and ti, respectively. These
M -functions are basic probability assignments in the
sense of Shafer [33], and lead to the following precise
probabilities for Xn+1 to be between two consecutive
observed failure times xi and xi+1,

P (Xn+1 ∈ (xi, xi+1)) =
1

n + 1

∏

{r:cr<xi+1}

ñcr + 1
ñcr

(2)

Coolen and Yan [15] developed NPI for comparison
of two groups of lifetime data including right-censored
observations. By applying the appropriate rc-A(n) as-
sumption for each group, their method is based on
comparing the next observation from each group, say
Xnx+1 and Yny+1. The NPI lower and upper proba-
bilities for the event that Xnx+1 < Yny+1 are

P =
ux∑

i=0

ny∑

j=0

1(xi+1 < ty,j)PX(xi, xi+1)MY (ty,j , yj+1)

P =
nx∑

i=0

uy∑

j=0

1(tx,i < yj+1)PY (yj , yj+1)MX(tx,i, xi+1)

where MX(tx,i, xi+1), MY (ty,j , yj+1), PX(xi, xi+1)
and PY (yj , yj+1) are as given by (1) and (2), and
1(A) is the indicator function that equals 1 if A is
true and 0 else. Coolen and Yan [15] did not con-
sider situations with more than two groups, nor the
effect of early termination of the lifetime experiment
or the specific features of progressive censoring and
competing risks. NPI for multiple comparisons for
real-valued data without right-censored observations
was presented in [14], and NPI multiple comparisons
for Bernoulli data in [11].

4 Early termination of experiment

In some circumstances, mostly in order to save costs
or time, an experiment to compare lifetimes of units
in different groups may be terminated before all units
have failed. We assume that all units are placed si-
multaneously on a lifetime experiment which is ter-
minated at a certain specified time, which may also
be the moment a specified number of failures have oc-
curred. The situation where for all units failing before
the moment of termination of the experiment the life-
times are observed, is also known as precedence testing
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in the literature [3]. Coolen-Schrijner et al [20] pre-
sented NPI for comparison of two groups of lifetime
data with early termination of the experiment, say
at time T0, and they illustrated the effect of vary-
ing T0. The resulting data set contains, for each of
the two groups in the experiment, failure times prior
to T0 and right-censored observations at T0 for all
units that do not fail before T0. Maturi et al [28] ex-
tend this to more than two groups, with a variety of
inferential goals for the multiple comparisons in line
with different goals as presented in the statistical se-
lection literature [4]. Maturi et al [30] present further
generalized results, which also generalize the results
by Coolen and Yan [15], by developing NPI for com-
parison of multiple groups of lifetime data including
right-censored observations, and with possible early
termination of the experiment.

Consider an experiment to compare lifetimes of units
from k ≥ 2 groups, which are assumed to be fully
independent, with the experiment starting on all units
at time 0. The experiment can be terminated before
all units have failed, say at time T0. This T0 can be
fixed or random, but it is essential that it is assumed
not to hold any information on residual time-to-failure
for units that have not yet failed. We also allow non-
informative right-censoring to occur for some units
before the experiment is stopped. For group j, j =
1, . . . , k, nj units are in the experiment, of which uj

units fail before (or at) T0, with ordered failure times
0 < xj,1 < xj,2 < . . . < xj,uj

≤ T0, and with right-
censoring times cj,1 < cj,2 < . . . < cj,υj < T0. Let
xj,0 = 0 and xj,uj+1 = ∞ (j = 1, . . . , k), and let sj,ij

be the number of right-censored observations in the
interval (xj,ij

, xj,ij+1), with xj,ij
< c

ij

j,1 < c
ij

j,2 < . . . <

c
ij

j,sj,ij
< xj,ij+1 and

∑uj

ij=0 sj,ij
= υj , so nj−(uj +υj)

units from group j are right-censored at T0.

For NPI with data containing right-censored observa-
tions, and with early termination of the experiment
at time T0, the assumption rc-A(nj) implies that the
following M -function values apply for a nonnegative
random quantity Xj,nj+1, on the basis of data con-
sisting of uj failure times and (nj−uj) right-censored
observations:

M j
ij

=MXj,nj+1(xj,ij
, xj,ij+1) =

1
nj+1

∏

{r:cr<xj,ij
}

ñj,cr
+1

ñj,cr

M j
ij ,aj

=MXj,nj+1(c
ij

j,aj
, xj,ij+1)=

(ñ
j,c

ij
j,aj

)−1

nj+1

∏

{r:cr<c
ij
j,aj

}

ñj,cr
+1

ñj,cr

M j
T0

=MXj,nj+1(T0,∞) =
nj−(uj+υj)

nj+1

∏

{r:cr<T0}

ñj,cr
+1

ñj,cr

where ij = 0, . . . , uj , aj = 1, . . . , sj,ij , and ñj,cr and
ñ

j,c
ij
j,aj

are the number of units from group j in the

risk set just prior to time cr and c
ij

j,aj
, respectively.

Also

P j
ij

=P (Xj,nj+1∈(xj,ij , xj,ij+1))=
1

nj+1

∏

{r:cr<xj,ij+1}

ñj,cr+1
ñj,cr

P j
T0

=P (Xj,nj+1 ∈ (T0,∞)) = MXj,nj+1(T0,∞) = M j
T0

The NPI lower and upper probabilities for the
event that the next observed lifetime from group
l is the maximum of all next observed lifetimes
for the k groups in the experiment, i.e. Xl,nl+1 =
max1≤j≤k Xj,nj+1, are

P (l) =
ul∑

il=0





k∏

j=1

j 6=l




uj∑

ij=0

1(xj,ij+1 < xl,il
)P j

ij


M l

il

+
sl,il∑

al=1

k∏

j=1

j 6=l




uj∑

ij=0

1(xj,ij+1< cil

l,al
)P j

ij


M l

il,al





+ M l
T0

k∏

j=1

j 6=l

uj∑

ij=0

1(xj,ij+1< T0)P
j
ij

(3)

P
(l)

=
ul∑

il=0

P l
il

k∏

j=1

j 6=l





uj∑

ij=0

1
(
xj,ij

< xl,il+1

)
M j

ij

+
uj∑

ij=0

sj,ij∑

aj=1

1(cij

j,aj
< xl,il+1)M

j
ij ,aj

+ 1 (T0 < xl,il+1)M j
T0

}
+ P l

T0
(4)

If the experiment is not terminated before the event
times of all units have been observed, so for each unit
either the failure time or a right-censoring time not
due to the experiment ending, then the terms includ-
ing T0 in formulae (3) and (4) disappear, and we get
a generalization of the results by Coolen and Yan
[15], who only considered NPI for comparison of two
groups of lifetime data including right-censored obser-
vations. Another special case occurs if there are no
right-censored observations before T0. In this case our
method generalizes the results by Coolen-Schrijner et
al [20], who considered NPI for comparison of two
groups with early termination of the experiment, but
without earlier right-censoring.

At any value of T0, we can state that the data pro-
vide a strong indication that group l is the best if
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P (l) > P
(j)

for all j 6= l. It might seem attractive
to state that, if P (l) > P (j) and P

(l)
> P

(j)
for all

j 6= l, there would be a weak indication that group
l is the best. The difference between the upper and
lower probabilities reflects the amount of information
available, it decreases if more relevant information be-
comes available. A typical feature of NPI for these
methods with the experiment terminated at T0 is that,
if T0 is increased, the upper (lower) probability never
increases (decreases), while its value can only change
at observed event times.

5 Progressive censoring

Maturi et al [29] considered the comparison of two
groups, say X and Y , in which progressive censoring
schemes are applied for one or both groups. They
allow several such censoring schemes, known in the
literature as progressive Type-I censoring, progres-
sive Type-II censoring and Type-II progressively hy-
brid censoring scheme [2]. The main characteristic of
progressive censoring is that, at several stages some
units are randomly removed from the experiment.
For NPI for a progressive Type-II censoring scheme
with R = (R1, R2, . . . , Rr), where Ri is the num-
ber of units that are removed from the experiment
at the ith failure, the assumption rc-A(n) implies that
the probability distribution for a nonnegative random
quantity Xn+1 on the basis of data including r real
and n− r progressively censored observations, is par-
tially specified by the following M -function values, for
i = 0, 1, . . . , r,

MX(xi, xi+1) =
1

n + 1

i−1∏

k=1

n− k −∑k−1
l=1 Rl + 1

n− k −∑k
l=1 Rl + 1

(5)

MX(x+
i , xi+1)=

Ri

n−i−∑i
l=1Rl+1

MX(xi, xi+1) (6)

where x+
i represents the lower bound for the interval

that contains the set of censored units at xi, x0 = 0
and xr+1 = ∞. The corresponding NPI probabilities
for Xn+1 to be in (xi, xi+1) are

PX(xi, xi+1) =
1

n + 1

i∏

k=1

n− k −∑k−1
l=1 Rl + 1

n− k −∑k
l=1 Rl + 1

(7)

Suppose that we have two independent groups, X
and Y , for which nx and ny units, respectively, are
placed on a lifetime experiment. Both groups are pro-
gressively Type-II censored with the schemes Rx =
(Rx

1 , Rx
2 , . . . , Rx

rx
) and Ry = (Ry

1 , Ry
2 , . . . , Ry

ry
). Given

the data, Rx, Ry, and the assumptions rc-A(nx) and
rc-A(ny), the NPI lower and the upper probabilities

that the next observation from group Y is greater than
the next observation from group X, are

P =
ry∑

j=0

rx∑

i=0

1(xi+1 < yj)PX(xi, xi+1)PY(yj , yj+1)

(8)

P =
ry∑

j=0

rx∑

i=0

1(xi < yj+1)PX(xi, xi+1)PY (yj , yj+1)

(9)
We refer to [29] for NPI comparisons in case of pro-
gressive Type-I and Type-II progressively hybrid cen-
soring. It should be emphasized that, in classical fre-
quentist methods for such comparisons [2], via hy-
pothesis tests of assumed equality of underlying life-
time distributions, the details of the exact applied
censoring scheme are relevant, as they influence the
counter-factuals, outcomes of the experiment that
were possible but did not occur. In NPI such counter-
factuals play no role, as the comparison is directly
based on random quantities representing lifetimes of
one future unit per group. The different censoring
schemes affect the M -function values, but the corre-
sponding derivations of the lower and upper probabil-
ities of interest is similar in all cases.

6 Competing risks

In competing risks, a unit is subject to failure from
one of k distinct failure modes. Throughout we as-
sume that these failure modes are independent. Tsi-
atis [34] showed that competing risks data as consid-
ered here do not hold information about dependence
of failure modes. We assume that the unit fails due to
the first occurrence of a failure caused by one of the
possible failure modes, at which moment it is with-
drawn from further use. We suppose that such failure
observations are obtained for n units, and that failure
modes causing failures are known with certainty. As
is common in study of failure data under competing
risks, we consider for each unit k random quantities,
say Ti for i = 1, . . . , k, where Ti represents the unit’s
time to failure under the condition that failure oc-
curs due to failure mode i. We assume that these Ti

are independent continuous random quantities, and
the failure time of the unit is T = min(T1, . . . , Tk).
Therefore, for each unit considered we can have one
failure time and we will know, with certainty, the fail-
ure mode that caused the failure. Hence, for the Ti

corresponding to the other failure modes, which did
not cause the failure of the unit, the unit’s observed
failure time is a right-censoring time.

For the NPI approach, let the failure time of a future
item be denoted by Xn+1, and let the corresponding
notation for the failure time including indication of
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the actual failure mode, say failure mode j, be Xj,n+1

(so Xn+1 corresponds to an observation T for unit
n + 1, and Xj,n+1 to Tj , according to the notation
in the previous paragraph). As we assume indepen-
dence between the different failure modes, our com-
peting risk data per failure mode consist of (possibly)
a number of observed failure times for failures caused
by the specific failure mode considered, and right-
censoring times for failures caused by other failure
modes. Hence we can apply rc-A(n) per failure mode
j, for inference on Xj,n+1. Let the number of failures
caused by failure mode j be uj and let υj(= n−uj) be
the number of the right-censored observations corre-
sponding to failure mode j. It should be emphasized
that we do not assume that each unit considered must
actually fail, if a unit does not fail then there will be
a right-censored observation recorded for this unit for
each failure mode, as we assume that the unit will
then be withdrawn from the study, or the study ends,
at some point. The random quantity representing the
failure time of the next unit, with all k failure modes
considered, is Xn+1 = min

1≤j≤k
Xj,n+1.

For failure mode j, j = 1, . . . , k, we have as data n
pairs (tj,ij , δj,ij ), for ij = 1, . . . , n, where δj,ij = 1 if
a failure at time tj,ij (= xj,ij ) was caused by failure
mode j and where δj,ij

= 0 denotes that the event
at the corresponding time tj,ij

(= cj,ij
) is, for as far

as this specific failure mode j is concerned, a right-
censored observation.

We can specify the NPI M -functions for Xj,n+1 (j =
1, . . . , k), similar to (1), as

M j
tj,ij

=M j(tj,ij , xj,ij+1)=
(ñtj,ij

)δj,ij
−1

(n + 1)

∏

{r:cr<tj,ij
}

ñcr+1
ñcr

(10)
with ñcr

and ñtj,ij
the numbers of units in the risk

set just prior to times cr and tj,ij
, respectively. The

corresponding NPI probabilities, similar to (2), are

P j=P j(xj,ij
, xj,ij+1)=

1
n + 1

∏

{r:cr<xj,ij+1}

ñcr
+1

ñcr

(11)

where xj,ij and xj,ij+1 are two consecutive observed
failure times caused by failure mode j (and xj,0 = 0,
xj,n+1 = ∞).

The event of interest is that a single future unit, which
we call the ’next unit’, undergoing the same test or
process as the n units for which failure data are avail-
able, fails due to a specific failure mode, say mode l.
The NPI lower and upper probabilities for the event
Xl,n+1 = min

1≤j≤k
Xj,n+1, for l = 1, . . . , k, are

P (l)=
n∑∑∑

ij=0

j 6=l




ul∑

il=0

1(xl,il+1 < min
1≤j≤k

j 6=l

{tj,ij})P l




k∏

j=1

j 6=l

M j
tj,ij

(12)

P
(l)

=
uj∑∑∑

ij=0

j 6=l




n∑

il=0

1(tl,il
< min

1≤j≤k

j 6=l

{xj,ij+1})M l
tl,il




k∏

j=1

j 6=l

P j

(13)
where the first summation signs denote the sums over
all ij from 0 to n or uj for j = 1, . . . , k but not in-
cluding j = l. The derivation of these NPI lower and
upper probabilities is given in [31].

We briefly consider the special case of the general
competing risks problem in which there are only two
failure modes (so k = 2), 1 and 2, also denoted by
FM1 and FM2, and with all n units considered ac-
tually failing due to one of these two failure modes.
Therefore, any unit which fails due to FM1 leads to
a right-censored observation for FM2, and vice versa.
In this case, the number of failures due to FM1 (FM2)
is equal to the number of right-censored observations
for FM2 (FM1), so υ1 = u2 and υ2 = u1. The NPI
lower and upper probabilities for the event that the
next unit will fail due to FM1 are

P (1) =
n∑

i2=0

{
u1∑

i1=0

1(x1,i1+1 < t2,i2)P
1

}
M2

t2,i2
(14)

P
(1)

=
u2∑

i2=0

{
n∑

i1=0

1(t1,i1 < x2,i2+1)M1
t1,i1

}
P 2 (15)

This special case enables us to illustrate some inter-
esting features of the NPI approach in this setting.
We consider two specific scenarios in detail:

(A) all failures due to FM2 come first, followed by
all failures due to FM1, meaning that the u2 failure
times of failures due to FM2 are all smaller than the
u1 failure times of failures due to FM1. In this case,
the NPI lower and upper probabilities for the event
that the next unit will fail due to FM1 are

P (1),A =
1

u1 + 1

υ2∑

i2=1

i2 M2(c2,i2 ,∞)

P
(1),A

=
1

n+1

[
υ2+1 +

u2

n+1
+
υ1−1∑

i1=1

(υ1−i1) M1(c1,i1 , x1,1)

]

(B) all failures due to FM1 come first, followed by all
failures due to FM2, in which case the NPI lower and
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upper probabilities for the event that the next unit
will fail due to FM1 are

P (1),B =
1

n + 1

[
u1 u2

u2 + 1
+

υ2∑

i1=1

i1 M2(c2,i2 , x2,1)

]

P
(1),B

=
1

u2+1

[
1+

u2(u1+1)
n+1

+
υ1−1∑

i1=1

(υ1−i1)M1(c1,i1 ,∞)

]

These NPI lower and upper probabilities follow
straightforwardly from the general expressions given
before. The main reason for highlighting these two
special cases is an interesting observation in our study
of NPI for competing risks data, namely that case (A)
always seems to give the minimal NPI lower and upper
probabilities, when all possible orderings of u2 failures
due to FM2 and u1 failures due to FM1 are consid-
ered, while case (B) always seems to give the maximal
NPI lower and upper probabilities. For now, we pro-
pose this property as a conjecture, which we strongly
believe to hold and hope to prove generally in the near
future.

7 Examples

7.1 Example I: Early termination

Desu and Raghavarao [23] present recorded times
(months) until promotion at a large company, for
19 employees in k = 3 departments. The data are:
Dept 1: 15, 20+, 36, 45, 58, 60 (n1 = 6); Dept 2:
12, 25+, 28, 30+, 30+, 36, 40, 45, 48 (n2 = 9); Dept 3:
30+, 40, 48, 50 (n3 = 4), where ” + ” indicates that
the employee left the company at that length of ser-
vice before getting promotion, this is considered to be
a right-censored observation (one could argue about
whether or not this right-censoring process is inde-
pendent of the promotion process, but as we only use
this data set for illustration, and have no further cir-
cumstantial information, we do not address this in
more detail). We consider at which department the
data suggest that one needs to work the longest to
get a promotion. This data set contains tied observa-
tions, in NPI these are dealt with by assuming that
they differ by a very small amount, in such a way that
the lower (or upper) probability of interest is smallest
(largest) over all possible ways to break the ties.

To illustrate NPI for multiple comparisons with early
termination, as summarized in Section 4, assume that
all these employees started working at this company
at the same time, and that one considers the data after
T0 months, so all larger observations in the data above
are treated as being right-censored at T0. For several
values of T0, the lower and upper probabilities for the
event that one has to work the longest in department

T0 P (1) P
(1)

P (2) P
(2)

P (3) P
(3)

11 0 1 0 1 0 1
14 0 1 0 0.903 0 1
17 0 0.863 0 0.903 0.011 1
27 0 0.863 0 0.903 0.011 1
33 0 0.863 0 0.797 0.024 1
38 0 0.714 0 0.659 0.089 1
42 0.068 0.714 0.025 0.540 0.114 0.833
47 0.081 0.615 0.032 0.434 0.197 0.833
49 0.167 0.615 0.032 0.354 0.216 0.748
52 0.239 0.615 0.032 0.354 0.216 0.662
59 0.239 0.615 0.032 0.354 0.216 0.662
61 0.239 0.615 0.032 0.354 0.216 0.662

Table 1: Lower and upper probabilities, Example I

l, P (l) and P
(l)

, for l = 1, 2, 3, are presented in Table
1. There is no value of T0 for which the corresponding
data would strongly indicate that one of the depart-
ments leads to longest time to promotion, according
to the formulation of such indications as explained in
Section 4. For several T0, for example T0 = 17, both
the lower and upper probabilities for department 3
are greater than the lower and upper probabilities,
respectively, for department 1 and for department 2.
As discussed in Section 4, one could argue that this
provides a weak indication that department 3 leads to
the longest times until promotion. However, the large
imprecision in these lower and upper probabilities in-
dicates that the evidence for such a claim is weak, so
care must be taken when formulating any conclusion
along these lines. For larger values of T0, department
3 has most imprecision remaining, which reflects that
there are only few observations for this department.

7.2 Example II: Progressive censoring

In this example, we illustrate the above presented NPI
approach for comparison of two groups of lifetime data
under several progressive censoring schemes. We use
a subset of Nelson’s data [32] on breakdown times (in
minutes) of an insulating fluid that is subject to high
voltage stress. The data are given below, 10 units per
group involved in the experiment, so nx = ny = 10.
X : 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.15, 2.57, 4.75

Y : 1.34, 1.49, 1.56, 2.10, 2.12, 3.83, 3.97, 5.13, 7.21, 8.71

We present the NPI lower and upper probabilities that
group Y is better than group X, by comparing single
next future observations from both groups, X11 and
Y11. The appropriate assumptions rc-A(n) are again
made per group, and it is assumed that the groups
are fully independent.

Suppose that progressive Type-II censoring is applied
to group Y , with three units withdrawn from the
experiment at the first observed breakdown time
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for group Y (at y1 = 1.34), and two units for this
group withdrawn at the last observed breakdown
time, y5 = 5.13, so with Ry = (3, 0, 0, 0, 2). It
is also assumed that all breakdown times for the
units from group X are observed. Assume that,
with yc denoting a right-censored observation at
time y, the data actually observed in this case are
X : 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.15, 2.57, 4.75

Y : 1.34, 1.34c, 1.34c, 1.34c, 1.49, 1.56, 2.12, 5.13, 5.13c, 5.13c

The NPI lower and upper probabilities are
P (Y11 > X11) = 0.6139 and P (Y11 > X11) = 0.8052.

Now suppose that the progressive Type-II censor-
ing scheme is applied to both groups X and Y ,
with Rx = (2, 1, 0, 1, 0, 0) and Ry = (1, 2, 0, 3)
and resulting in the following data, X :

0.49, 0.49c, 0.49c, 0.64, 0.64c, 0.93, 1.99, 1.99c, 2.06, 4.75

Y : 1.34, 1.34c, 1.49, 1.49c, 1.49c, 2.10, 2.12, 2.12c, 2.12c, 2.12c

These data lead to NPI lower and upper probabilities
P (Y11 > X11) = 0.5148 and P (Y11 > X11) = 0.8506.

Precedence testing can be considered as a special case
of progressive censoring. Suppose that the experi-
ment is terminated as soon as the fifth breakdown
from group Y is observed, i.e. at time y5 = 2.12.
Then the breakdown times of five units from
group Y are right-censored at that time, together
with three units from group X, resulting in data
X : 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.12c, 2.12c, 2.12c

Y : 1.34, 1.49, 1.56, 2.10, 2.12, 2.12c, 2.12c, 2.12c, 2.12c, 2.12c

For these data, NPI gives P (Y11 > X11) = 0.5289
and P (Y11 > X11) = 0.8264. Coolen-Schrijner et
al [20] present several results for NPI precedence
testing, including the attractive fact that, if one
increases the end-time of the experiment, such an
NPI lower (upper) probability for comparison of two
groups never decreases (increases).

7.3 Example III: Competing risks

In this example, a well-known data set from the liter-
ature [27] is used to illustrate some aspects of the NPI
method for dealing with competing risks. The data
contain information about 36 units of a new model
of a small electrical appliance which were tested, and
where the lifetime observation per unit consists of the
number of completed cycles of use until the unit failed.
These data are presented in Table 2, which also in-
cludes the specific failure mode (FM) that caused the
unit to fail. In the study, there were 18 different
ways in which an appliance could fail, so 18 failure
modes, but to illustrate the NPI method we will first
reduce this to two failure modes, thereafter we con-
sider grouping into three failure modes. Three units in
the test did not fail before the end of the experiment,
so for these units we have right-censored observations
(2565, 6367 and 13403) for all failure modes consid-

ered, indicated by ‘-’ for the failure mode in Table
2.

# cycles FM # cycles FM # cycles FM

11 1 1990 9 3034 9
35 15 2223 9 3034 9
49 15 2327 6 3059 6
170 6 2400 9 3112 9
329 6 2451 5 3214 9
381 6 2471 9 3478 9
708 6 2551 9 3504 9
958 10 2565 - 4329 9
1062 5 2568 9 6367 -
1167 9 2702 10 6976 9
1594 2 2761 6 7846 9
1925 9 2831 2 13403 -

Table 2: Failure data for electrical appliance test

The two most frequently occurring failure modes in
these data are FM9, which caused 17 units to fail, and
FM6 which caused 7 failures. We consider how likely
it is that the next unit, say unit 37, would fail due to
FM9, assuming it would undergo the same test and
its number of completed cycles would be exchange-
able with these numbers for the 36 units reported.
Let us first group all failure modes other than FM9
together, and consider these jointly as a failure mode,
so we consider the NPI approach with 2 failure modes,
FM9 and, say, ’other failure mode’ (OFM). There are
still three units that do not fail and for which we only
have right-censored observations (RC). The data cor-
responding to this definition of failure modes are pre-
sented in Table 3.

FM9 1167 1925 1990 2223 2400 2471
2551 2568 3034 3034 3112 3214
3478 3504 4329 6976 7846

OFM 11 35 49 170 329 381
708 958 1062 1594 2327 2451
2702 2761 2831 3059

RC 2565 6367 13403

Table 3: Failure data for FM9, OFM and RC

In this case there are tied observations, as two units
have failed due to FM9 after 3034 completed cycles.
To deal with this, we assume a small difference be-
tween these values, such that their ordering does not
change with regard to observations of units in other
groups, so, we assume that one of these two units ac-
tually failed after 3035 completed cycles. If such a
tie would occur among different groups, then one can
break it similarly in two ways, different for upper and
lower probabilities in such a way that these are maxi-
mal and minimal, respectively, over the possible ways
of breaking such ties, without changing the order of
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these observations with respect to all other observa-
tions. For competing risks data, a failure time obser-
vation caused by one failure mode is simultaneously a
right-censored observation for all other failure modes.
This situation is dealt with in the NPI approach, as is
common in many statistical approaches, by assuming
that the right-censoring time is just beyond the fail-
ure time. For the three right-censored observations
for units that were not observed to fail, we also have
tied observations for the two failure modes considered
(FM9 and OFM), so for both these right-censoring
times coincide. We deal with this again by assuming
that for one of the failure modes this event occurred
fractionally later than for the other, and then we cal-
culate the lower and upper probabilities for the event
of interest by considering the maximum and minimum
of the upper and lower probabilities, respectively, cor-
responding to the different possible orderings of these
‘un-tied’ right-censoring times.

The NPI lower and upper probabilities for the event
that unit 37 will fail due to FM9 are

P (XFM9
37 < XOFM

37 ) = 0.4358,

P (XFM9
37 < XOFM

37 ) = 0.5804

while the corresponding NPI lower and upper proba-
bilities for unit 37 to fail due to OFM are

P (XOFM
37 < XFM9

37 ) = 0.4196,

P (XOFM
37 < XFM9

37 ) = 0.5642

These lower and upper probabilities satisfy the con-
jugacy property as, implicit in our method, it is as-
sumed that the experiment on unit 37 would actually
continue until it fails, and this is assumed to happen
with certainty. NPI can be generalized to take the
possibility of ’non-failure’ of the next unit by a cer-
tain time into account, but we have not developed this
further. On the basis of these NPI lower and upper
probabilities, one could interpret the data as contain-
ing weak evidence that the event that unit 37 will fail
due to FM9 is (a bit) more likely than for it to fail
due to another failure mode, with all the other failure
modes grouped together as done in this case.

Let us now group the failure modes differently, by
considering FM9 and FM6 separately, causing 17 and
7 units to fail, respectively. We group all the other
failure modes together into OFM. The data used here
are given in Table 4. The NPI lower and upper proba-
bilities for the event that unit 37 will fail due to FM9,
due to FM6 or due to OFM, are

P
(
XFM9

37 <min
{
XFM6

37 , XOFM
37

})
=0.3915 ,

FM9 1167 1925 1990 2223 2400 2471
2551 2568 3034 3034 3112 3214
3478 3504 4329 6976 7846

FM6 170 329 381 708 2327 2761
3059

OFM 11 35 49 958 1062 1594
2451 2702 2831

RC 2565 6367 13403

Table 4: Failure data for FM9, FM6, OFM and RC

P
(
XFM9

37 <min
{
XFM6

37 , XOFM
37

})
=0.5804

P
(
XFM6

37 <min
{
XFM9

37 , XOFM
37

})
=0.1749 ,

P
(
XFM6

37 <min
{
XFM9

37 , XOFM
37

})
=0.3279

P
(
XOFM

37 <min
{
XFM6

37 , XFM9
37

})
=0.2265 ,

P
(
XOFM

37 <min
{
XFM6

37 , XFM9
37

})
=0.3808

Since

P
(
XFM9

37 < min
{
XFM6

37 , XOFM
37

})
>

P
(
XFM6

37 < min
{
XFM9

37 , XOFM
37

})

one could interpret the data as providing strong evi-
dence that unit 37 is more likely to fail due to FM9
than due to FM6, in this setting with all other fail-
ure modes grouped into OFM. If one adopts a sub-
jective interpretation of lower and upper probabilities
in terms of prices for desirable gambles, in line with
Walley [36], then these lower and upper probabilities
would imply that, for any price between 0.3279 and
0.3915, one would be willing both to buy the gam-
ble which pays 1 if unit 37 fails due to FM9 and to
sell the gamble which pays 1 if unit 37 fails due to
FM6. If one has a quick look at the data, one may
be surprised that FM6 is not the more likely one to
lead to failure, as it has caused relatively many early
failures. However, it only caused failure of 7 out of
the 36 units tested, the comparisons would be differ-
ent if the data were not competing risks data on the
same units but failure times for independent groups
without the important aspect of a failure due to one
failure mode providing a right-censored observation
for all other failure modes. Similarly, strong evidence
that unit 37 is more likely to fail due to FM9 than
due to OFM can be claimed because

P
(
XFM9

37 < min
{
XFM6

37 , XOFM
37

})
>

P
(
XOFM

37 < min
{
XFM6

37 , XFM9
37

})

Comparison of these two cases illustrates some fea-
tures that are different in statistics using lower and
upper probabilities when compared to methods using
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precise probabilities. The lower and upper probabili-
ties for unit 37 to fail due to FM9 are [0.4358, 0.5804]
in the first case, with all other failure modes grouped
together, and [0.3915, 0.5804] in the second case, with
FM6 also taken separately. In the latter case, there is
more imprecision in these upper and lower probabili-
ties, while data are represented in more detail. This
increase in imprecision, actually the fact that these
upper and lower probabilities are nested with more
imprecision if data are represented in more detail, is
in line with a fundamental principle of NPI proposed
and discussed by Coolen and Augustin [9, 10] in the
context of multinomial data. This leads to the con-
jecture that, for such competing risks data, if more
failure modes are treated separately instead of being
grouped together, then lower and upper probabilities
for an event that the next unit’s failure is caused by a
specific failure mode are nested, with imprecision in-
creasing with the number of failure modes used. We
hope to prove this conjecture in the near future.

The two NPI upper probabilities for the event that
unit 37 will fail due to FM9, for the cases with all
other failure modes grouped together (first case) and
with FM6 separated (second case), are both equal to
0.5804. This is a consequence of the fact that this
upper probability is realized with the extreme assign-
ments of probability masses in the intervals created
by the data in accordance to the lower survival func-
tion for FM9 and the upper survival function for the
other failure modes. With all failure modes assumed
to be independent, the upper survival function for the
other failure modes combined is actually the same,
whether or not FM6 is considered separately, this was
discussed by Coolen et al [12], who presented individ-
ual NPI lower and upper survival functions and also
considered the data used in this example, but they
did not develop the NPI method for multiple compar-
isons that underlies the NPI method for competing
risks presented here.
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Abstract

The problem tackled in this paper deals with obstacle
tracking in the context of vehicle driving aid, espe-
cially the association step, which consists in associat-
ing perceived objects with known objects detected at
a previous time. A contribution in the modeling of
this association problem in the belief function frame-
work is introduced. By interpreting belief functions as
weighted opinions according to the Transferable Be-
lief Model semantics, pieces of information regarding
the association of known objects and perceived ob-
jects can be expressed in a common global space of
association to be combined by the conjunctive rule of
combination, and a decision making process using the
pignistic transformation can be made. This approach
is validated on real data.

Keywords. Obstacle tracking, association step, be-
lief functions, Transferable Belief Model.

1 Introduction

In obstacle tracking, the association step consists in
establishing a correlation between tracks (known ob-
jects) and targets (perceived objects) from informa-
tion usually provided by different sensors or captors.
Such a mapping can be even more complex depending
on the number of targets and tracks, as well as the
quality of the provided information. Introduced by
Dempster [5] and Shafer [21], belief functions consti-
tute a suitable framework for the representation and
manipulation of imperfect information. Thus, next to
architectures based on Bayesian probabilistic frame-
work [2, 3], Rombaut [18, 19] develops a first modeling
based on belief functions. In this model, information
regarding the association of couples (known objects,
perceived objects) is represented by belief functions,
which are combined using, for simplicity reasons, an
adapted combination introduced by Rombaut. In [12]
this latter model is developed by using a decision-
making system based on belief matrices and the ap-

plication of a coupling algorithm.

In this paper, a modeling of this association step prob-
lem is introduced in the Smets’ semantic approach of
belief functions: the Transferable Belief Model (TBM)
[24], a subjectivist and non-probabilistic interpreta-
tion of the Dempster-Shafer theory of belief function.
In particular, it is shown that TBM classical tool
like the conjunctive combination rule and the pignis-
tic decision-making can be implemented and tested
in a real time application, these experimental results
demonstrating the effectiveness of this approach as
compared to Rombaut’s combination rule.

Let us note that the works presented here reexpress
and extend in the Transferable Belief Model a for-
mer model presented by some of the authors in [13].
Likewise, the association problem described here has
many similarities with the works undertaken by Ristic
and Smets in [17].

This paper is organized as follows. The TBM basic
concepts we need are recalled in Section 2. An associ-
ation algorithm based on belief functions is introduced
in Section 3 and discussed in particular with the other
approaches in Section 4. Then, experimental results
on real data are presented in Section 5. Finally, Sec-
tion 6 concludes this paper.

2 Transferable Belief Model (TBM):
basic concepts

The Transferable Belief Model (TBM) is a model
of uncertain reasoning and decision-making based on
two levels [10, 24]:

• the credal level, where available pieces of infor-
mation are represented by belief functions, and
manipulated;

• the pignistic or decision level, where belief func-
tions are transformed into probability measures
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when a decision has to be made, and the expected
utility is maximized.

2.1 Representing information with belief
functions

2.1.1 Belief functions

The knowledge held by an agent is represented by the
allocation of a finite mass of belief to subsets of the
universe of discourse.

Let Ω = {ω1, ω2, . . . , ωN}, called the frame of discern-
ment, be a finite set composed of all possible answers
to a given question Q of interest. The beliefs held by
a rational agent Ag regarding the answer to question
Q can be quantified by a belief mass function or basic
belief assignment (BBA) mΩ

Ag : 2Ω → [0, 1] s.t.:

∑

A⊆Ω

mΩ
Ag(A) = 1 . (1)

The quantity mΩ
Ag(A) represents the part of the unit

mass allocated to the hypothesis that the answer to
question Q is in the subset A of Ω. When there is
no ambiguity, the notation mΩ

Ag will be simplified as
follows mΩ or m.

• A subset A of Ω such that m(A) > 0 is called a
focal set of m.

• A BBA m with only one focal set A is called a cat-
egorical BBA and is denoted mA; then mA(A) =
1.

• Total ignorance is represented by the BBA mΩ

called the vacuous BBA.

• A normal BBA m satisfies the condition m(∅) =
0.

• Let A be a subset of Ω, the cardinality of A,
denoted |A|, is the number of elements of Ω in A;
if |A| = 1, A is said to be a singleton.

The belief and plausibility functions associated with
a BBA m are defined, respectively, as:

bel(A) =
∑

∅6=B⊆A

m(B) ∀A ⊆ Ω , (2)

pl(A) =
∑

B∩A 6=∅
m(B) ∀A ⊆ Ω . (3)

Functions m, bel and pl are in one-to-one correspon-
dence, and thus constitute different forms of the same
information.

2.1.2 Refinements and Coarsenings

When applying the TBM to a real-world applica-
tion, the determination of the frame of discernment
Ω, which defines the set of states on which beliefs will
be expressed, is a crucial step. As noticed by Shafer
[21, chapter 6], the degree of granularity of Ω is al-
ways, to some extent, a matter of convention, as any
element of Ω representing a given state can always
be split into several alternatives. Hence, it is funda-
mental to examine how a belief function defined on
a frame may be expressed in a finer or, conversely,
in a coarser frame. The concepts of refinement and
coarsening can be defined as follows.

Let Θ and Ω denote two frames of discernment. A
mapping ρ : 2Θ → 2Ω is called a refining of Θ (Figure
5) if it verifies the following properties:

1. The set {ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω,
and

2. For all A ⊆ Θ:

ρ(A) =
⋃

θ∈A

ρ({θ}). (4)

Θ is then called a coarsening of Ω, and Ω is called a
refinement of Θ.

Figure 1: Illustration of a coarsening Θ of Ω associ-
ated with a refining ρ of Θ.

2.2 Manipulating information with belief
functions

2.2.1 Vacuous Extension

The vacuous extension operation allows one to convey
a belief mass function mΘ, expressing a state of belief
on Θ, to a finer frame Ω, a refinement of Θ. Stemming
from the least committed principle [22], this operation
is denoted with an arrow pointing up, and is defined
by:

mΘ↑Ω(ρ(A)) = mΘ(A), ∀A ⊆ Θ , (5)

where ρ is the refining of Θ in Ω.
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2.2.2 Combining beliefs

Two BBAs m1 and m2, induced by distinct and re-
liable sources of information, can be combined using
the conjunctive rule of combination (CRC), also called
unnormalized Dempster’s rule of combination, defined
for all A ⊆ Ω by:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C) . (6)

The normalization hypothesis (m(∅) = 0) can be re-
covered with the following normalization step:

m1 ⊕m2(A) =

{
m1 ∩©2(A)

1−m1 ∩©2(∅) if ∅ 6= A ⊆ Ω ,

0 otherwise.
(7)

This latter rule of combination is called Dempster’s
rule of combination.

2.3 Decision-making level

When a decision has to be made regarding the answer
to question Q, some rationally principles [4] justify the
strategy consisting in choosing the decision d among
a set of possible decisions D, which minimizes the ex-
pected risk defined by:

R(d) =
∑

ω∈Ω

c(d, ω)PΩ({ω}), (8)

where PΩ : 2Ω → [0, 1] is a probability measure and
c : D × Ω → IR a cost function, c(d, ω) representing
the cost to decide d while the truth is ω.

At this level, the mass function mΩ representing the
available information regarding the answer to ques-
tion Q belonging to Ω (resulting in practice from a
fusion process) has then to be transformed in a prob-
ability measure. A solution [7] consists in computing
the pignistic probability [23] defined by:

BetPΩ({ω}) =
∑

{A⊆Ω,ω∈A}

m(A)
|A| (1−m(∅)) , ∀ω ∈ Ω.

(9)

The chosen decision is then the one that minimizes
the pignistic risk defined by:

RBet(d) =
∑

ω∈Ω

c(d, ω)BetPΩ({ω}) . (10)

In the case of 0-1 costs with D = Ω, which means
that c(ωi, ωj) = 1 if i = j, 0 otherwise, choosing the
decision d which minimises the pignistic risk (10) is
equivalent to choose the decision d which maximizes
the pignistic probability (9).

An other case consists in choosing 0-1 costs with
D = Ω ∪ {d0}, where d0, called rejection decision [7],
consists in refusing to make a decision belonging to
D \ {d0} when the risk is judged too high. By de-
noting c0 = c(d0, ωi) ∀i ∈ {1, . . . , N}, minimizing the
pignistic risk (10) is equivalent to choose the decision:

• d0 if max
i=1,...,N

BetP ({ωi}) < 1− c0,

• ωj if BetP ({ωj}) = max
i=1,...,N

BetP ({ωi}) ≥ 1−c0.

The cost c0 is called the rejection cost.

3 Object association algorithm

3.1 Representing information with belief
functions

The first step when building belief functions is to de-
fine the universe of discourse.

Let us consider the following notations:

• Xi: designate a perceived object at time t, i ∈
I = {1, . . . , N}, N being the number of perceived
objects at time t;

• Yj : designate a known object at previous time
t − 1, j ∈ J = {1, . . . ,M}, M being the number
of known objects at time t− 1;

• ⋆: a proposition meaning “no object”.

The association process objective consists in finding
the best possible association between a set of per-
ceived objects {X1,X2, . . . ,XN ,⋆ } and a set of known
objects {Y1, Y2, . . . , YM ,⋆ }, under the following con-
straints:

• each perceived object Xi is associated with at
most one known object;

• each known object Yj is associated with at most
one perceived object;

• proposition ⋆ can be associated to any objects.

Frames of discernment involved in this application are
then the followings:

• Ωi,j = {yi,j , ni,j}, containing the two possible
answers (yes or no) to the question Qi,j : “Is the
perceived object Xi associated with the known
object Yj?”;
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• ΩXi
= {Y1, Y2, . . . , YM ,⋆ }, containing the set of

possible answers to the question QXi
: “Who is

associated with the perceived object Xi?”, propo-
sition ⋆ meaning that Xi has appeared;

• ΩYj
= {X1,X2, . . . ,XN ,⋆ }, containing the set of

possible answers to the question QYj
: “Who is

associated with the known object Yj?”, propo-
sition ⋆ meaning that Yj has disappeared or is
hidden.

Let us remark that ΩYj
= ΩYk

, for all j, k ∈ J , and
ΩXi

= ΩXℓ
, for all i, ℓ ∈ I. Thus, ΩXi

(respectively
ΩYj

) can be denoted ΩX ∀i (respectively ΩY ∀j). At
last, when there is no ambiguity, the frames elements
will be simplified as follows :

• ΩXi
= J ∪ {⋆} = {1, . . . ,M, ⋆},

• ΩYj
= I ∪ {⋆} = {1, . . . , N, ⋆}.

In the domain of intelligent vehicles, sensors or mea-
sures generally provide information regarding the as-
sociation between each perceived object Xi and each
known object Yj [18, 19, 12, 11]. More precisely, ini-
tial information is represented by belief mass func-
tions mΩi,j on frames Ωi,j , i ∈ I, j ∈ J :

• the mass allocated to {yi,j} expresses information
on the fact that Xi is associated with Yj ;

• the mass allocated to {ni,j} expresses informa-
tion on the fact that Xi is not associated with
Yj ;

• the mass allocated to Ωi,j = {yi,j , ni,j} expresses
the ignorance regarding the association of Xi and
Yj .

N ×M belief mass functions mΩi,j have been defined
regarding the association of each object (perceived ob-
jects Xi, known objects Yj). These pieces of informa-
tion have then to be fused to determine:

• Where do perceived objects Xi come from?

• What are known objects Yj become?

3.2 Expressing pieces of information in a
common frame

To answer these questions, the N × M belief mass
functions can be combined when expressed on two
possible common frames: ΩX and ΩY . Frames ΩXi

and ΩYj
being refinements of Ωi,j , each information

mΩi,j can be expressed either on ΩXi
or on ΩYj

by
the vacuous extension operation (5):

mΩi,j↑ΩXi (ρi,j(A)) = mΩi,j (A), ∀A ⊆ Ωi,j , (11)

where ρi,j is the refining of Ωi,j on ΩXi
illustrated

in Figure 2, and defined by ρi,j({oi,j}) = {j} and
ρi,j({ni,j}) = {j}.

Figure 2: Refining ρi,j allowing one to transport the
information mΩi,j on ΩXi

.

Thus, for all (i, j) ∈ I × J :




mΩi,j↑ΩXi ({j}) = mΩi,j ({yi,j})
mΩi,j↑ΩXi ({j}) = mΩi,j ({ni,j})
mΩi,j↑ΩXi (ΩXi

) = mΩi,j (Ωi,j)
(12)

In the same manner, it is also possible to vacuously
extend mΩi,j on ΩYj

:




mΩi,j↑ΩYj ({i}) = mΩi,j ({yi,j})
mΩi,j↑ΩYj ({i}) = mΩi,j ({ni,j})
mΩi,j↑ΩYj (ΩYj

) = mΩi,j (Ωi,j)
(13)

In the following of this paper, mΩi,j↑ΩXi (respectively

mΩi,j↑ΩYj ) is denoted m
ΩXi
j (respectively m

ΩYj

i ).

3.3 Combining belief mass functions

At this level:

• for each i ∈ I = {1, . . . , N}, M belief mass func-
tions m

ΩXi
j have been created regarding the asso-

ciation of each object Xi toward the Yj , the focal
elements of each one being {j}, {j}, and ΩXi

.

• for each j ∈ J = {1, . . . ,M}, N belief mass func-

tions m
ΩYj

i have been created regarding the asso-
ciation of each object Yj toward the Xi, the focal
elements of each one being {i}, {i}, et ΩYj

.

The M belief mass functions m
ΩXi
j , considered as dis-

tinct and reliable, are combined using the conjunctive
rule of combination (6).
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Let us denote mΩXi the resulting mass function:

mΩXi = ∩©j∈J m
ΩXi
j . (14)

For all k ∈ J :

mΩXi ({k}) =
∑

∩Aj={k}

∏

j∈J

m
ΩXi
j (Aj) , (15)

where, for all j ∈ J , Aj = {j}, {j}, or ΩXi
.

But:

∩j∈JAj = {k} ⇔ Ak = {k} and (Aj = {j} or
Aj = ΩXi

, ∀j ∈ J \ {k}),
⇔ Ak = {k} and

Aj 6= {j}, ∀j ∈ J \ {k} .

Thus, for all k ∈ J :

mΩXi ({k}) = m
ΩXi

k ({k})
M∏

j=1
j 6=k

(1−m
ΩXi
j ({j})) . (16)

Similarly, for all K ⊆ J :

mΩXi (K) =
∑

∩Aj=K

∏

j∈J

m
ΩXi
j (Aj) ,

=
∏

j∈K

m
ΩXi
j ({j})

∏

j∈K

m
ΩXi
j (ΩXi

) .

In particular:

mΩXi ({⋆}) = mΩXi (J) =
∏

j∈J

m
ΩXi
j ({j}) ,

mΩXi (ΩXi
) = mΩXi (∅) =

∏

j∈J

m
ΩXi
j (ΩXi

) .

At last:

mΩXi (∅) =
∑

∩Aj=∅

∏

j∈J

m
ΩXi
j (Aj) , (17)

=
∑

j,k∈J
j 6=k

m
ΩXi
j ({j}) m

ΩXi

k ({k}). (18)

In the same manner, the N belief mass functions m
ΩYj

i

can also be conjunctively combined to result in a mass
function mΩYj .

Example 1 Let us consider one perceived object X1

and two known objects Y1 and Y2 s.t.:




mΩ1,1({o1,1}) = .2
mΩ1,1({n1,1}) = .45
mΩ1,1(Ω1,1) = .35





mΩ1,2({o1,2}) = .45
mΩ1,2({n1,2}) = .15
mΩ1,2(Ω1,2) = .4

(19)

By expressing this information on ΩX1 (X1 point of
view: with which known object, the perceived object
X1 is associated? In other words: Where does X1

come from?), it is obtained:




m
ΩX1
1 ({1}) = .2

m
ΩX1
1 ({1}) = .45

m
ΩX1
1 (ΩX1) = .35





m
ΩX1
2 ({2}) = .45

m
ΩX1
2 ({2}) = .15

m
ΩX1
2 (ΩX1) = .4

(20)
The conjunctive combination of m

ΩX1
1 and m

ΩX1
2 pro-

vides the following result:

mΩX1 ({1}) = .2× (1− .45) = .2× .55 = .11
mΩX1 ({2}) = .45× (1− .2) = .45× .8 = .36
mΩX1 ({1}) = mΩX1 ({2, ⋆}) = .45× .4 = .18
mΩX1 ({2}) = mΩX1 ({1, ⋆}) = .15× .35= .05
mΩX1 ({1, 2})= mΩX1 ({⋆}) = .45× .15= .07
mΩX1 (ΩX1) = mΩX1 ({1, 2, ⋆})= .35× .4 = .14
mΩX1 (∅) = .2× .45 = .09 .

(21)

3.4 Decision-making

The pignistic probability BetPΩXi (9) computed from
mΩXi is defined for all ω ∈ ΩXi

by:

BetPΩXi ({ω}) =
∑

{A⊆ΩXi
,ω∈A}

mΩXi (A)
|A| (1−mΩXi (∅)) .

(22)
Then, for all k ∈ J :

BetPΩXi ({k}) = K1


m

ΩXi

k ({k})
M∏

j=1
j 6=k

(1−m
ΩXi
j ({j}))

+
∑

k∈K
K⊆J

1
|K|

∏

j∈K

m
ΩXi
j ({j})

∏

j∈K

m
ΩXi
j (ΩXi

)


 ,

(23)

where

K1 =
1

1−mΩXi (∅) =
1

1− ∑
j,k∈J
j 6=k

m
ΩXi
j ({j}) m

ΩXi

k ({k})
.

(24)
At last:

BetPΩXi ({⋆}) =

K1

∑

K⊆J

1
|K|

∏

j∈K

m
ΩXi
j ({j})

∏

j∈K

m
ΩXi
j (ΩXi

) . (25)

Once the pignistic probabilities BetPΩXi computed
for each i ∈ I, the chosen decision is the one that max-
imizes the pignistic probability associated to the joint
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law BetPΩX1×...×ΩXN which verifies the constraints
expressed in Section 3.1.

Similarly, an equivalently justified solution con-
sists in computing the decision from the Yj points
of view, by maximizing the pignistic probability
BetPΩY1×...×ΩYM .

Example 2 (Example 1 continued) Let us con-
sider again one perceived object X1 and two known
objects Y1 and Y2 with the information represented by
the BBAs mΩ1,1 and mΩ1,2 defined by Equation 19.

From X1 point of view, the conjunctive combination
of m

ΩX1
1 and m

ΩX1
2 has been detailed in Example 1.

The pignistic probability BetPΩX1 regarding the asso-
ciation of X1 is then given by:

A ∅ {1} {2} {⋆} {1, ⋆} {2, ⋆} {1, 2, ⋆}
mΩX1 (A) .09 .11 .36 .07 .05 .18 .14

BetPΩX1 (A) .20 .55 .25 .45 .80 1

Conclusion from X1 point of view:

1. The singleton maximizing BetPΩX1 is {2}, so X1

is associated with Y2;

2. knowing that Y1 is not associated, Y1 has disap-
peared (or is hidden).

On the other hand, it is also possible to express the
available information on ΩY1 and ΩY2 :





m
ΩY1
1 ({1}) = .2

m
ΩY1
1 ({1}) = .45

m
ΩY1
1 (ΩY1) = .35





m
ΩY2
1 ({1}) = .45

m
ΩY2
1 ({1}) = .15

m
ΩY2
1 (ΩY2) = .4

As there is only one perceived object X1, no combina-
tion is necessary:

A ∅ {1} {⋆} {1, ⋆}
mΩY1 (A) .2 .45 .35

BetPΩY1 (A) .375 .625 1
mΩY2 (A) .45 .15 .4

BetPΩY2 (A) .65 .35 1

From the association constraints (Section 3.1), the
known objects (Y1, Y2) can be associated to (1, ⋆),
(⋆, 1), or (⋆, ⋆). As:

• BetPΩY1×ΩY2 ({1, ⋆}) = .375× .35 = .131;

• BetPΩY1×ΩY2 ({⋆, 1}) = .625× .65 = .406;

• BetPΩY1×ΩY2 ({⋆, ⋆}) = .625× .35 = .219,

then BetPΩY1×ΩY2 reaches its “valid” maximum in
{⋆, 1}, so (Y1, Y2) is associated with (⋆, 1); in other
words, Y1 has disappeared and Y2 is associated with
X1.

In the previous example, the decision coming from X1

and the decision coming from the Yj are the same.
Unfortunately, as illustrated by the following exam-
ple, the decision providing by the criteria of maxi-
mizing the joint pignistic probability can be different
depending on which point of view (perceived objects
Xi or known objects Yj) it is computed.

Let us also remark that the introduction of a rejec-
tion decision, as presented in Section 2.3, can also
imply a different decision according to the Xi or Yj

points of view. For instance, by choosing c0 equal to
0.5 in the previous Example 2, from X1 the same de-
cision is made as BetPΩX1 ({2}) ≥ 1 − c0, however
as BetPΩY1×ΩY2 ({⋆, 1}) < 1 − c0, the decision made
according to the Yj is d0 (a rejection).

Example 3 Let us considered one perceived object
X1, and two known objects Y1 and Y2, s.t.:




mΩ1,1({o1,1}) = .5
mΩ1,1({n1,1}) = 0
mΩ1,1(Ω1,1) = .5





mΩ1,2({o1,2}) = .7
mΩ1,2({n1,2}) = .3
mΩ1,2(Ω1,2) = 0 .

By expressing the beliefs on the frames ΩXi
:





m
ΩX1
1 ({1}) = .5

m
ΩX1
1 ({1}) = 0

m
ΩX1
1 (ΩX1) = .5





m
ΩX1
2 ({2}) = .7

m
ΩX1
2 ({2}) = .3

m
ΩX1
2 (ΩX1) = 0 ,

the following results are obtained:

A ∅ {1} {2} {⋆}
mΩX1 (A) .35 .15 .35 0

BetPΩX1 (A) .35 .54 .11

A {1, ⋆} {2, ⋆} {1, 2, ⋆}
mΩX1 (A) .15 0 0

BetPΩX1 (A) .46 .65 1

Then from object X1 point of view:

• X1 is associated with Y2,

• Y1 has disappeared.

From Y1 and Y2 points of view:




m
ΩY1
1 ({1}) = .5

m
ΩY1
1 ({1}) = 0

m
ΩY1
1 (ΩY1) = .5





m
ΩY2
1 ({1}) = .7

m
ΩY2
1 ({1}) = .3

m
ΩY2
1 (ΩY2) = 0 .

(26)

322 David Mercier, Eric Lefevre, Daniel Jolly



So:

A {1} {⋆}
BetPΩY1 .75 .25
BetPΩY2 .70 .30

(27)

As .75× .3 > .7× .25, BetPΩY1×ΩY2 reaches its valid
maximum in {1, ⋆}, which implies that:

• Y1 is associated with X1,

• Y2 has disappeared.

This decision is then different from the previous one.

Works are currently undertaken by the authors to in-
vestigate properties input BBAs mΩi,j should verify
to not encounter this problem. A conjecture to be
proved, is that if BBAs mΩi,j are simple BBAs, which
means BBAs that have two focal elements: the uni-
verse Ωi,j and an other one element, then no conflict-
ing decision appears. In other words, BBAs mΩi,j

should not assign masses to both propositions {yi,j}
and {ni,j}.
Until something better turns up, a practical solution
consists in choosing a decision by favoring either the
perceived objects or the known objects. However, to
relativize this problem, it is shown on a particular ap-
plication described in Section 5, that conflicting deci-
sions can happen in very few cases, less than 1% in
this instance.

4 Discussion

4.1 What’s new in comparison to Rombaut
and Gruyer’s approaches?

The approach presented in this paper differs mainly
from Rombaut and Gruyer’s approaches [18, 12] by
regarding two points:

1. the combination of BBAs m
ΩXi
j = mΩi,j↑ΩXi and

m
ΩYj

i = mΩi,j↑ΩYj ;

2. the decision-making process.

In both Rombaut’s approach [18] and Gruyer’s ap-

proach [12], BBAs m
ΩXi
j and m

ΩYj

i are not classically
conjunctively combined with (14). To simplify the
combination and to make it computationally efficient,
it is proposed to allocate masses only on singletons
and the universe. Thus the following mergers are pro-

posed, ∀i ∈ I:

m
ΩXi

Rombaut({∅}) = mΩXi ({∅})
m

ΩXi

Rombaut({k}) = mΩXi ({k}), ∀k ∈ J,

m
ΩXi

Rombaut({⋆}) = mΩXi ({⋆})
m

ΩXi

Rombaut(ΩXi
) =

∏
j∈J

(mΩXi
j (ΩXi

) + m
ΩXi
j ({j}))

− ∏
j∈J

m
ΩXi
j ({j}).

(28)

In [12], the authors suggest a decision-making system
based on BBAs mΩXi and mΩYj whose focal elements,
thanks to Rombaut’s combination, are either a single-
ton or the universe. In outline:

• An association matrix N ×M is built such that
each of its elements (i, j) is equal to the prod-
uct mΩXi ({j}) ×mΩYj ({i}). Each row i is then
associated with a perceived object Xi, and each
column j is associated with a known object Yj .

• If necessary, fictive objects are added to make the
latter matrix squared.

• A coupling algorithm, the Hungarian algorithm,
is then applied to this matrix, this latter algo-
rithm providing an optimal decision regarding
the sum of the beliefs.

• A final treatment deals with the objects appear-
ance.

In the examples presented in [18] and [12], the model
presented in this paper and Gruyer’s approach lead
to the same results.

4.2 About Ristic and Smets’ approach

The problem tackled by Ristic and Smets in [17] is
somewhat different from the association problem de-
scribed in this paper. Ristic and Smets consider a
given volume of interest containing an unknown num-
ber of objects. While sensors we consider give infor-
mation regarding the associations of each object de-
tected at a time step t, with previous objects detected
at a previous time step t− 1, Ristic and Smets’s sen-
sors provide information regarding the class of each
object they have detected in the scene, for instance he-
licopter, airplane, . . . The “association problem” they
try to solve consists then in determining the number
of objects as well as the class of each one. Besides, the
appearance and disappearance of objects do not take
directly part of their problem. The application of Ris-
tic and Smets’ works to our problem is consequently
not straightforward.

ISIPTA’09: Object Association in the TBM Framework, Application to Vehicle Driving Aid 323



However, some technical points of this model should
be taken into account and investigated.

Following [8], the authors remark that the mass given
to the empty set, after conjunctively combining two
BBAs expressing themselves on the class of two dif-
ferent objects is equal to the belief that these two
objects do not belong to the same class, an idea al-
ready present in [1] (multi-sensor fusion for submarine
detection) and in [20] (intelligence clustering).

At last, the criteria the authors maximize is based
on the plausibility of each possible associations. As
justified in [23], the pignistic transformation has been
chosen to make the decision in this paper. A first
investigation in the direction of the plausibility con-
sists in using the plausibility-probability transforma-
tion [16].

5 Results on real data

In this section, the approach presented in this paper
(Section 3) is compared to the approach of Rombaut
and Gruyer on real data coming from a DV camera
placed behind the windshield of a car. This DV cam-
era has a CCD sensor, a 720×576 pixels resolution, an
angle ranging from −0.5 to +0.5 radians (i.e. approx-
imately ±30◦), and works at 25 images per second
(∆t = .04s), a filmed image example being presented
in Figure 3.

Figure 3: Four vehicles in a selected filmed image.

The video sequence allowing one to compare the two
approaches includes 3250 images corresponding to a
130-second playing time. Images contain 1 to 8 ob-
jects. During the sequence, 75 distinct objects were
manually identified as illustrated in Figure 3, the
number of associations to realize being equal to 6800.
The ground truth is known, which allows one to com-

pute the good recognition rate of each approach dur-
ing this sequence.

Distance and angle criteria allow the creation of two
belief functions denoted m

Ωi,j

distance and m
Ωi,j

angle, regard-
ing the association between each perceived object Xi

and known object Yj .

The distance was estimated as a function of the height
and the width in pixels of the object observed in the
scene thanks to an interpolation method illustrated in
Figure 4.

On the other hand, the angle between two objects
is computed from the gravity center of the perceived
object in the image (Figure 3).

The measurements provided are very noisy. For in-
stance, there can be a variation of 20m for the same
object from an image to the next one. Likewise, an-
gle variations can be as high as 100%, from 0.01rd to
0.02rd for two consecutive measurements of the same
object.

Figure 4: Interpolation function giving the distance
in meter depending on the height and the width in
pixels of the object in the scene.

In this application, masses are fixed in the following
way:





mΩi,j ({yi,j}) = β φi,j(ei,j)
mΩi,j ({ni,j}) = β (1− φi,j(ei,j))
mΩi,j (Ωi,j) = 1− β

(29)

where:

• 0 < β < 1 is a constant representing the degree
of reliability of the source of information (cf the
discounting operation [21, page 252], and [14, 15]
for other correction mechanisms).
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• φi,j(.) is a monotone decreasing function s.t.
φi(0) = 1 and lim

e→∞
φi(e) = 0;

• ei,j is the dissimilarity measure between the per-
ceived object Xi and the known object Yj , which
means the difference of distance and the differ-
ence of angle in this application.

The function φi,j is chosen as follows [6]:

φi,j(ei,j) = exp(−(ei,j)
2). (30)

Constant β being fixed at 0.9, these two belief mass
functions are combined thanks to the Dempster’s rule
of combination to obtain a mass function mΩi,j :

mΩi,j = m
Ωi,j

distance ⊕m
Ωi,j

angle ∀i ∈ I,∀j ∈ J . (31)

The association model presented in Section 3 only
need one BBA expressing the information regarding
the association between object Xi and object Yj . In
this application, we are lucky enough to have two in-
formation sources. Thus these two pieces of informa-
tion are firstly combined using a well justified rule for
the combination of two distinct sources. The choice
to combine theses sources at this step, and the choice
of the rule have been left for further study.

In Figure 5, the good recognition rate of the two ap-
proaches presented in this paper obtained in this video
sequence is represented as a function of the rejection
cost (Section 2.3). It can be observed that as soon as
the rejection cost becomes greater than 0, the good
recognition rates obtained with the conjunctive com-
bination are greater than those obtained with Rom-
baut’s combination, which is recalled to be also used
in Gruyer’s approach.

Let us note that the decisions have been computed on
the basis of the perceived objects. As mentioned in
Section 3.4, these decisions are not necessary identical
with those computed from the known objects point of
view. However, as illustrated in Figure 6, this conflict-
ing decision rate remains very low in this application
(from 0% to less than 1% depending on the rejection
cost). Let us also recall that, as illustrated at the
end of Example 2, the introduction of a rejection cost
enhances the appearance of conflicting decisions.

6 Conclusion and prospects

In this paper, a modeling of the association step prob-
lem in obstacle tracking in the belief function frame-
work has been presented. In particular, it has been
shown how tools from the theory of belief functions
such as the vacuous extension, the conjunctive com-
bination rule and the pignistic transformation can

Figure 5: Good recognition rate in function of the
rejection cost.

Figure 6: Conflicting decision rate in function of the
rejection cost.

be applied. Validated on real data, this approach
can perform better good recognition rates than Rom-
baut’s initial approach as soon as a rejection cost is
introduced.

Concerning the prospects, even if it concerns a reduce
number of cases, a more convincing solution has to
be brought regarding the resolution of the possible
conflicting decisions between the perceived and known
objects points view. This points is currently under
investigation.

The decomposition of the BBAs [9] expressing the be-
liefs regarding the associations between known objects
and perceived objects could also be studied in order
to use a more adapted rule.

Subsequently, this approach should be enhanced by
introducing information coming from the tracking of
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vehicles at time steps preceding the current analysis.
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des Transports).

References

[1] A. Ayoun, Ph. Smets. Data association in multi-
target detection using the transferable belief
model. International Journal of Intelligent Sys-
tems, 16(10):1167–1182, 2001.

[2] Y. Bar-Shalom. Multitarget/Multisensor Track-
ing: Applications and Advances vol III, Artech
House, 2000.

[3] S. Blackman and R. Popoli. Design and Analysis
of Modern Tracking Systems, Artech House, 1999.

[4] M.H. DeGroot. Optimal Statistical Decisions.
McGraw-Hill, New York, 1970.

[5] A. Dempster. A generalization of Bayesian in-
ference. Journal of Royal Statistical Society, B
30:205-247, 1968.

[6] T. Denœux. A k-nearest neighbour classifica-
tion rule based on Dempster-Shafer theory. IEEE
Transactions on Systems, Man and Cybernetics,
25(5):804-813, 1995.

[7] T. Denœux. Analysis of evidence-theoretic deci-
sion rules for pattern classification. Pattern Recog-
nition, 30(7):1095–1107, 1997.

[8] T. Denoeux and M. Masson. EVCLUS: Evidential
Clustering of Proximity Data. IEEE Transactions
on Systems, Man and Cybernetics B, 34(1):95–
109, 2004.

[9] T. Denœux. Conjunctive and Disjunctive Combi-
nation of Belief Functions Induced by Non Dis-
tinct Bodies of Evidence. Artificial Intelligence,
172:234-264, 2008.

[10] D. Dubois, H. Prade, and Ph. Smets. Represent-
ing partial ignorance. IEEE Transactions on Sys-
tems, Man and Cybernetics, 26(3):361–377, 1996.

[11] M. El Najjar and P. Bonnifait. A road-matching
method for precise vehicle localization using belief
theory and Kalman filtering. Autonomous Robots,
19(2):173-191, 2005.

[12] D. Gruyer, C. Royère, R. Labayrade and D.
Aubert. Credibilistic multi sensor fusion for real
time application, application to obstacle detec-
tion and tracking. IEEE Int. Conf. on Advanced
Robotics, ICAR’2003, paper P366, 2003.

[13] Y. Lemeret, E. Lefevre and D. Jolly. Improve-
ment of an association algorithm for obstacle
tracking. Information Fusion, 9(2):234-245, 2008.

[14] D. Mercier, B. Quost and T. Denœux. Refined
modeling of sensor reliability in the belief function
framework using contextual discounting. Informa-
tion Fusion, 9(2):246–258, 2008.

[15] D. Mercier, T. Denœux and M.-H. Masson. Belief
function correction mechanisms. Studies in Fuzzi-
ness and Soft Computing. To appear.

[16] B.R. Cobb, P.P. Shenoy. On the plausibility
transformation method for translating belief func-
tion models to probability models. International
Journal of Approximate Reasoning, 41(3):314–
330, 2006.

[17] B. Ristic and Ph. Smets. Global cost of assign-
ment in the TBM framework for association of un-
certain ID reports. Aerospace Science and Tech-
nology, 11(4):303–309, 2007.

[18] M. Rombaut. Decision in multi-obstacle match-
ing process using the theory of belief. Advances in
Vehicle Control and Safety, AVCS98, pp. 63-68,
1998.

[19] M. Rombaut and V. Cherfaoui. Decision mak-
ing in data fusion using Dempster-Shafer’s theory.
Symposium on Intelligent Components and Instru-
mentation for Control Applications, 1997.

[20] J. Schubert. Managing inconsistent intelligence.
In Proceedings of the 3rd International Confer-
ence on Information Fusion, FUSION’2000, pp.
TuB4/10–16, Paris, France, 2000.

[21] G. Shafer. A Mathematical Theory Of Evidence.
Princeton University Press, Princeton, N.J., 1976.

[22] Ph. Smets. Belief functions: the disjunctive rule
of combination and the generalized bayesian the-
orem. International Journal of Approximate Rea-
soning, 9:1–35, 1993.

[23] Ph. Smets. Decision making in the TBM: the
necessity of the pignistic transformation. In-
ternational Journal of Approximate Reasoning,
38(2):133–147, 2005.

[24] Ph. Smets and R. Kennes. The transferable belief
model. Artificial Intelligence, 66:191–243, 1994.

326 David Mercier, Eric Lefevre, Daniel Jolly



6th International Symposium on Imprecise Probability: Theories and Applications, Durham, United Kingdom, 2009

Natural extension as a limit of regular extensions

Enrique Miranda
University of Oviedo (Spain)

mirandaenrique@uniovi.es

Marco Zaffalon
IDSIA, Lugano (Switzerland)

zaffalon@idsia.ch

Abstract

This paper is devoted to the extension of conditional
assessments that satisfy some consistency criteria,
such as weak or strong coherence, to further domains.
In particular, we characterise the natural extension
of a number of conditional lower previsions on finite
spaces, by showing that it can be calculated as the
limit of a sequence of conditional lower previsions de-
fined by regular extension. Our results are valid for
conditional lower previsions with non-linear domains,
and allow us to give an equivalent formulation of the
notion of coherence in terms of credal sets.

Keywords. Coherent lower previsions, weak and
strong coherence, natural extension, regular exten-
sion, desirable gambles.

1 Introduction

A distinctive feature of subjective (or personal) prob-
ability is its being founded on a notion of self-
consistency, which is often called coherence. Loosely
speaking, coherence requires that the logical impli-
cations of any part of the assessments made cannot
force a change in the remaining assessments. Since de
Finetti [4], coherence is at the heart of precise per-
sonal probability, such as the Bayesian theory; later
work by Williams [18] and Walley [14] has made of it
the central notion also for imprecisely specified prob-
abilities. Nowadays coherence is largely used in im-
precise probability to guide research in coherent lower
previsions.

A coherent lower prevision formalises a subject’s be-
liefs about gambles, which represent uncertain re-
wards. In this it implements a ‘direct’ approach to be-
lief assessment. The more traditional approach made
of probability measures, can be regarded as dual to
the former: in fact, a coherent lower prevision is a
model equivalent to a closed convex set of probability
measures, also called credal set after Levi [8].

Despite this equivalence, coherence is used almost ex-
clusively together with coherent lower previsions in-
stead of with sets of probability measures. The rea-
son is that coherence has been, somewhat naturally,
formulated only in terms of gambles and lower pre-
visions. This is unfortunate as it prevents coherent
modelling to be easily carried over to traditional prob-
ability, which is the framework much more commonly
used and understood.

With this paper we make a step in the direc-
tion of expressing coherence in a dual form. We
focus in particular on Walley’s notion of strong
(or joint) coherence [14, Section 7.1.4]. We
work with variables X1, . . . , Xn that are assumed
to take finitely many values, and furthermore as-
sume to be given m coherent lower previsions
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) that express beliefs

about them.

What we show, loosely speaking, is that
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are jointly coher-

ent if and only if there is a sequence of unconditional
lower previsions P ε(X1, . . . , Xn), ε ∈ R+, such that
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are the limit, when
ε goes to zero, of conditional assessments derived
from P ε(X1, . . . , Xn). This means that by applying
Bayes’ rule whenever possible to the mass functions
in the set equivalent to P ε(X1, . . . , Xn), we recover
the original conditional lower previsions in the limit.

This result relates coherence to the existence of
a sequence of joint unconditional credal sets for
X1, . . . , Xn. This is interesting because tradition-
ally in precise probability self-consistency is often in-
tended as the existence of a global model: a joint mass
function forX1, . . . , Xn. In a sense our results confirm
that having a global model is essential for coherence,
but also that we need more than that. This is related
to the existence of events which are assigned lower
probability zero through the original assessments: in
fact, a single global model cannot detect in general the
inconsistencies that may arise on top of zero probabil-
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ities (see [12, Theorem 1], [10]); the sequence, instead,
can.

But the sequence does more than that: any least-
committal coherent inference that logically follows
from P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) alone, can be

equivalently done again applying Bayes’ rule to the el-
ements of the sequence: in other words, the so-called
natural extension of the original assessments to a new
lower prevision Pm+1(XOm+1 |XIm+1) is nothing else
but the application of Bayes’ rule to P ε(X1, . . . , Xn)
with ε→ 0. This appears to give coherent inference a
very accessible interpretation from the dual perspec-
tive of traditional probability.

We should mention that ours is not the first work
in this direction. A very interesting paper by Wal-
ley, Pelessoni and Vicig [17] has introduced the same
ideas we consider in Section 5 while restricting the at-
tention to events (rather than gambles) and therefore
to finitely many probabilistic assessments. Our work
builds upon those ideas, while generalising them so
that the only actual restriction now is the finiteness
of the spaces.

In particular, we are not limited to what Walley calls
finitely generated sets of gambles [14, Section 4.2]: we
consider also credal sets that cannot be summarised
by any finite set of mass functions, or equivalently,
that have infinitely many extreme points (remember
that credal sets are convex). This infinitary dimension
has required us to use technical tools other than those
in [17], and this has made the technical development
somewhat more involved.

We begin by recalling some introductory notions
about coherent lower previsions in Section 2. In
Section 3 we give new characterisations of avoid-
ing uniform and partial loss, while in Section 4 we
deal with weak coherence. In this case, we fo-
cus on extending weakly coherent lower previsions
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) to new ones, and

an interesting result here is that this extension can
be made through conditioning the smallest uncondi-
tional prevision P (X1, . . . , Xn) that is weakly coher-
ent with them. In doing so, we give a number of
side results that generalise previous work to domains
made of arbitrary sets of gambles. In Section 5 we are
finally able to address the main problems described
above. Moreover, we relate the need of the sequence
P ε(X1, . . . , Xn), ε ∈ R+, to the existence of events of
lower probability equal to zero. This shows also that
the natural extension of a number of strongly coher-
ent lower previsions cannot be done, as in the case of
weak coherence, through the smallest unconditional
joint lower prevision that is coherent with them.

2 Coherence notions on finite spaces

2.1 The behavioural interpretation

Let us give a short introduction to the concepts and
results from the behavioural theory of imprecise prob-
abilities that we shall use in the rest of the paper. We
refer to [14] for an in-depth study of these and other
properties, and to [9] for a brief survey.

Given a possibility space Ω, a gamble is a bounded
real-valued function on Ω. This function represents a
random reward f(ω), which depends on the a priori
unknown value ω of Ω. We shall denote by L(Ω) the
set of all gambles on Ω. A lower prevision P is a real
functional defined on some set of gambles K ⊆ L(Ω).
It is used to represent a subject’s supremum accept-
able buying prices for these gambles, in the sense that
for all ε > 0 and all f in K the subject is disposed to
accept the uncertain reward f − P (f) + ε.

From any lower prevision P we can define an upper
prevision P using conjugacy: P (f) = −P (−f) for any
gamble f . P (f) can be interpreted as the infimum
acceptable selling price for the gamble f . Because of
this relationship, it will suffice for the purposes of this
paper to concentrate on lower previsions.

Consider variables X1, . . . , Xn, taking values in re-
spective finite sets X1, . . . ,Xn. For any non-empty
subset J ⊆ {1, . . . , n} we shall denote by XJ the
(new) variable XJ := (Xj)j∈J , which takes values in
the product space XJ := ×j∈JXj . This means that
XJ is made of variables that are logically independent.
We shall also use the notation Xn for X{1,...,n}. In the
current formulation made by variables, Xn is just the
definition of the possibility space Ω.
Definition 1. Let J be a subset of {1, . . . , n}, and let
πJ : Xn → XJ be the so-called projection operator,
i.e., the operator that drops the elements of a vector
in Xn that do not correspond to indexes in J . A
gamble f on Xn is called XJ -measurable when for all
x, y ∈ Xn, πJ(x) = πJ(y) implies that f(x) = f(y).

There is a one-to-one correspondence between the
gambles on Xn that are XJ -measurable and the gam-
bles on XJ . We shall denote by KJ the set of XJ -
measurable gambles.

Consider two disjoint1 subsets O, I of {1, . . . , n}, with
O 6= ∅. P (XO|XI) represents a subject’s behavioural
dispositions about the gambles that depend on the
outcome of the variables {Xj , j ∈ O}, after coming to
know the outcome of the variables {Xj , j ∈ I}. As
such, it is defined at most on gambles that depend
on the values of the variables in O ∪ I only, i.e., on

1That they are taken disjoint is not restrictive. This can be
shown using separate coherence, given in Definition 2.
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the set KO∪I of the XO∪I -measurable gambles on Xn.
Given such a gamble f and z ∈ XI , P (f |XI = z) rep-
resents a subject’s supremum acceptable buying price
for the gamble f , provided he later comes to know
that the variable XI took the value z (and nothing
else). When there is no possible confusion about the
variables involved in the lower prevision, we shall use
the notation P (f |z) for P (f |XI = z). We can define
the gamble P (f |XI), which takes the value P (f |z) on
the elements of π−1

I (z) for every z ∈ XI . This is a
conditional lower prevision.

We shall also use the notations

G(f |z) : = π−1
I (z)(f − P (f |z))

G(f |XI) : =
∑

z∈XI

G(f |z) = f − P (f |XI)

for all f ∈ KO∪I and all z ∈ XI . In the case of
an unconditional lower prevision P , we shall denote
G(f) := f − P (f) for any gamble f in its domain.
Here, and in the rest of the paper, we shall use A to
denote both a set A and its indicator function.

The gambles G(f |z) and G(f |XI) are almost-
desirable, in the sense that for every ε > 0, the gam-
bles G(f |z) + επ−1

I (z) and G(f |XI) + ε should be de-
sirable for our subject.

2.2 Consistency notions

These assessments can be made for any disjoint sub-
sets O, I of {1, . . . , n}, and therefore it is not uncom-
mon to model a subject’s beliefs using a finite number
of different conditional previsions. We should ver-
ify then that all the assessments modelled by these
conditional previsions are coherent with each other.
The first requirement we make is that for any dis-
joint O, I ⊆ {1, . . . , n}, the conditional lower previ-
sion P (XO|XI) defined on a subset HO∪I of KO∪I
should be separately coherent.
Definition 2. A conditional lower prevision
P (XO|XI) with domain HO∪I is separately co-
herent if for every z ∈ XI , the gamble π−1

I (z) belongs
to HO∪I and P (π−1

I (z)|z) = 1, and moreover

max
x∈π−1

I (z)




n∑

j=1

λjG(fj |z)−G(f0|z)


 (x) ≥ 0

for every n ∈ N, fj ∈ HO∪I , λj ≥ 0, j = 1, . . . , n, f0 ∈
HO∪I .

It is also useful for this paper to consider the particu-
lar case where I = ∅, that is, when we have uncondi-
tional information about the variables XO. We have
then an (unconditional) lower prevision P (XO) on a
subset HO of the set KO of XO-measurable gambles.

Separate coherence is called then simply coherence,
and it holds if and only if

max
x∈Xn




n∑

j=1

λjG(fj)−G(f0)


 (x) ≥ 0 (1)

for every n ∈ N, f0, f1, . . . , fn ∈ HO, λ1, . . . , λn ≥ 0.

Consider now separately coherent conditional lower
previsions P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) with re-

spective domains H1, . . . ,Hm ⊆ L(Xn), where Hj is
a subset of the set Kj of XOj∪Ij

-measurable gambles,2

for j = 1, . . . ,m. There are different ways in which
we can guarantee their consistency.
Definition 3. P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) avoid

uniform sure loss if for every fkj ∈ Hj and every λkj ≥
0, j = 1, . . . ,m, k = 1, . . . , nj ,

max
x∈Xn



m∑

j=1

nj∑

k=1

λkjGj(f
k
j |XIj

)


 (x) ≥ 0.

A slightly stronger notion is called avoiding partial
loss. For this, we define the XI -support S(f) of a
gamble f in KO∪I as

S(f) := {π−1
I (z) : z ∈ XI , fπ−1

I (z) 6= 0};

i.e., it is the set of conditioning events for which the
restriction of f is not identically zero.
Definition 4. P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) avoid

partial loss if for every fkj ∈ Hj and every λkj ≥ 0,
j = 1, . . . ,m, k = 1, . . . , nj such that not all the λkj f

k
j

are zero gambles,

max
x∈⋃∪m

j=1∪
nj
k=1Sj(λk

j f
k
j )



m∑

j=1

nj∑

k=1

λkjGj(f
k
j |XIj

)


 (x) ≥ 0,

where by
⋃∪mj=1 ∪

nj

k=1 Sj(λ
k
j f

k
j ) we mean the set of

elements that belong to some set in Sj(λkj f
k
j ) for some

j ∈ {1, . . . ,m}, k ∈ {1, . . . , nj}.

The idea behind this notion is that a combination
of transactions that are acceptable for our subject
should not make him lose utiles. It is based on the
rationality requirement that a gamble f ≤ 0 such that
f < 0 on some set A should not be desirable.

We next give two notions that generalise the concept
of coherence in Eq. (1) to the conditional case:
Definition 5. P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are

weakly coherent if for every fkj ∈ Hj , λkj ≥
2We use Kj instead of KOj∪Ij

in order to alleviate the nota-
tion when no confusion is possible about the variables involved.
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0, j = 1, . . . ,m, k = 1, . . . , nj , and for every j0 ∈
{1, . . . ,m}, f0 ∈ Hj0 , zj0 ∈ XIj0

,

max
x∈Xn



m∑

j=1

nj∑

k=1

λkjGj(f
k
j |XIj )−Gj0(f0|zj0)


 (x) ≥ 0.

With this condition we require that our subject should
not be able to raise his supremum acceptable buy-
ing price P j0(fj0 |zj0) for a gamble fj0 contingent on
zj0 by taking into account other conditional assess-
ments. However, a number of weakly coherent con-
ditional lower previsions can still present some forms
of inconsistency with each other. See [14, Chapter 7],
[10] and [17] for some discussion and [14, Sect. 7.3.5]
and [10, Examples 4 and 7] for examples of weakly
coherent conditionals. On the other hand, weak co-
herence neither implies nor is implied by the notion of
avoiding partial loss. Because of these two facts, we
consider another notion which is stronger than both,
and which is called (joint or strong) coherence:3

Definition 6. P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are
coherent when for every fkj ∈ Hj , λkj ≥ 0, j =
1, . . . ,m, k = 1, . . . , nj , and for every j0 ∈
{1, . . . ,m}, fj0 ∈ Hj0 , zj0 ∈ XIj0

,


m∑

j=1

nj∑

k=1

λkjGj(f
k
j |XIj

)−Gj0(fj0 |zj0)


 (x) ≥ 0

for some x ∈ ⋃π−1
Ij0

(zj0) ∪⋃nj=1

⋃nj

k=1 Sj(λ
k
j f

k
j ).

Because we are dealing with finite spaces, this no-
tion coincides in the case of linear domains with the
one given by Williams in [18]. The coherence of a
collection of conditional lower previsions implies their
weak coherence; although the converse does not hold
in general, it does in the particular case when we only
have a conditional and an unconditional lower previ-
sion P (XO|XI), P with domains HO∪I ,H. If in par-
ticular HO∪I = KO∪I and H = L(Xn), coherence
holds if and only if, for all XO∪I -measurable f and all
z ∈ XI ,

P (G(f |z)) = 0. (GBR)

This is called the Generalised Bayes Rule (GBR).
When P (z) > 0, GBR can be used to determine the
value P (f |z): it is then the unique value for which
P (G(f |z)) = P (π−1

I (z)(f − P (f |z))) = 0 holds.

2.3 Linear previsions and envelope theorems

We say that a conditional lower prevision P (XO|XI)
on the set KO∪I4 is linear if and only if it is separately

3The distinction with the unconditional notion of coherence
mentioned above will always be clear from the context.

4We shall always assume in this paper that the domain of a
conditional linear prevision P (XO|XI) is the whole set KO∪I

coherent and moreover P (f + g|z) = P (f |z) + P (g|z)
for all z ∈ XI and f, g ∈ KO∪I . Conditional lin-
ear previsions correspond to the case where a sub-
ject’s supremum acceptable buying price (lower pre-
vision) coincides with his infimum acceptable selling
price (or upper prevision) for any gamble on the do-
main. When a separately coherent conditional lower
prevision P (XO|XI) is linear we shall denote it by
P (XO|XI); in the unconditional case, we shall denote
it by P and assume that its domain is the set L(Xn)
of all gambles. The definition of linear prevision im-
plies that in the unconditional case it is just a coher-
ent prevision in de Finetti’s sense. In the conditional
case, this still holds but it is required that in addition
P (π−1

I (z)|z) = 1 for all z ∈ XI . In other words, condi-
tional linear previsions correspond to conditional ex-
pectations with respect to a probability. In particular,
an unconditional linear prevision P is the expectation
with respect to the probability which is the restriction
of P to events.

A number of conditional linear previsions are coherent
if and only if they avoid partial loss. They are weakly
coherent if and only if they avoid uniform sure loss.

Given an unconditional lower prevision P with do-
main H, we shall denote the set of dominating linear
previsions by M(P ) := {P : P (f) ≥ P (f) ∀f ∈ H}.
Similarly, for a conditional lower prevision P (XO|XI)
with domain HO∪I , we define M(P (XO|XI)) as the
set of linear previsions P (XO|XI) such that

P (f |z) ≥ P (f |z) ∀f ∈ HO∪I , z ∈ XI .

Then P is coherent if and only if it is the lower enve-
lope ofM(P ), and P (XO|XI) is separately coherent if
and only if it is the lower envelope ofM(P (XO|XI)).

The situation is more complicated when we have more
than one conditional lower prevision, as the previ-
ous results essentially hold for finite spaces. In [14]
Walley proved that when the referential spaces are
finite and the domains are linear spaces, coherent
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are always the en-

velope of a set {Pλ1 (XO1 |XI1), . . . , Pλm(XOm
|XIm

) :
λ ∈ Λ} of dominating coherent conditional linear pre-
visions. In [10], a similar property was established for
weak coherence. In Section 4 we shall generalise this
second property to arbitrary domains.

2.4 Extensions to further domains

Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) be separately
coherent conditional lower previsions with domains
Hi ⊆ Ki for i = 1, . . . ,m and avoiding partial loss.

Their natural extensions to the sets K1, . . . ,Km are

of XO∪I -measurable gambles.
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defined, 5 for every f ∈ Kj and every zj ∈ XIj , by

Ej(f |zj) = sup{α : ∃fkj ∈ Hj , λkj ≥ 0, s.t.

[
m∑

j=1

nj∑

k=1

λkjGj(f
k
j |XIj

)− π−1
Ij

(zj)(f − α)] < 0

on
⋃
∪mj=1 ∪

nj

k=1 Sj(λ
k
j f

k
j ) ∪ π−1

Ij
(zj)}. (2)

In the context of this paper, where all the condition-
ing spaces are finite, the natural extensions are the
smallest conditional lower previsions which are coher-
ent and dominate P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

Moreover, they coincide with the initial assessments
if and only if P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are
themselves coherent. Otherwise, they ‘correct’ the
initial assessments taking into account the implica-
tions of the notions of coherence [11, Prop. 11]. In
the rest of the paper we shall consider at some point
also the natural extension Em+1(XOm+1 |XIm+1), for
arbitrary disjoint subsets Om+1, Im+1 of {1, . . . , n}.
Doing so amounts to implicitly include in the orig-
inal set of lower previsions, an additional one
Pm+1(XOm+1 |XIm+1) defined on a trivial domain
(such as the constant gambles), and then to take the
natural extension.

In this paper, we shall also define conditional lower
previsions coherently by using the regular extension.
Given a credal set M and disjoint O, I, the regular
extension R(XO|XI) is given by

R(f |z) := inf
{
P (fπ−1

I (z))
P (z)

: P ∈M, P (z) > 0
}

for every z ∈ XI , f ∈ KO∪I . This amounts to apply-
ing Bayes’ rule to the linear previsions inM whenever
possible. The regular extension has been proposed
and used a number of times in the literature as an
updating rule [2, 3, 5, 6, 14, 15]. See [10] for a com-
parison with natural extension in the finite case.

3 Characterising avoiding uniform
sure loss and avoiding partial loss

Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) be separately
coherent conditional lower previsions with respective
domains H1, . . . ,Hm, where Hj is a (not necessarily
linear) subset of the class Kj of XOj∪Ij -measurable
gambles.

Our first result is an extension of [12, Prop. 5] to
arbitrary domains. It uses the following lemma:

5We do not extend P j(XOj
|XIj

) beyond the set Kj of
XOj∪Ij

-measurable gambles as that would not be compatible

with the interpretation we have given of P j(XOj
|XIj

); yet, it

is possible to extend it to L(Xn) by considering P (XIc |XI)
instead of P (XO|XI), and with the same initial domain.

Lemma 1. Let P , P (XO|XI) be coherent lower pre-
visions with respective domains L(Xn),HO∪I . For
every P ∈ M(P ) there is some conditional lin-
ear prevision P (XO|XI) in M(P (XO|XI)) such that
P, P (XO|XI) are coherent. Moreover,

P (G(f |z)) = 0, P (G(f |XI)) ≥ 0

for every gamble f ∈ HO∪I and every z ∈ XI .

Proposition 1. P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

)
avoid uniform sure loss if and only if there are dom-
inating weakly coherent conditional linear previsions
with domains K1, . . . ,Km.

This result will be interesting in Section 4 when we
study the smallest dominating weakly coherent lower
previsions. It follows that avoiding uniform sure loss
is a necessary and sufficient condition for the exis-
tence of such lower previsions. Since moreover we
shall prove in Theorem 1 that when all the referential
spaces are finite weak coherence is preserved by taking
lower envelopes, we deduce that a way of computing
the smallest dominating weakly coherent lower previ-
sions is to take the lower envelopes of the (non-empty)
sets of weakly coherent dominating conditional linear
previsions.

On the other hand, it follows from [14, Sec. 8.1] that
when all the referential spaces are finite and the do-
mains are linear spaces, the notion of avoiding partial
loss is equivalent to the existence of dominating coher-
ent linear conditional previsions. We here generalise
the result to non-linear domains.

Lemma 2. Assume that the conditional lower pre-
visions P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) avoid par-

tial loss, and let E1(XO1 |XI1), . . . , Em(XOm
|XIm

)
be their natural extensions to K1, . . . ,Km. Then
E1(XO1 |XI1), . . . , Em(XOm |XIm) are coherent.

Proposition 2. P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
avoid partial loss if and only if there are dominating
coherent conditional linear previsions with domains
K1, . . . ,Km.

The notions of avoiding partial and uniform sure
loss constitute a generalisation, to conditional assess-
ments, of a consistency notion for unconditional lower
previsions, called avoiding sure loss. It is established
in [14, Thm. 3.3.3] that avoiding sure loss is equiva-
lent to the existence of a dominating coherent linear
prevision, and therefore can be seen as a minimal con-
sistency requirement.

When we move towards conditional lower previsions,
we have seen in Section 2 that there are two ways
of extending the notion of coherence of lower previ-
sions, called weak and (strong) coherence. What we
have proved by means of Propositions 1 and 2 is that
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avoiding uniform sure and partial loss are the respec-
tive counterparts of avoiding sure loss for each of these
two extensions.

We conclude the section with another characterisation
of avoiding partial loss, where we can find some of the
ideas we shall use in our approximation of the natural
extension in Section 5.

Proposition 3. P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

)
avoid partial loss if and only if for all ε > 0, fkj ∈ Hj,
λkj ≥ 0, j = 1, . . . ,m, k = 1, . . . , nj such that not all
products λkj f

k
j are zero gambles, it holds that

max
x∈Xn



m∑

j=1

nj∑

k=1

λkj (Gj(fkj |XIj ) + εSj(fkj ))


 (x) > 0.

Hence, by introducing these ε-terms, we can replace
the maximum on the union of the supports with a
maximum on Xn. We shall relate this later to the
weak coherence of some approximations of our condi-
tional lower previsions.

4 Extensions of weakly coherent
conditionals

We focus next on the notion of weak coherence of a
number of conditional lower previsions. We begin by
giving a characterisation of weak coherence and de-
termining the smallest (unconditional) coherent lower
prevision which is weakly coherent with a number of
conditionals. This extends [10, Thms. 2 and 3] to
arbitrary domains:

Theorem 1. Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

)
be separately coherent conditional lower previsions
with domains H1, . . . ,Hm. The following are equiva-
lent:

(WC1) They are weakly coherent.

(WC2) They are the lower envelopes of a class of
weakly coherent conditional linear previsions,
{Pλ1 (XO1 |XI1), . . . , Pλm(XOm |XIm) : λ ∈ Λ}.

(WC3) There is a coherent lower prevision P on L(Xn)
which is weakly coherent with them.

(WC4) There is a coherent lower prevision P on L(Xn)
which is pairwise coherent with them.

Moreover, the smallest coherent lower prevision in
(WC3) and (WC4) is given, for any gamble f on Xn,

by

P (f) = sup{α : ∃fkj ∈ Hj , λkj ≥ 0, s.t.

max
x∈Xn

[
m∑

j=1

nj∑

k=1

λkjG(fkj |XIj
)− (f − α)](x) < 0}. (3)

We summarise the relationships between the different
consistency conditions when all the referential spaces
are finite in the following figure.

-� Env. of SC PreciseSC

Env. of WC PreciseWC Dom. by SC PreciseAPL

Dom. by WC PreciseAUL

-� -�

-�

/ ^

/^

Figure 1: Equivalences and implications between con-
sistency concepts analysed in the paper. Keys: SC =
strongly coherent; WC = weakly coherent; AUL =
avoiding uniform sure loss; APL = avoiding partial
loss; Env. = envelope; Dom. = dominated.

Under some conditions, the functional we just defined
is also the natural extension of a number of condi-
tional lower previsions:

Corollary 1. P is the smallest coher-
ent lower prevision which is coherent with
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) if and only if
these conditional previsions are coherent.

It is useful at this point to compare the func-
tional P defined in Eq. (3) with the unconditional
natural extension E that we should define using
Eq. (2). In order to do this, we should consider
Om+1 = {1, . . . , n}, Im+1 = ∅ and add P (XOm+1)
to our set of gambles with the trivial domain given
by the constant gambles. For this discussion to
make sense, we are going to assume also that
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid partial loss
and are weakly coherent.

We see from [11, Theorem 12] that in that case
the functionals P and E coincide. Hence, the un-
conditional natural extension E is the smallest un-
conditional lower prevision which is weakly coher-
ent with P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
); and as

we have proven in Corollary 1, it is coherent with
them if and only if the initial assessments are co-
herent. A sufficient condition for the coherence
of P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) when their do-

mains are K1, . . . ,Km is that P (zj) > 0 for all zj ∈
XIj

and for all j = 1, . . . ,m [10, Thm. 11]. On the
other hand, in [10, Example 2] we can find an example
of assessments which avoid partial loss and are weakly
coherent, but are not coherent.
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Assume now that we have weakly coherent
P 1(XO1 |XI1), . . . , Pm(XOm |XIm), and that given
disjoint Om+1, Im+1, we want to determine the small-
est conditional lower prevision Pm+1(XOm+1 |XIm+1)
which is weakly coherent with the rest. Our next
result shows that it suffices to go through the
unconditional lower prevision P given by Eq. (3):

Theorem 2. The smallest conditional lower
prevision Pm+1(XOm+1 |XIm+1) with do-
main Km+1 which is weakly coherent with
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) is given, for
every f ∈ Km+1, zm+1 ∈ XIm+1 , by Pm+1(f |zm+1) :=

{
minx∈π−1

Im+1
(zm+1)

f(x) if P (zm+1) = 0

min{P (f |zm+1) : P ≥ P} otherwise,
(4)

where P is given by Eq. (3).

This stresses once more the fact that the informa-
tive content of a number of weakly coherent lower
previsions is preserved by summarising them with an
unconditional lower prevision. Note moreover that
if Pm+1(zm+1) > 0 the conditional lower prevision
Pm+1(XOm+1 |XIm+1) is uniquely determined from P
by the Generalised Bayes Rule.

Our final result in this section shows that we can use
the definition of natural extension to obtain a condi-
tional lower prevision which is weakly coherent with
a number of assessments.

Proposition 4. Consider weakly coherent
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) with domains
H1, . . . ,Hm, and let Em+1(XOm+1 |XIm+1)
be defined on Km+1 by Eq. (2). Then
Em+1(XOm+1 |XIm+1) is weakly coherent with
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

In particular, if P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are
coherent, it follows from the results in [11] that
Em+1(XOm+1 |XIm+1) is the smallest conditional lower
prevision that is coherent with them. It may be
strictly greater than the conditional lower prevision
Pm+1(XOm+1 |XIm+1) derived in Eq. (4). An instance
of such a situation can be found in [16, Example 8]; it
can be checked that the smallest weakly coherent con-
ditional lower prevision derived from the assessments
in the example is vacuous.

This shows on the one hand that the notion of weak
coherence is indeed too weak to fully capture the be-
havioural implications of our assessments, and on the
other that the natural extension cannot be derived
in general from the unconditional lower prevision P .
In the following section, we get around this problem
by showing: (i) that we can instead derive it using a
sequence of unconditional lower previsions that con-

verges to P and (ii) that in some cases it coincides
with the weakly coherent natural extension.

5 Natural extension as a limit of
regular extensions

Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) now be sepa-
rately coherent conditional lower previsions with do-
mains Hj ⊆ Kj for j = 1, . . . ,m. We shall assume
that they are weakly coherent and avoid partial loss,
but they are not necessarily coherent. Our goal in
this section is to characterise their natural extension
Em+1(XOm+1 |XIm+1) given by Eq. (2).

Although in general we shall assume that the index
m + 1 does not belong to {1, . . . ,m} (and then we
have to include among the original assessments a con-
ditional lower prevision Pm+1(XOm+1 |XIm+1) defined
on the set of constant gambles), the results are still
valid if what we study is the natural extension of one
of our assessments P j(XOj |XIj ) to Kj .
We shall prove later (in Theorem 3) that this natural
extension can be computed as a limit of regular exten-
sions. In order to do this, we are going to consider a
sequence of credal sets which are compatible with con-
ditional lower previsions which converge point-wise to
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
). For every ε > 0,

let M(ε) be the set of linear previsions satisfying

P (fjπ−1
Ij

(zj)) ≥ P (zj)(P j(fj |zj)− εR(fj)) (5)

for every fj ∈ Hj , zj ∈ XIj
, j = 1, . . . ,m, where

R(fj) = max fj − min fj is the range of the gamble
fj . Let us also consider the set of gambles

Vε := {f ≥
m∑

j=1

nj∑

k=1

λkj (Gj(fkj |XIj ) + εR(fkj )Sj(fkj ))

for some fkj ∈ Hj , λkj ≥ 0}, (6)

where, with a certain abuse of notation, Sj(fkj ) is used
to denote the indicator function of the set of elements
which belong to some set in Sj(fkj ).

For ε = 0 we obtain the set M(0) of linear previsions
P such that

P (fjπ−1
Ij

(zj)) ≥ P (zj)P j(fj |zj) (7)

for all fj ∈ Hj , zj ∈ XIj , j = 1, . . . ,m, and the set of
gambles

V := {f ≥
m∑

j=1

nj∑

k=1

λkjGj(f
k
j |XIj

)

for some fkj ∈ Hj , λkj ≥ 0}. (8)

ISIPTA’09: Natural Extension as a Limit of Regular Extensions 333



It follows from their definition that Vε ⊆ V and
M(0) ⊆ M(ε) for any ε > 0. Since the gam-
ble constant on 0 belongs to Vε for all ε ≥ 0,
we deduce that these sets of gambles are non-
empty. On the other hand, it follows that M(ε)
are convex sets of linear previsions for all ε > 0.
M(0) (and therefore also M(ε) for all ε > 0) is
non-empty because the conditional lower previsions
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are weakly coher-

ent. This follows from the following proposition. Let
P ε denote the lower envelope of the credal set M(ε),
and P 0 the lower envelope of M(0).
Proposition 5. Consider weakly coherent
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) with respective

domains H1, . . . ,Hm and avoiding partial loss.

1. For any ε ≥ 0, M(ε) = {P : P (f) ≥ 0 ∀f ∈ Vε},
and {f : P (f) ≥ 0 ∀P ∈ M(ε)} = Vε, where
the closure is taken in the topology of uniform
convergence.

2. M(0) = ∩ε>0M(ε) =M(P ), where P is the co-
herent lower prevision given by Eq. (3).

3. P 0 = supε>0 P ε = P .

In the particular case of precise assessments (i.e., con-
ditional linear previsions) we can go a bit further. In
this case, and in analogy with the situation in the un-
conditional case, we can show that events provide all
the information we need. Note also that in the linear
case the notion of avoiding partial loss is equivalent
to coherence (and implies therefore weak coherence).
Proposition 6. Consider coherent
P1(XO1 |XI1), . . . , Pm(XOm

|XIm
) with domains

K1, . . . ,Km. Let Vε be the set of gambles given by
Eq. (6), and M(ε) be the credal set given by Eq. (5).
Let us denote moreover by VAε ,MA

ε the corresponding
sets determined by the restrictions to events of
P1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

1. For every ε > 0, Vε ⊆ VAε1 , where ε1 = ε
maxj |XOj

| ,

and as a consequence ∪εVε = ∪εVAε = ∪εVε.
2. M(ε) ⊇MA

ε1 , whence ∩εM(ε) = ∩εMA
ε .

This result will be very useful for us because it allows
us to connect our results with the ones established in
[17] for the particular case of conditional lower pre-
visions defined on events. The case of events is also
interesting because the sets of desirable gambles we
use are finitely generated, and this makes it easier to
apply separation results.

Now that we have clarified a bit the structure of the
sets M(ε),Vε, we explore how they can be used to
characterise the conditional natural extension.

Proposition 7. Consider f ∈ Km+1 and zm+1 ∈
XIm+1 . Then sup{µ : π−1

Im+1
(zm+1)(f − µ) ∈ ∪εVε} =

Em+1(f |zm+1) ≤ sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ V},
where V is given by Eq. (8).

For every ε > 0, let us define Rεm+1(f |zm+1) from
M(ε) by regular extension, i.e., let it be given by

inf{P (f |zm+1) : P ∈M(ε), P (zm+1) > 0}. (9)

The first thing we have to prove is that this definition
makes sense.
Proposition 8. For every zm+1 ∈ XIm+1 and every
ε > 0, there is some P ∈M(ε) s.t. P (zm+1) > 0.

Since the credal set M(ε) does not increase as ε con-
verges to zero, we deduce that the conditional lower
previsions Rεm+1(XOm+1 |XIm+1) given by Eq. (9) do
not decrease as ε goes to zero. We can thus consider

Fm+1(XOm+1 |XIm+1) := lim
ε→0

Rεm+1(XOm+1 |XIm+1),

the limit of these conditional lower previsions.

In analogy with Proposition 7, we can characterise
Fm+1(XOm+1 |XIm+1) in terms of desirable gambles:
Lemma 3. For every f ∈ Km+1, zm+1 ∈ XIm+1 ,
Fm+1(f |zm+1) = sup{µ : π−1

Im+1
(zm+1)(f − µ) ∈

∪εVε}. As a consequence, F (f |zm+1) ≥ E(f |zm+1).

Since the sets Vε are not necessarily closed, we may
wonder if the functional Fm+1(XOm+1 |XIm+1) defined
as a limit of regular extensions is actually more precise
that the natural extension Em+1(XOm+1 |XIm+1). In
our next result, we show that this is not the case. The
proof is based on using Proposition 6 to obtain the
result for linear previsions, and then apply envelope
results. It is a generalisation of a result established in
[17] for conditional lower probabilities:
Theorem 3. Assume that
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are weakly coherent

and avoid partial loss. Then Em+1(XOm+1 |XIm+1) =
Fm+1(XOm+1 |XIm+1).

Of course, the result is valid in particular if
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are coherent. We

can also determine, as a corollary, that the conditional
lower prevision derived from an unconditional by nat-
ural extension is also the limit of conditional lower
previsions obtained by regular extension. Note that
in this particular case M(ε),M(0) would be

M(ε) = {P : P (f) ≥ P (f)− εR(f) ∀f ∈ H}, (10)

andM(0) =M(P ). Another interesting point is that
in this particular case where we have a conditional
and an unconditional lower prevision only, weak and
strong coherence are equivalent:
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Corollary 2. Let P be a coherent lower prevision
with domain H, and consider disjoint O, I. For
every ε > 0, let Rε(XO|XI) be the conditional
lower prevision defined from M(ε) using regular ex-
tension, where M(ε) is given by Eq. (10). Then
limε→0R

ε(XO|XI) coincides with the conditional nat-
ural extension E(XO|XI).

At this point we may still be wondering if going
through the sets M(ε) is really necessary, or if we
could have applied regular extension on the credal
set M(0) given by Eq. (7) and use it to approxi-
mate Em+1(XOm+1 |XIm+1). This is not possible in
general, because Proposition 8 does not necessarily
hold for ε = 0, i.e., there may not be any P ∈ M(0)
such that P (zm+1) > 0, and therefore we may not
be able to use the regular extension in that case; this
is easy to see with precise assessments. Moreover,
even if we can apply regular extension to M(0), we
do not necessarily have the equality Em+1(f |zm+1) =
inf{P (f |zm+1) : P ∈ M(0), P (zm+1) > 0}. This is
discussed for the particular case of lower probabilities
in [17, Sects. 3.7,3.8], and some illustrative examples
are provided.

Hence, the inequality given in Proposition 7 is not
necessarily an equality. In the following result, we
show that a sufficient condition for the equality to
hold is that the lower probability of the conditioning
event is positive; see also [14, Thm. 8.1.4]:

Proposition 9. Consider weakly coherent
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) that avoid partial

loss. Let P be their unconditional natural extension,
given by Eq. (3), and let Pm+1(XOm+1 |XIm+1) be
given by Eq. (4). If P (zm+1) > 0, then for all
f ∈ Km+1, Em+1(f |zm+1) = Pm+1(f |zm+1) =
sup{µ : π−1

Im+1
(zm+1)(f − µ) ∈ V}.

Hence, we also show that in this case the natural ex-
tension is also the smallest conditional lower prevision
that is weakly coherent with the initial assessments.
In particular, if P (zm+1) > 0 for all zm+1 ∈ XIm+1 ,
we should deduce that

Em+1(XOm+1 |XIm+1) = Pm+1(XOm+1 |XIm+1).

The intuition here is that in that case Rε(zm+1) > 0
for all zm+1 ∈ XIm+1 and for ε small enough, and
then the regular extension from M(ε) coincides with
the natural extension. From here it suffices then to
apply a limit result.

Finally, we are going to show that our results allow
to derive a characterisation of the notion of coherence
for conditional lower previsions on finite spaces.

Lemma 4. Consider a sequence of conditional lower
previsions {P k1(XO1 |XI1), . . . , P km(XOm |XIm)}k∈N

with respective domains H1, . . . ,Hm. Assume their
point-wise limits P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
exist. If P k1(XO1 |XI1), . . . , P km(XOm

|XIm
) are weakly

coherent (resp., coherent) for all k, then so are
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

Using this lemma, we can derive the following:

Theorem 4. Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
be separately coherent conditional lower previsions.
They are coherent if and only if they are the point-
wise limits of a sequence of coherent conditional lower
previsions defined by regular extension.

Hence, in the case of finite spaces the notion of co-
herence, which, as we have argued, is the central (and
in a way the unique) consistency notion in Walley’s
theory, is equivalent to the approximation by means
of regular extensions.

6 Conclusions

In this paper we have focused on providing a dual
view of Walley’s strong coherence and natural exten-
sion in the case of finite spaces. Our main result shows
that there is an equivalent model made of a sequence
of unconditional credal sets. By this sequence we can
recreate the original conditional lower previsions using
Bayes’ rule; moreover, we can use this rule to compute
any natural extension. This shows, in a sense, that
the essence of coherence within finite spaces is just
Bayes’ rule. But it also suggests that the basic mod-
elling unit in a traditional theory of (coherent) prob-
ability, even a precise one, should be a sequence of
unconditional credal sets rather than a single uncon-
ditional model. This might give a new perspective on
probabilistic modelling; and it might make coherence
and natural extension accessible and usable concepts
without notions of coherent lower previsions.

In developing the main results we have given a num-
ber of new results more strictly related to coherent
lower previsions. We have given new characterisa-
tions of the notions of avoiding partial and uniform
sure loss. We have shown that there is an exten-
sion of weakly coherent lower previsions that we could
call weak natural extension and that it can be char-
acterised through conditioning the smallest uncondi-
tional lower prevision that is weakly coherent with the
former ones. Finally, we have discussed some key dif-
ferences between the weak natural extension and the
natural extension. All of this seems to be interesting
in its own as it shows, for example, that what some
applications of credal sets do is to make weakly coher-
ent inferences rather than computing natural exten-
sions, and therefore points to possible improvements
of those approaches.
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With respect to future work, we should like to point
out three avenues: one is the obvious possibility to
try to extend the results presented here to the case
of infinite spaces. We envisage that most of them
will not be immediately extendable because in our
proofs we have used a number of separation theorems
and envelope results that do not apply directly to the
infinite case. Another aspect worth investigating is
whether the equivalence mentioned initially between
conditional lower previsions and the sequence remains
valid also when structural judgments are introduced
in a model. Finally, the idea of using a certain se-
quence to check coherence and compute extensions is
present also in other works [1, 13] which have a com-
mon root in the work of Krauss [7]. The relationship
between the sequences used here and those used in
the mentioned works should also be investigated.
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Abstract

In this paper we model the problem faced by a risk-
averse decision maker with a precise subjective proba-
bility distribution who bets against a risk-neutral op-
ponent or invests in a financial market where the be-
liefs of the opponent or the representative agent in
the market are described by a convex set of imprecise
probabilities. The problem of finding the portfolio
of bets or investments that maximizes the decision
maker’s expected utility is shown to be the dual of
the problem of finding the distribution within the set
that minimizes a measure of divergence, i.e., relative
entropy, with respect to the decision maker’s distri-
bution. In particular, when the decision maker’s util-
ity function is drawn from the commonly used expo-
nential/logarithmic/power family, the solutions of two
generic utility maximization problems are shown to
correspond exactly to the minimization of divergences
drawn from two commonly-used parametric families
that both generalize the Kullback-Leibler divergence.
We also introduce a new parameterization of the ex-
ponential/logarithmic/power utility functions that al-
lows the power parameter to vary continuously over
all real numbers and which is a natural and convenient
parameterization for modeling utility gains relative to
a non-zero status quo wealth position.

Keywords. decision theory, decision analysis, rel-
ative entropy, utility theory, imprecise probabilities,
portfolio optimization

1 Introduction

There are many situations in which it is of interest to
measure the distance between two probability distri-
butions – say, p and q – but the appropriate metric
may depend on the field of application. In statistics
the relevant metric might be the loss that results from
basing an inference or decision on q when the true dis-
tribution is p. In information processing the metric
might be the channel capacity that is wasted by using

an encoding scheme based on q when p is the true
distribution of a stream of independent signals to be
transmitted. In decision analysis the metric might be
the value of information that results in the updating
of a prior subjective probability distribution q to a
posterior distribution p prior to making a choice. In
probability forecasting the metric might be a scoring
rule that is used to provide an incentive for a fore-
caster to report p rather than q as her prediction if
she believes p is correct. In finance the metric might
be the gain in expected utility that can be achieved by
an investor in a market under uncertainty when her
personal distribution for future asset prices is p and
she has the opportunity to trade with a “representa-
tive agent” whose probability distribution is q. If one
of the distributions – say, q – is imprecise, then the
quantity of interest to be measured may be the dis-
tance from p to the nearest or farthest of the possible
values of q.

In this paper1 we consider the problem of measuring
the distance between probability distributions in the
case where one is imprecise, and we focus especially on
the case of expected-utility gains in a financial market,
although we also discuss how all of the applications
mentioned above are linked to each other by duality
relationships in which an information-theoretic mea-
sure of distance – known as a relative entropy or diver-
gence – can be identified with a loss function or a util-
ity function in a decision or inference problem. The
best-known relative entropy measure is the Kullback-
Leibler divergence, but it has a number of generaliza-
tions. We show that two well-known parametric fam-
ilies of generalized divergence, namely the power and
pseudospherical families, have a one-to-one correspon-
dence with the two most commonly used parametric
families of scoring rules, and they also have a one-to-
one correspondence with the solutions of two canoni-
cal investment problems involving the most commonly

1This paper is adapted from Jose et al. 2008 with some new
material. An earlier, incomplete version, Nau et al. 2007, was
presented at ISIPTA ’07.
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used parametric family of utility functions, namely
the generalized power family that includes the ex-
ponential and logarithmic utility functions as special
cases. We also introduce a new parameterization of
this family of utility functions that allows the power
parameter to vary continuously over all real numbers
and which is the most natural and convenient parame-
terization for modeling utility gains relative to a non-
zero status quo wealth position. This parameteri-
zation turns out to have the property that it yields
an exact agreement between the utility scale and the
scales that are conventionally used for the generalized
divergences.

Imprecise probabilities naturally arise in the analysis
of financial markets under uncertainty wherever those
markets are incomplete, which is to say, virtually ev-
erywhere. A market is incomplete if some assets have
distinct bid and ask prices (or are not priced at all) be-
cause of caution or lack of information on the part of
buyers and sellers and/or because of transaction costs.
The simplest case of a market under uncertainty is one
in which assets are purchased at time 0 and sold at
time 1, and the uncertainty about asset prices at time
1 is modeled by a finite set of states. Any financial
asset in such a market can be constructed from a port-
folio of “Arrow securities,” where an Arrow security
is an asset whose payoff is $1 in a given state and zero
otherwise. The bid and ask prices for a state-i Arrow
security can viewed as lower and upper probabilities
assigned to state i by the representative agent. Bid
and ask prices for more complex assets (which may
yield arbitrary payoffs in different states) establish
other linear inequality constraints on the probabil-
ity distribution of the representative agent, so that
in general the imprecise beliefs of the representative
agent are described by a convex polytope of distri-
butions that is the intersection of all the constraints.
This set is non-empty if and only if there are no ar-
bitrage opportunities in the market, a result that is
known as the “fundamental theorem of asset pricing”
but which was introduced much earlier by de Finetti
as the “fundamental theorem of subjective probabil-
ity.” The problem we consider is that of an investor
whose (precise) subjective probability distribution is
p and who invests optimally in a market where the
imprecise probabilities of the representative agent are
described by a convex set Q that is disjoint from p.

2 Generalized measures of entropy
and divergence

The entropy of a probability distribution, as defined
by Shannon (1948), is a measure of the amount of
information conveyed by the observation of an event

drawn from that distribution. Shannon proved that
under the most efficient encoding scheme the av-
erage number of bits (binary digits) needed to re-
port the occurrence of an event whose relative fre-
quency is p is proportional to ln(1/p) = − ln(p),
so the expected number of bits per event to encode
events drawn from a distribution p is proportional
to H(p) ≡ −∑

i pi ln(pi).2 This quantity is known
as the entropy of the distribution p, because up to
a multiplicative constant (namely Boltzmann’s con-
stant) it coincides exactly with the definition of the
Gibbs entropy of a physical system whose distribution
of internal states is p, which in turn is the microscopic
interpretation of the macroscopic concept of entropy
from classical thermodynamics. If an engineer who
had optimized the encoding scheme on the assump-
tion that the distribution was q subsequently learns or
decides (via Bayesian updating or some other method
of discovery) that it is actually some other distribu-
tion p, then the encoding scheme based on q is re-
vealed to be suboptimal, and H(q) underestimates
the average number of bits per event that are actu-
ally being transmitted. A practical measure of the
amount of information gained in updating q to p is
the reduction in the expected number of bits needed
to encode an event by re-optimizing for the distribu-
tion now believed to be correct, which is known as the
Kullback-Leibler (KL) divergence of p with respect to
q:

DKL(p‖q) ≡
X

i

pi(ln(1/qi)− ln(1/pi)) = Ep[ln(p/q)]. (1)

The KL divergence has several very convenient and
appealing properties that are often cited as reasons
for adopting it as a universal measure of informa-
tion gain. First, it is naturally additive with respect
to independent experiments. Suppose that A and B
are statistically independent partitions of the state
space whose prior marginal probability distributions
are qA and qB , so that their prior joint distribution
is qA × qB. Now suppose that independent experi-
ments are performed, which result in the updating of
qA and qB to pA and pB, respectively, so that the
posterior joint distribution is pA×pB. Then the total
information gain of the two experiments is the sum of
their separate KL divergences:

DKL(pA × pB‖qA × qB) = DKL(pA‖qA)+DKL(pB‖qB).
(2)

Second, and even stronger, the KL divergence has the
property of recursivity with respect to the splitting
of events. Suppose that information is transmitted

2Throughout the paper, upper-case functions such as H(p),
DKL(p‖q), S(r,p), etc., are scalar-valued functions of vector
arguments, whereas lower-case functions such as f(x), ln(x),
u(x), etc., are vector-valued functions in which a univariate
function is applied elementwise to a vector argument, i.e.,
f(x) = (f(x1), ..., f(xn)).
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in a 2-step process, in which two out of n possible
states - say, states 1 and 2 - are not distinguished on
the first step. If the realized state is neither 1 or 2,
the process stops there, but otherwise a second signal
is sent to report which of those two has occurred.
The probabilities of states 1 and 2 are aggregated in
the first step, so the information gain on that step is
DKL(p1 + p2, p3, ..., pn‖q1 + q2, q3, ..., qn). On the sec-
ond step, which occurs with probability (p1 +p2), the
additional gain is DKL

(
p1

p1+p2
, p2

p1+p2
‖ q1

q1+q2
, q2

q1+q2

)
.

The recursivity property of the KL divergence
requires the expected total information gain of the
two-step process to be the same as that of a one-step
process:
DKL(p‖q) = DKL(p1 + p2, p3, ..., pn‖q1 + q2, q3, ..., qn)

+(p1 + p2)DKL

„
p1

p1 + p2
,

p2

p1 + p2
‖ q1

q1 + q2
,

q2

q1 + q2

«
. (3)

The KL divergence is the only distance measure
that satisfies both additivity and recursivity, hence it
is the divergence that is naturally obtained if those
properties are embraced as axioms that an informa-
tion measure should satisfy. However, in situations
other than signal transmission, where the objective
may be something other than economizing on band-
width, these axioms may be unduly restrictive. In
applications involving imprecise probabilities, it may
be of interest to find the member of a convex set of
distributions that is nearest to or farthest from some
reference distribution, and desiderata of a distance
measure may depend on the inference or decision
problem to be solved.

One measure of distance between probability distribu-
tions that generalizes the Kullback-Leibler divergence
is known as a Brègman divergence (Brègman 1967).
Any strictly convex function F defines a Brègman di-
vergence BF (p‖r) as follows:

BF (p‖r) ≡ F (p)− F (r)−∇F (r) · (p− r). (4)

The decision-theoretic significance of a Brègman
divergence is that it uniquely determines a strictly
proper scoring rule, which is a reward function for
truthfully eliciting subjective probabilities. As noted
by McCarthy (1956) and further elaborated by Hen-
drickson and Buehler (1971) and Savage (1971), any
strictly convex function F can be used to generate a
strictly proper scoring rule S as follows:

S(r,p) ≡ F (r) +∇F (r) · (p− r), (5)

where ∇F (r) denotes the gradient (or more gen-
erally a subgradient) of F evaluated at r, and
conversely F can be recovered from S according to
F (p) = S(p,p). The function S(r,p) is used to
“score” a probability forecast in the following way.
A forecaster who reports r to be her probability
distribution over the states is given a reward equal

to S(r, ei) if state i occurs, where ei denotes the
probability distribution that assigns probability 1 to
state i and zero to all other states, i.e., the indicator
vector for state i. Because S is linear in p, we have
S(r,p) =

∑
i piS(r, ei), so the function S(r,p) repre-

sents the forecaster’s expected score if her distribution
is p and she reports distribution r. If F (p) is strictly
convex, it follows from the subgradient inequality
that S(r,p) is uniquely maximized when r = p, i.e.,
when the forecaster honestly reports her probability
distribution, which is the defining property of a
strictly proper scoring rule.

By construction, the function F (p) − S(r,p), which
represents the forecaster’s expected loss for report-
ing r when her distribution is p, is the Brègman di-
vergence BF (p‖r). A Brègman divergence is there-
fore a decision-theoretic measure of the “information
deficit”that is faced by a decision maker who acts
on the basis of the distribution r when the distribu-
tion is p. In this capacity, Brègman divergences (and
their corresponding strictly proper scoring rules) pro-
vide a potentially rich class of loss functions that can
be used for robust Bayesian inference, as discussed
by Grünwald and Dawid (2004), Dawid (2006), and
Gneiting and Raftery (2007). A problem of this kind
can be framed as a game against nature in which na-
ture chooses a distribution p from some convex set
P , such as the set of distributions satisfying a mean
value constraint. The robust Bayes problem for the
decision maker is to determine the distribution r that
minimizes her maximum expected loss over all p ∈ P ,
where the expected loss (in our terms) is the negative
expected score −S(r,p). Grünwald and Dawid show
that the optimal-expected-loss function, −F (p), is in-
terpretable as a generalized entropy, and minimizing
the maximum expected loss is equivalent to maximiz-
ing this entropy on the set P . The distribution r that
solves this problem is the one that minimizes BF (p‖r)
with respect to an uninformative reference distribu-
tion p0 at which the entropy −F (p) is maximized.

3 The pseudospherical and power
divergences

In this paper, we will consider a different kind of game
and a correspondingly different decision-theoretic
measure of information, namely, we will suppose that
a risk-averse decision maker with personal probability
distribution p has the opportunity to bet against
a non-strategic less-well-informed opponent whose
distribution q is known to lie in some set Q that is
disjoint from p, which enables the decision maker to
place bets that are profitable in the sense of increas-
ing her expected utility relative to the status quo.
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The “information surplus” enjoyed by this decision
maker will be shown to be measured by the minimum
of a generalized divergence between p and all q ∈ Q,
but it is generally not a Brègman divergence. The
solution of this problem gives rise to families of
“weighted” strictly proper scoring rules, in which q
plays the role of a baseline distribution with respect
to which the value of the forecaster’s information
is measured, and they generalize the well-known
quadratic, logarithmic, and pseudospherical scoring
rules – details are given in Jose et al. (2008).

There are various functional forms that could be used
to define a divergence of p with respect to q, and
the one we that we find most compelling, for both
practical and theoretical reasons, is that for a given
pi the divergence should depend on qi only through
the ratio pi/qi, which is the marginal value of a bet
on state i: a $1 bet yields a payoff of $1/qi when that
state occurs and zero otherwise, because this is a
fair payoff from the perspective of the opponent, and
its expected value for the decision maker is $pi/qi.
More generally, whenever low-probability states are
explicitly distinguished in the setup of a decision
model, it is usually because they have large conse-
quences, in which case relative rather than absolute
errors in probability estimation are what matter.
Another rationale is illustrated by the following
example: suppose that the state space consists of 4
states formed by the Cartesian product of two binary
events E and F , and suppose it happens that the
decision maker and her opponent both agree on the
probability of F and they also agree that E and F are
statistically independent. Then it seems reasonable
that the marginal value of a bet on any state should
depend only on the extent of disagreement about the
probability of E, and this requires it to depend only
on the ratio of the two agents’ probabilities for that
state, which divides out the common probability of F .

The measurement of distance between two probability
distributions in terms of ratios has a long history in
statistics and information theory, and it is the basis
of another kind of generalized divergence known as an
f -divergence (Csiszár 1967). If f is a strictly convex
function, the corresponding f -divergence is defined as

Df (p‖q) ≡ Ep[f(p/q)]. (6)

Divergences of this general form have been widely
used in statistics for many years as (seemingly)
utility-free measures of the value of the information
- e.g., Goel (1983) uses f -divergence to define a
“conditional amount of sample information” for
measuring prior-to-posterior information gains in
Bayesian hierarchical models. More recently it has

been recognized that f -divergences are interpretable
as measures of expected utility gains that are avail-
able to decision makers who have opportunities to
bet against less-well-informed opponents or to invest
in financial markets, as will be more fully discussed
in later sections of this paper.

As noted above, the KL divergence is the only dis-
tance measure that satisfies the axioms of both addi-
tivity and recursivity. However, it has been discovered
that weakenings of these axioms lead to several inter-
esting parametric families of f -divergences (or trans-
formations thereof) which have their own merits and
their own applications. Havrda and Chavrát (1967)
defined a quantity that they called the directed di-
vergence of order β between p and q, and variants of
this divergence, which are equivalent up to a scale fac-
tor, were discussed by Rathie and Kannappan (1972),
Cressie and Read (1984), and Haussler and Opper
(1997). Cressie and Read referred to this quantity as
the power divergence, and that term will be adopted
here. The power divergence (as originally introduced
by Havrda and Chavrát) is defined for all β ∈ R by:

DP
β (p‖q) ≡ Ep[(p/q)β−1]− 1

β(β − 1)
, (7)

which is an f -divergence based on the normalized
power function fβ(x) = (xβ−1 − 1)/(β(β − 1)).3 The
cases of β = −1, 0, 1

2 , 1, and 2 are of special interest.
At β = 1, the power divergence between p and q is
equal to the KL divergence DKL(p‖q), and at β =
0 it is the reverse KL divergence DKL(q‖p). In fact,
DP

β (p‖q) is antisymmetric around β = 1
2 in the sense

that DP
β (p‖q) = DP

1−β(q‖p), i.e., the reverse diver-
gence is obtained by replacing β with 1 − β for any
value of β. The case β = 1

2 has perfect symmetry,
i.e., DP

1/2(p‖q) = DP
1/2(q‖p), and it reduces to

DP
1/2(p‖q) = 4

0
@1−

nX

j=1

√
pjqj

1
A , (8)

which is proportional to the squared Hellinger dis-
tance between p and q, as noted by Haussler and
Opper (1997). The Hellinger distance DH(p‖q) is
widely used in statistics and is defined by

DH(p‖q) ≡

0
@

nX

j=1

`√
pj −

√
qj

´2
1
A

1/2

, (9)

whence
DP

1/2(p‖q) = 2DH(p‖q)2. (10)

3fβ(x) converges to ln(x) as β → 1, but it goes to ±∞ as
β approaches zero from above or below. Nevertheless, (7) is a
continuous function of β at β = 0 by virtue of the special nature
of the argument of fβ and its behavior inside the expectation:
the individual terms go to ±∞, but their expectation converges.
Note also that fβ is antisymmetric around β = 1/2 in the

following way fβ(xβ) = f1−β(x1−β), which parallels a similar
property of the divergences and utility functions discussed here.
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At β = 2 the power divergence reduces to (a multi-
ple of) another well-known divergence, the Chi-square
divergence (Pearson 1900):

DP
2 (p‖q) =

1

2
(Ep[p/q]− 1) =

1

2
χ2(p‖q), (11)

while at β = −1 it is the reverse Chi-square divergence
1
2χ2(q‖p).

The power divergence is generally neither additive nor
recursive, but it satisfies two slightly weaker proper-
ties for all values of β. First, it satisfies the following
pseudoadditivity property with respect to independent
partitions A and B:

DP
β (pA × pB‖qA × qB) = DP

β (pA‖qA) + DP
β (pB‖qB)

+β(β − 1)DP
β (pA‖qA)DP

β (pB‖qB). (12)

Second, it satisfies the following pseudorecursivity
property with respect to the splitting of events
(Rathie and Kannappan 1972, Cressie and Read
1984):

DP
β (p‖q) = DP

β (p1 + p2, p3, ..., pn‖q1 + q2, q3, ..., qn)

+ (p1 + p2)

„
p1 + p2

q1 + q2

«β−1

(13)

×DP
β

„
p1

p1 + p2
,

p2

p1 + p2
‖ q1

q1 + q2
,

q2

q1 + q2

«
.

Pseudoadditivity reduces to additivity in both of
the special cases β = 0 and β = 1 (both the KL
divergence and the reverse KL divergence are addi-
tive), while pseudorecursivity reduces to recursivity
only in the special case β = 1. Also note that for
β ∈ (0, 1) the power divergence is subadditive, i.e.,
DP

β (pA×pB‖qA×qB) ≤ DP
β (pA‖qA)+DP

β (pB‖qB),
while for β < 0 or β > 1 it is superadditive, i.e.,
DP

β (pA×pB‖qA×qB) ≥ DP
β (pA‖qA)+DP

β (pB‖qB).

A different form of generalized entropy was introduced
by Arimoto (1971) and further elaborated by Sharma
and Mittal (1975), Boekee and Van der Lubbe (1980)
and Lavenda and Dunning-Davies (2003). Arimoto’s
generalized entropy of order β is defined for β > 0 as
follows:

β

β − 1

“
Ep[pβ−1]1/β − 1

”
. (14)

(Here β corresponds to the term 1/β in Arimoto’s
original presentation and to the term R in Boekee
and Van der Lubbe’s presentation.) The factor of β
in the numerator plays no essential role when β is re-
stricted to be positive, and without it the measure is
actually valid for all real β and closely related to the
pseudospherical scoring rule (Jose et al. 2008). The
corresponding relative entropy measure, which we will
henceforth call the pseudospherical divergence of or-
der β between p and q, is obtained by introducing a
reference distribution q and dividing out the unnec-
essary factor of β,

DP
β (p‖q) DS

β (p‖q)

β = −1 1
2
χ2(q‖p) 1

2

`
1− (χ2(q‖p) + 1)−1

´

β = 0 DKL(q‖p) 1− exp(−DKL(q‖p))

β = 1
2

2DH(p‖q)2 2

„
1−

“
1− 1

2
DH(p‖q)2

”2
«

= 2DH(q‖p)2

β = 1 DKL(p‖q) DKL(p‖q)

β = 2 1
2
χ2(p‖q)

p
χ2(p‖q) + 1− 1

Table 1: Special cases of power and pseudospherical
divergences

DS
β (p‖q) ≡

`
Ep[(p/q)β−1]

´1/β − 1

β − 1
. (15)

This is a nonlinear transformation of the power diver-
gence, hence it can also be expressed as a function of
other well-known divergences for special cases of β, as
summarized in Table 1, which highlights the antisym-
metry of the power divergence around β = 1

2 .

Like the power divergence, the pseudospherical diver-
gence satisfies a pseudoadditivity property:

DS
β (pA × pB‖qA × qB) = DS

β (pA‖qA) + DS
β (pB‖ qB)

+(β−1)DS
β (pA‖qA)DS

β (pB‖qB). (16)

The coefficient of the cross-term in this case is β − 1,
not β(β − 1), and hence DS

β (p‖q) is subadditive for
β < 1 and superadditive for β > 1. However, the
pseudospherical divergence is generally not pseudore-
cursive, and it is not an f -divergence, although it is
monotonically related to one.

4 The family of normalized
linear-risk-tolerance utility functions

In the optimization problems to be discussed in the
following section of the paper, the decision maker’s
utility function will be assumed to be drawn from
the most commonly used parametric family of utility
functions, namely the generalized power family that
includes the exponential and logarithmic utility func-
tions as limiting cases. The utility functions from
this family will be parameterized here as:

uβ(x) ≡ 1

β − 1
((1 + βx)(β−1)/β − 1) if βx > −1

uβ(x) ≡ −∞ otherwise,

for all β ∈ R. This parameterization, which was
introduced by Jose et al. (2008), has two key prop-
erties. First, uβ(0) = 0 and u′β(0) = 1, so that for
every β the graph of uβ passes through the origin and
has a slope of unity there. Second, the corresponding
risk tolerance function τβ(x), which is the reciprocal
of the Pratt-Arrow risk aversion measure, is a linear
function of wealth with slope equal to β and intercept
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β = −1 quadratic utility u−1(x) = − 1
2
((1 − x)2 − 1)

β = 0 exponential utility u0(x) = 1− exp(−x)

β = 1
2

reciprocal utility u1/2(x) = 2
“
1− 1

1+x/2

”

β = 1 logarithmic utility u1(x) = ln(1 + x)

β = 2 square-root utility u2(x) =
√

1 + 2x− 1

Table 2: Examples of normalized linear-risk-tolerance
utility functions

equal to 1: τβ(x) ≡ −u′β(x)/u′′β(x) = 1 + βx.4 Thus,
risk tolerance as well as marginal utility is normalized
to a value of 1 at x = 0. This amounts to choosing
the unit of money to be the status quo risk tolerance
(which is without loss of generality when there is
a single risk-averse agent) and then choosing the
unit of utility to be the status quo marginal utility
of money (which is also without loss of generality
and which yields money-utile parity at the status
quo). Henceforth we will refer to uβ as a normal-
ized linear-risk-tolerance (normalized LRT) utility
function. The advantages of this normalization are
that (a) it is a natural one for modeling utility gains
and losses relative to the status quo rather than
relative to some hypothetical zero-point of wealth
at which utility goes to minus-infinity, and (b) for
fixed x, uβ(x) is a continuous function of β on the
entire real line, so that it sweeps out the widest
possible spectrum of local risk attitudes. (Utility
functions with the property of linear risk tolerance
but without this useful normalization are known
as hyperbolic-absolute-risk-aversion (HARA) utility
functions in the literature of financial economics,
and they typically use different parameterizations
for different ranges of the power parameter.) Some
important special cases of uβ(x) are given in Table 2.

The utility functions {uβ} exhibit their own form of
anti-symmetry around β = 1

2 , namely that u1−β(x) =
−uβ(−x), or equivalently uβ(−u1−β(−x)) = x. In
other words, the graph of u1−β(x) is obtained from
the graph of uβ(x) by reflecting it around the line
y = −x. The power (exponent) in uβ is the term
(β−1)/β, which has the property that ((β−1)/β)−1 =
((1 − β) − 1)/(1 − β), so that swapping β for 1 − β

4The decision maker’s risk tolerance is the parameter that
determines the mean-variance tradeoffs she is willing to make
on the margin. To a second-order approximation, the amount
that she is willing to pay for a risky asset whose payoff dis-
tribution has mean µ and variance σ2 is equal to µ − σ2/2τ ,
where τ is her risk tolerance. In other words, her risk premium
for such an asset, which is the amount by which she devalues
it relative to its expected value, is σ2/2τ . In general a decision
maker’s risk tolerance may be expected to change as her wealth
changes, and with this utility function her risk tolerance is a
linear function of wealth with slope coefficient β.

-4

-3

-2

-1

0

1

2

-2 -1 0 1 2 3 4

Exponential (beta = 0)
Logarithmic (beta = 1)
y = -x

Figure 1: Reflection property of normalized LRT util-
ity functions around y = −x

results in another power utility function whose power
is the reciprocal of the original. Thus, under this pa-
rameterization, the reciprocal utility function (β = 1

2 )
is its own reflection around the line y = −x, the ex-
ponential and log utility functions (β = 0 and β = 1)
are reflections of each other, as illustrated in Figure 1,
and the power utility function with exponent δ is the
reflection of the power utility function with exponent
1/δ for any positive or negative δ other than 0 or 1.

5 Duality between maximization of
expected utility and minimization of
relative entropy in incomplete markets

We now consider two generic optimization problems
in which a risk averse decision maker with probability
distribution p invests in an incomplete financial
market where bid-ask spreads in asset prices are
determined by a convex set Q of imprecise prob-
abilities representing the beliefs of a risk-neutral
representative agent, as noted in the introduction.
The problem of expected-utility maximization in
incomplete markets has been widely studied in the
mathematical finance literature in recent years, and
it has been shown that there is a duality relation-
ship between maximization of expected utility and
minimization of an appropriate divergence (e.g.,
Frittelli 2000, Rouge and El Karoui 2000, Goll and
Rüschendorf 2001, Delbaen et al. 2002, Slomczyński
and Zastawniak 2004, Ilhan et al. 2004, Samperi
2005). Most of this literature has focused on
the case of exponential utility, for which the dual
problem is the minimization of the reverse KL
divergence DKL(q‖p), as well as on issues that arise
in multi-period or continuous-time markets. In
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this section we will show that in a single-period
or two-period market, there is a duality relation
between the pseudospherical or power divergence
and the solution of an expected-utility-maximization
problem in which the utility function is drawn from
the normalized linear-risk-tolerance family.

Let x ∈ Rn denote the vector of mone-
tary payoffs to the decision maker, and let
uβ(x) ≡ (uβ(x1), ..., uβ(xn)) denote the vector
of utilities that the function uβ yields when applied
to x. An incomplete, single-period market can either
be parameterized in terms of an m × n matrix A
whose rows are the (net) payoff vectors of available
assets, i.e., A = {aij} where aij is the net payoff
to the decision maker of one unit of the ithasset
in state j, or else in terms of a k × n matrix Q
whose rows are risk neutral probability distribu-
tions that support the asset prices, i.e., Q = {qij}
where qij is the probability of state j under the
ith risk neutral distribution. The rows of Q are
the extremal risk-neutral probability distributions
assigning non-positive expectation to all the rows of
A, i.e., the rows of −Q are the dual cone of the rows
of A. The parameterization in terms of Q will be
adopted here. Let x denote an arbitrary n-vector of
monetary payoffs to the decision maker (an element
of Rn), and let z denote an arbitrary k-vector of
non-negative weights summing to one (an element
of △k, the unit simplex in Rk). As before, let p
denote the decision maker’s subjective probability
distribution, and henceforth let q denote one of many
possible probability distributions attributable to a
risk-neutral trading opponent: the representative
agent.

In the first generic decision problem (“S”), there is
a single time period in which consumption occurs,
the decision maker has a single-attribute LRT util-
ity function uβ(x), and her objective is to find the
payoff vector x that maximizes her subjective ex-
pected utility subject to the self-financing constraint
Eq[x] ≤ 0. The decision maker’s optimal expected
utility, denoted US(p‖q), is determined by solving:

Primal Problem S:

US
β (p‖Q) ≡ max

x∈Rn
Ep[uβ(x)] subject to Qx ≤ 0

Note that −Qx is the k-vector of the opponent’s
expected values for payoff vector x under all the ex-
tremal risk neutral distributions, hence the condition
Qx ≤ 0 means that x yields non-negative expected
value to the opponent under all those distributions.

In the second problem (“P”), there are two periods
in which consumption occurs and the decision maker
with probability distribution p has a quasilinear util-
ity function uβ(a, b) = a+uβ(b) where a is money con-
sumed at time 0 and b is money consumed at time 1.
Under the normalized LRT family of utility functions,
the marginal rate of substitution between time-0 con-
sumption and time-1 consumption is equal to unity at
x = 0 in this problem, as though in the status quo the
decision maker is indifferent between consuming the
next dollar at time 0 or time 1. The decision maker’s
objective is to choose a vector x of time-1 payoffs to
be purchased from time-0 funds at market prices so
as to maximize the total expected utility of consump-
tion in both periods. The time-0 cost of purchasing
x is Eq[x], so the optimal expected utility, denoted
UP(p‖q), is the solution of:

Primal Problem P:

UP
β (p‖Q) ≡ max

y∈R,x∈Rn
Ep[uβ(x)]− y subject to Qx ≤ y1

Henceforth, let xS
β(p‖q) and xP

β (p‖q) denote the
solutions of Problems S and P, with ith elements
xS

β,i(p‖q) and xP
β,i(p‖q), respectively. Let z ∈ △k

denote a vector of weights, so that zT Q is a mixture
of the rows of Q, which is an element of the convex
polytope Q of risk neutral distributions. Our main
result is that the utility gains to the decision maker
under problems S and P are, respectively, the minima
of the pseudospherical and power divergences between
p and all q ∈ Q for the same β.

THEOREM (Jose et al. 2008):
(a) In an incomplete, single-period market, maximiza-
tion of expected linear-risk-tolerance utility with risk
tolerance coefficient β (Primal Problem S) is dual to
minimization of the pseudospherical divergence of or-
der β between the decision maker’s subjective distri-
bution p and a risk neutral distribution q consistent
with asset prices. That is, the corresponding dual
problem is:

Dual Problem S: DS
β (p‖Q) ≡ min

z∈△k
DS

β (p‖zT Q).

Their optimal objective values are the same and the
optimal values of the decision variables in one prob-
lem are equal to the normalized optimal values of the
Lagrange multipliers in the other.

(b) In an incomplete, two-period market, maximiza-
tion of expected quasilinear linear-risk-tolerance util-
ity with second-period risk tolerance coefficient β
(Primal Problem P) is equivalent to minimization of
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the power divergence of order β between the decision
maker’s subjective distribution p and a risk neutral
distribution q consistent with asset prices (Dual Prob-
lem P). Their optimal objective values are the same
and the optimal values of the decision variables in one
problem are equal to the normalized optimal values of
the Lagrange multipliers in the other. That is, the
corresponding dual problem is:

Dual Problem P:DP
β (p‖Q) ≡ min

z∈△k
DP

β (p‖zT Q).

Proof: For part (a), Lagrangian relaxation is ap-
plicable because the primal problem has a strictly
concave, continuously differentiable objective func-
tion and linear constraints. Let λ denote the vector of
Lagrange multipliers associated with the constraints
Qx ≤ 0. The Lagrangian relaxation of Primal Prob-
lem S is then minλ∈Rk+ L(λ) where

L(λ) = max
x∈Rn

Ep[uβ(x)]− λT Qx. (17)

The Lagrangian L(λ) is an unconstrained maximum
of a continuously differentiable concave function, so
it can be solved for x in terms of λ by setting
∇(Ep[uβ(x)] − λT Qx) = 0, which yields

x =
1

β

 „
p

λT Q

«β

− 1

!
, (18)

whence

L(λ) = Ep

"
1

β − 1

"„
p

λT Q

«β−1

− 1

##
(19)

−λT Q

"
1

β

"„
p

λT Q

«β

− 1

##

=
1

β − 1

"
Ep

"„
p

λT Q

«β−1
#
− 1

#
(20)

− 1

β

"
Ep

"„
p

λT Q

«β−1
#
− 1T (λT Q)

#
.(21)

In the optimal solution λ∗, where the constraints are
satisfied, the second term will be zero, which implies

1T (λ∗T Q) = Ep

"„
p

λ∗T Q

«β−1
#

(22)

and consequently

L(λ∗) =
1

β − 1

 
Ep

"„
p

λ∗T Q

«β−1
#
− 1

!
. (23)

Now let z∗ = λ∗/1T λ∗ be the probability distribu-
tion that is obtained by normalization of the optimal
Lagrange multipliers λ∗. Then it follows from (21)
that:

z∗T Q =
λ∗T Q

Ep[(p/λ∗T Q)β−1]
. (24)

The pseudospherical divergence between p and z∗TQ
can therefore be expressed in terms of λ∗ as:

DS
β (p‖z∗T Q)

=
(Ep[(p/z∗T Q)β−1])1/β − 1

β − 1

=
(Ep[(Ep[(p/λ∗T Q)β−1](p/λ∗T Q))β−1])1/β − 1

β − 1

=
(Ep[(p/λ∗T Q)β−1])1−1/β(Ep[(p/λ∗T Q)β−1])1/β − 1

β − 1

=
1

β − 1

 
Ep

"„
p

λ∗T Q

«β−1
#
− 1

!

= L(λ∗), (25)

which is the optimal objective value of the primal
problem. Furthermore z∗ = λ∗/1T λ∗ must also min-
imize DS

β (p‖zTQ) over all z ∈ △k, because if there
were some other z∗∗ ∈ △k such that DS

β (p‖z∗∗TQ) <

DS
β(p‖z∗TQ), then it would be possible to find some

λ∗∗ ∈ Rk+ proportional to z∗∗ such that z∗∗TQ =
λ∗∗T Q/(Ep[(p/(λ∗∗TQ))β−1]). By construction this
λ∗∗ would satisfy Ep[(p/λ∗∗T Q)β−1]−1T (λ∗∗TQ) =
0, implying L(λ∗∗) = DS

β(p‖z∗∗TQ), and it would fol-
low that L(λ∗∗) < L(λ∗), contradicting the assump-
tion that λ∗ was optimal.

For part (b), the problem of finding the feasible risk
neutral distribution that minimizes the power diver-
gence of order β:

min
z∈△k

DP
β (p‖zTQ), (26)

is equivalent to the Lagrangian problem
minλ∈△k L(λ), where L(λ) = maxx∈Rn Ep[uβ(x)] −
λT Qx is the same Lagrangian that was used in the
proof of part (a) to minimize the pseudospherical
divergence, except that here λ is constrained to be
in the simplex, not just the non-negative orthant
(λ ∈△k rather than λ ∈Rk+), which requires a
Lagrange multiplier for the constraint 1Tq = 1
in addition to the m Lagrange multipliers for the
constraints Aq ≥ 0. The latter divided by the
former are equal to the optimal values of the de-
cision variables in Primal Problem P multiplied
by −β. The power divergence is minimized by
the same risk neutral distribution q∗ = z∗T Q that
minimizes the pseudospherical divergence (for the
same p, β and Q), because they are both monotonic
functions of Ep[(p/q)β−1]. The optimal value of
λ is a unit vector selecting the largest element of
Qx. Let z denote this largest element. Then
minλ∈△k maxx∈Rn Ep[uβ(x)] − λTQx is equivalent
to maxx∈Rn Ep[uβ(x)] − z subject to Qx ≤ z1.�
The special case β = 1 corresponds to log utility in the
primal problem and KL divergence in the dual prob-
lem, while β = 0 corresponds to exponential utility in
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Figure 2a:  Beta = -1.0 State 3

State 2

State 1

Figure 2b:  Beta = 0.0
State 3

State 2

State 1

Figure 2c:  Beta = 0.5
State 3

State 2

State 1

Figure 2d:  Beta = 1.0
State 3

State 2

State 1

Figure 2e:  Beta = 2.0
State 3

State 2

State 1

Figures 2a-e: Minimum-divergence solution for the
power divergence with p = (0.35, 0.5, 0.15) for

β = −1, 0, 0.5, 1, and 2.

the primal problem and reverse KL divergence in the
dual problem, and the cases β = 1/2 and β = 2 are
related to the squared Hellinger distance and the Chi-
square divergence as shown in the right-hand column
of Table 1. Because the pseudospherical divergence is
a monotonic transformation of the power divergence,
the distribution q (= zT Q) that solves Dual Prob-
lem S is the same one that solves Dual Problem P,
although the objective values and the primal payoff
vectors are generally different. The power divergence
is always strictly greater than the pseudospherical di-
vergence (DP

β (p‖q) > DS
β (p‖q)) except at β = 1,

as pointed out earlier, but this inequality is further
illuminated by a comparison of the corresponding La-
grangian relaxation problems: the minimization of
L(λ) over λ ∈ △k must yield a result greater than or
equal to its minimization over the larger set λ ∈ Rk+,
whether or not the market is complete.

Versions of the same duality theorem have been dis-
cussed in the mathematical finance literature, as
noted above, although the full spectrum of LRT utility
and its closed-form solution have not previously been
characterized. The details of the correspondence be-
tween our results and those of Goll and Rüschendorf
(2001) are given in Jose et al. (2008).

6 Illustration of the geometry of the
divergence-minimization problem

To visualize the preceding results, consider a simple
example in which there are three states and (only)
lower and upper bounds of 0.3 and 0.5 are given for
the probability of state 1 and lower and upper bounds
of 0.6 and 0.8 are given for the conditional probability
of state 3 given not-state-1. The set Q of probabil-
ity distributions that satisfies these constraints is the
unshaded quadrilateral in the lower center of the sim-
plex in Figures 2a-e. Let the reference distribution
be p = (0.35, 0.5, 0.15), which is the square dot in the
upper left. Figures 2a-e show the solution of the dual
problem of finding the element of Q that minimizes
the pseudospherical or power divergence between it-
self and p for β = −1, 0, 0.5, 1, and 2. The triangu-
lar dot is the minimum-divergence solution, and the
contour (level curve) that passes through it is also
shown. In this case, the solution moves from the
left to the right of the upper edge of the quadrilat-
eral as β increases from −1 to 2. Also, the contours
become more triangular in shape as β increases, flat-
tening more near the edges of the simplex, because as
q approaches an edge of the simplex, qi goes to zero
for some i, and the term (pi/qi)β−1 in the divergence
calculation blows up faster for larger values of β as
that edge is approached.
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7 Discussion

A financial market under uncertainty provides one of
the purest and most economically important examples
of a situation in which subjective beliefs – in this case
those of a risk neutral representative agent with whom
individual investors may trade – are represented by
imprecise probabilities that are subject to direct mea-
surement. The measurement process, which consists
of setting bid and ask prices for portfolios of Arrow se-
curities, is essentially the same operational method of
eliciting subjective probabilities that was introduced
by de Finetti, and it naturally leads to a represen-
tation of beliefs in the form of a convex polytope of
probability distributions. In this paper we have con-
sidered the decision problem faced by a risk-averse
investor in such a market when her risk preferences
are represented by a utility function drawn from the
generalized power family, which is the family most
commonly used in finance theory and applied deci-
sion analysis. Under a natural (but novel) param-
eterization of the generalized power utility function,
the investor’s optimal expected utility is equal to the
minimum of a generalized divergence between her own
distribution and the nearest element of the polytope
that characterizes the imprecise beliefs of the repre-
sentative agent, where the generalized divergence is
drawn from a parametric family that generalizes the
Kullback-Lielber divergence. We have also pointed
out connections with recent developments in the use of
generalized divergences in robust Bayesian statistics.
These results highlight the interconnections among in-
formation theory, Bayesian statistics, decision analy-
sis, and finance theory with respect to the program of
modeling imprecise probabilities.
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Abstract

We explore generalizations of the pari-mutuel model
(PMM), a formalization of an intuitive way of assess-
ing an upper probability from a precise one. We dis-
cuss a naive extension of the PMM considered in in-
surance and generalize the natural extension of the
PMM introduced by P. Walley and other related for-
mulae. The results are subsequently given a risk mea-
surement interpretation: in particular it is shown that
a known risk measure, Tail Value at Risk (TVaR), is
derived from the PMM, and a coherent risk measure
more general than TVaR from its imprecise version.
We analyze further the conditions for coherence of a
related risk measure, Conditional Tail Expectation.
Explicit formulae for conditioning the PMM and con-
ditions for dilation or imprecision increase are also
supplied and discussed.

Keywords. Pari-mutuel model, risk measures, nat-
ural extension, dilation, 2-monotonicity.

1 Introduction

The pari-mutuel model (PMM) formalizes a very intu-
itive and therefore widely used method of assigning an
upper probability starting from a precise probability.
To introduce it, consider, following [2], a probability
P for event A as a fair price for a bet which returns
1 unit to the bettor if A is true, 0 units if A is false,
i.e. returns the indicator IA of A. The bettor’s gain
is G = IA −P (A), while that of his opponent, House,
is −G = GH = P (A)− IA.

In most real-world betting schemes House is unwilling
to accept such a fair game (the expectation E(GH) is
0), but asks for a positive gain expectation. It is so
when House is a bookmaker, an insurance company,
the organizer of a lottery, and so on. A way to achieve
this goal is to raise the bettor’s price, without altering
his reward, and a naive method multiplies P by a con-
stant greater than 1, say 1+δ, where δ > 0 is a loading

constant. The bettor pays P (A) = (1+δ)P (A), while
the gain for House is now GH = (1 + δ)P (A) − IA.
Alternatively, House might ask the same price to
pay a reduced reward (1 − τ)IA, where 0 < τ < 1
is interpreted as a commission, or also a taxation.
This originates a gain G

∗
H = P (A) − (1 − τ)IA =

(1−τ)(P (A)
1−τ −IA) = (1−τ)GH iff 1

1−τ = 1+δ, i.e. iff
τ = δ

1+δ . Thus, up to a scaling factor, the two meth-
ods are equivalent if τ = δ

1+δ ; the latter is formally
more adherent to common betting systems, called in
fact pari-mutuel systems.

In the theory of imprecise probabilities, P is an upper
probability, but a slight adjustment to P is necessary
to achieve coherence. In fact, Walley [11] terms pari-
mutuel model the upper probability

P (A) = min{(1 + δ)P (A), 1}. (1)

Intuitively, the correction should be needed: when
P (A) > 1

1+δ , it is GH > 0 in the naive method, i.e.
a bettor suffers from a sure loss no matter whether A
is true or false.

This paper investigates further the pari-mutuel
model, extending the analysis in [11]. Preliminary
issues are recalled in Section 2, very concisely in
general, more extensively as for 2-monotone and 2-
alternating previsions, since the upper probability P
in (1) is 2-alternating. In Section 3 we discuss exten-
sions of the PMM. First, we consider alternative ex-
pressions for the natural extension E(X) of P , defined
on a field A, to any A-measurable gamble X. These
expressions were stated in [11], but we make a more
detailed analysis of the conditions ensuring that E(X)
is equal to a certain conditional prevision (P (X|X >
xτ )), which has a risk measurement interpretation. In
Section 3.1 we restrict to non-negative gambles and
compare the natural extension E with the naive ex-
tension PN (X) = min{(1 + δ)P (X), sup X}, showing
that quite often PN is not coherent, or it sometimes
coincides with E. The motivation for this work is that
PN is a premium in insurance, although with different
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premises: the starting point is not the PMM but a set
of non-negative gambles. In Section 3.2 we general-
ize Walley’s approach, obtaining a formula for E(X)
when the PMM is given on a lattice of events and X
is not necessarily measurable.

These results have an interesting and, to the best of
our knowledge, so far not considered interpretation in
the realm of risk measurement. This is the main topic
of Section 4, where the natural extension of the PMM
defined on a field is shown to correspond to a coherent
risk measure, called Tail Value-at-Risk or TVaR (in
[4]; other authors may use a different terminology).
When the PMM is defined on a lattice, we obtain a
generalization of TVaR (not discussed in the risk lit-
erature), which replaces precise with imprecise uncer-
tainty measures; we name it ITVaR. Thus the PMM
supplies a motivation for introducing ‘imprecise’ risk
measures: one of them, ITVaR, is the natural exten-
sion of a PMM assigned on a lattice. Conditioning
the PMM defined on a field is discussed in Section 5.
We specialize general formulae for the natural exten-
sion of 2-alternating and 2-monotone probabilities to
the case of the PMM and discuss the effect on them of
dilation and of a weaker phenomenon, imprecision in-
crease. We obtain a number of conditions for dilation
or imprecision increase, and discuss in detail the op-
erationally most relevant cases (when the commission
τ is not “too high” and event A is either “common”
or “rare”). Section 6 concludes the paper.

2 Preliminaries

Upper (P ) and lower (P ) probabilities are customarily
related by the conjugacy relation P (A) = 1− P (Ac),
which lets one refer to either P or P only. Applying
it to (1), the lower probability in the PMM is [11]

P (A) = max{(1 + δ)P (A)− δ, 0}. (2)

As noted in the Introduction, the parameter τ ∈ ]0; 1[
can, and later will, alternatively describe P , P in the
PMM. The relationship between τ and δ is:

τ =
δ

1 + δ
; δ =

τ

1− τ
. (3)

An upper probability P defined by (1) for any A in
an arbitrary set of events D (or P defined by (2))
is coherent on D, and probably the simplest way to
see it is to apply the later Proposition 2. In gen-
eral, an upper prevision P is a mapping from a set D
of gambles (bounded random variables) into the real
line, and an upper probability is its special case that
the domain D is made of (indicators of) events only.
The upper prevision P is coherent on D iff, ∀n ∈ N,
∀s0, s1, . . . , sn ≥ 0, ∀X0, X1, . . . , Xn ∈ D, defining

G =
∑n

i=1 si(P (Xi)−Xi)− s0(P (X0)−X0), it holds
that sup G ≥ 0.

There are several necessary conditions for coherence,
in particular: internality, inf X ≤ P (X) ≤ sup X,
and subadditivity, P (X + Y ) ≤ P (X) + P (Y ).

We refer to [11] for a thorough presentation of the
theory of coherent upper/lower previsions. One of its
most important notions is that of natural extension
[11, Section 3].

In our framework, the natural extension E on D′ of
a coherent upper prevision (or probability) P defined
on D ⊂ D′ is the least-committal coherent extension
of P on D′, i.e. E(X) = P (X), ∀X ∈ D, and for any
coherent P

∗
such that P

∗
= P on D, E(X) ≥ P

∗
(X),

∀X ∈ D′, i.e. E dominates P
∗
. It can be shown that

E always exists. Symmetrically, the natural extension
E on D′L of a coherent lower prevision P on DL is such
that E = P (on DL), and every coherent extension P ∗

of P dominates E on D′L.

If condition ‘∀s0, s1, . . . , sn ≥ 0’ is replaced by
‘∀s0, s1, . . . , sn ∈ R’ in the definition of coherent up-
per prevision, we obtain de Finetti’s notion of dF-
coherent (precise) prevision [2]. A dF-coherent previ-
sion P is coherent both as an upper and as a lower
prevision. The precise previsions or probabilities in
the sequel are meant to be dF-coherent.

Although the domain of an upper prevision may be
arbitrary, it will have a special structure in most of the
paper, to exploit results on 2-alternating previsions.

More specifically, a set of events A is a field when
∅ ∈ A and A ∨ B,Ac ∈ A,∀A,B ∈ A. If A is a field,
a gamble X is A-measurable when the events X > x
and X < x are in A, ∀x ∈ R.

A set of gambles S is a lattice if X, Y ∈ S implies
max(X, Y ) ∈ S and min(X, Y ) ∈ S.

An upper prevision P defined on a lattice S is 2-
alternating iff P (max(X, Y )) ≤ P (X) + P (Y ) −
P (min(X, Y )), ∀X, Y ∈ S. A lower prevision P on
S is 2-monotone iff P (max(X, Y )) ≥ P (X) + P (Y )−
P (min(X, Y )), ∀X, Y ∈ S.

Results stated for 2-monotone previsions are easily re-
worded for 2-alternating ones (and vice versa), since
the conjugate P (X) = −P (−X) of a 2-monotone
lower prevision is 2-alternating (and vice versa).

When S is a set of (indicators of) events and P is
therefore an upper probability, S is a lattice iff A, B ∈
S implies A∨B ∈ S, A∧B ∈ S, and P is 2-alternating
iff P (A∨B) ≤ P (A) + P (B)− P (A∧B), ∀A,B ∈ S.
With a mild additional condition, 2-alternating upper
probabilities are coherent [1]:
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Proposition 1. Let P be a 2-alternating upper prob-
ability on a lattice S containing ∅ and Ω. Then P is
coherent iff P (∅) = 0 and P (Ω) = 1.

Notation Let S+ be a lattice of events containing ∅
and Ω.

One way to obtain coherent 2-alternating upper prob-
abilities defines P as a special distorted probability, by
the following result, adapted from [3], Example 2.1.

Proposition 2. Let P be a dF-coherent probability
on S+ and φ a (weakly) increasing concave function
defined on [0; 1] with φ(0) = 0, φ(1) = 1. Then the
distorted probability P (·) = φ(P (·)) is a 2-alternating
and coherent upper probability.

Proposition 2 ensures that P in (1) is 2-alternating
and coherent (put φ(x) = min((1 + δ)x, 1)), hence its
conjugate P is 2-monotone and coherent.

To deal with the natural extension of the PMM in Sec-
tion 3, the following Proposition 3 will be exploited.

Notation The natural extension of interest is that of
P from S+ to the set L = L(IPu) of all gambles de-
fined on a “universal” partition IPu (termed Ω in [11]).
That is, IPu is a set of pairwise disjoint events, whose
sum is the sure event Ω, and such that its powerset
2IPu contains all the events of interest. In particular
S+ ⊆ 2IPu . Given P : S+ → R, its outer (set) func-
tion P

∗
is defined on 2IPu by P

∗
(B) = inf{P (A) : A ∈

S+, B ⇒ A}, ∀B ∈ 2IPu .

Proposition 3. [1] Let P : S+ → R be a coherent
2-alternating upper probability. Its natural extension
E on L is given by

E(X) = inf X +
∫ sup X

inf X

P
∗
(X > x)dx (4)

and is 2-alternating too. Further,

(a) The restriction of E on 2IPu coincides with the
outer function P

∗
.

(b) If S+ = 2IPu , E is the only 2-alternating coherent
extension of P on L.

In Section 5 we shall be concerned with natural exten-
sions on conditional events, like E(A|B) or E(A|B),
while precise conditional previsions, like P (X|X >
xτ ), appear in Section 3. Although the paper pre-
sentation does not focus on coherence concepts in a
conditional environment, our approach employs for-
mally Williams coherence or W-coherence, in the ver-
sion presented in [7], Definition 4, which unlike Wal-
ley’s coherence in [11, Section 7.1.4 (b)] imposes no
structure constraints on the domain D of the upper or

lower previsions. However, when finitely many con-
ditioning events are involved in D (as is always the
case in the paper), Williams and Walley’s coherence
are equivalent (after extending the given W-coherent
prevision on a suitable set D′, which can be always
done keeping W-coherence, cf. [7]). Thus the results
in the paper hold also in terms of Walley’s coherence.

Several necessary conditions hold for W-coherence,
whenever they are well-defined. Recall internality :
inf(X|B) ≤ P (X|B) ≤ sup(X|B), where for instance
sup(X|B) = sup{X(ω)|ω ⇒ B}, and the Generalized
Bayes Rule (GBR) P (IA(X − P (X|A))) = 0, which
in the case of precise previsions specialises to

P (XIA) = P (X|A)P (A). (5)

3 Extending the pari-mutuel model

The natural extension E of P (A) = min{(1 +
δ)P (A), 1} from a field A to any A-measurable gam-
ble X was shown in [11] to be

E(X) = xτ + (1 + δ)P ((X − xτ )+), (6)

where (X − xτ )+ = max{X − xτ , 0} and the (upper)
quantile xτ is defined as

xτ = sup{x ∈ R : P (X ≤ x) ≤ τ}. (7)

An alternative expression for E(X) is:1

E(X) = (1− ε)P (X|X > xτ ) + εxτ ,

ε = 1− (1 + δ)P (X > xτ ).
(8)

It is also stated in [11] that E(X) = P (X|X > xτ )
if X has a continuous distribution function FX(x) def=
P (X ≤ x).

We shall now explore more thoroughly the relation-
ship between E(X) and P (X|X > xτ ). The results
will be exploited also in Section 4, where they will be
reinterpreted in a risk measurement perspective.

To begin with, we gather some known or anyway ele-
mentary, but useful facts in the following proposition.

Proposition 4. Let X be A-measurable and for τ ∈
]0; 1[ define: xτ by (7), FX(x+

τ ) = limx→x+
τ

FX(x),
FX(x−τ ) = limx→x−τ

FX(x).

a) τ ∈ [FX(x−τ ); FX(x+
τ )]; besides, all values of τ

in [FX(x−τ ); FX(x+
τ )[ originate by (7) the same

(upper) quantile xτ .

b) inf X ≤ xτ ≤ sup X.
1Equation (8) is stated without proof in [11], Note 3 to Sec-

tion 3.2. A proof may follow from the later Proposition 9.
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c) (X > xτ ) = ∅ iff xτ = sup X; if (X ≤ xτ ) = ∅
then xτ = inf X.

d) It holds for ε in (8) that ε Q 0 iff τ R FX(xτ ).2

Corollary 1. If (X > xτ ) = ∅, E(X) = sup X.

Proof. Substitute (by Proposition 4, c) xτ = sup X
in (6), noting that P ((X − xτ )+) = P (0) = 0.

Remark 1. When P is σ-additive, FX(x+
τ ) = FX(xτ ),

i.e. FX is right-continuous. But an often neglected
issue broadens the number of possible alternatives in
comparing E(X) with P (X|X > xτ ) (and with an-
other extension in the next Section 3.1): since FX is
originated by a not necessarily σ-additive probability
P , there may exist non-zero adherent probabilities at
xτ (cf. [2], Section 6.4.11). Precisely,

FX(x+
τ )− FX(x−τ ) = P−

xτ
+ P+

xτ
+ P (X = xτ ),

where P−
xτ

= FX(xτ )−FX(x−τ )−P (X = xτ ) is the left
adherent probability at xτ , P+

xτ
= FX(x+

τ ) − FX(xτ )
is the right adherent probability at xτ . Hence,

FX(xτ ) = FX(x−τ ) + P−
xτ

+ P (X = xτ ). (9)

While P+
xτ

is zero iff FX is right-continuous at xτ (al-
ways if P is σ-additive), from (9), FX may be left-
discontinuous in xτ also when P−

xτ
= 0, if P (X =

xτ ) > 0 (σ-additivity of P implies P−
xτ

= 0).

Proposition 5. a) If P (X|X > xτ ) = xτ , then
E(X) = P (X|X > xτ ).

b) If P (X|X > xτ ) > xτ , then E(X) Q P (X|X >

xτ ) iff τ Q FX(xτ ).

Proof. Using (8), E(X) Q P (X|X > xτ ) iff
ε(xτ − P (X|X > xτ )) Q 0, from which a) follows
immediately, b) using also Proposition 4, d).

Proposition 5, a) considers a really extreme situation.
Assuming from now that P (X|X > xτ ) > xτ , Propo-
sition 5, b) reduces the comparison between E(X)
and P (X|X > xτ ) to comparing τ and FX(xτ ) in
the further subcases that can be identified. The most
notable instances are:

i) FX is continuous at xτ . This implies τ = FX(xτ ),
and E(X) = P (X|X > xτ ).

ii) FX is right-continuous, but not continuous at
xτ , and τ 6= FX(xτ ). This implies FX(xτ ) =
FX(x+

τ ) > τ , and P (X|X > xτ ) > E(X).

2We write Q or R to summarize three conditions, here ε < 0

iff τ > FX(xτ ), ε = 0 iff τ = FX(xτ ), ε > 0 iff τ < FX(xτ ).

Case ii) is the most obvious instance that ensures
P (X|X > xτ ) > E(X), but not the only one.
By Proposition 4, a), it can be τ < FX(xτ ) also
when FX is not right-continuous (while being left-
discontinuous). Similarly, there are other cases when
P (X|X > xτ ) = E(X), because τ = FX(xτ ), apart
from case i), which remains the most important one.
And it is also possible that

iii) P (X|X > xτ ) < E(X).

Obviously, case iii) cannot occur when P is σ-additive,
since it is equivalent to τ > FX(xτ ), hence τ ∈
]FX(xτ ); FX(x+

τ )] = I> and I> 6= ∅ iff P+
xτ

> 0.

When P (X|X > xτ ) > E(X), then P (X|X > xτ )
is clearly not a coherent extension to X of P in the
PMM, while it is so when it coincides with E(X).

3.1 Comparison with a naive extension

In actuarial applications the upper probability P (A)
in (1) is the price, determined by increasing P by a
loading δ > 0, of an insurance policy which pays 1
unit if and only if event A occurs. In analogy with
(1), one could set the price of an insurance policy
which refunds x units iff the loss X = x occurs, to (1+
δ)P (X), up to a maximum of sup X. Here P (X) is the
expectation of X computed from P . This procedure
defines the naive extension:

PN (X) = min{(1 + δ)P (X), sup X}.

This extension, without the upper bound sup X
(which is however necessary for PN to be coherent), is
referred to as expected value principle in risk theory
literature [5, p. 67]. To fix the framework, suppose
(throughout this section only) that P is defined on
the field 2IPu , and that we are interested in extending
it to some set D strictly contained in the cone L+(IPu)
of the non-negative gambles in L(IPu). The gambles
in D are non-negative, being refunds to the insured:
hence inf X ≥ 0, ∀X ∈ D.

The inclusion D $ L+(IPu) is strict because PN can-
not in general be coherent on a set D containing X,
X + k, when k ∈ R+ is large enough. For instance, if
PN (X) = (1 + δ)P (X) < sup X, then PN (X + k) =
sup X + k > PN (X) + k for k ≥ sup X−(1+δ)P (X)

δ , vi-
olating property (c) in [11], Section 2.6.1, which is a
necessary condition for coherence.

But even when D = {X}, PN may be incoherent with
the PMM:
Example 1. Take IPu = {e0, e1, e2, e3}, and let
X(ei) = i, i = 0, . . . , 3, P (X = 0) = 0, P (X = 1) =
0.1, P (X = 2) = 0.5, P (X = 3) = 0.4 and δ = 1/10.
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Then P (X) = 2.3 and hence PN (X) = 2.53. Let
us now compute the natural extension in X. We
have that τ = δ

1+δ = 1/11, hence xτ = 1, as
can be checked using FX . Applying (6), E(X) =
1 + 11

10P (max{X − 1, 0}) = 1 + 11
101.3 = 2.43.

In Example 1, PN (X) > E(X). This is interesting
because the natural extension is shown to lead to a
price smaller than would be expected from the intu-
ition at the basis of the PMM and also because PN

is incoherent with the PMM, being larger than E.

The dominance relationship between PN and E is the
object of the following proposition.

Proposition 6. a) If (X > xτ ) = ∅ then PN (X) ≤
E(X).

b) If either (X ≤ xτ ) = ∅ or PN (X) = sup X, then
PN (X) ≥ E(X).

Suppose now (X > xτ ) 6= ∅, (X ≤ xτ ) 6= ∅, PN (X) <
sup X, and let ε be given by (8).

c) If ε = 0, then PN (X) ≥ E(X) and PN (X) =
E(X) iff P (X|X ≤ xτ ) = 0.

d) If ε 6= 0 and xτ = 0, then PN (X) = E(X).

e) If ε 6= 0 and xτ > 0, condition FX(xτ ) < τ im-
plies PN (X) > E(X), while condition FX(xτ ) >
τ is necessary, but not sufficient, to ensure
PN (X) ≤ E(X).

Proof. a) follows from Corollary 1. To prove the
non-trivial implication in b), put (Proposition 4, c))
xτ = inf X in (6), to get E(X) = inf X + (1 +
δ)P (X − inf X) = (1 + δ)P (X)− δ inf X ≤ min{(1 +
δ)P (X), sup X} = PN (X).

To prove c), write (1 + δ)P (X) = P (X|X > xτ )(1 +
δ)P (X > xτ ) + (1 + δ)P (X|X ≤ xτ )P (X ≤ xτ ) =
P (X|X > xτ )(1−ε)+(1+δ)P (X|X ≤ xτ )(1−P (X >
xτ )) = P (X|X > xτ )(1− ε) + (1 + δ)P (X|X ≤ xτ )−
P (X|X ≤ xτ )(1 − ε) = (1 − ε)P (X|X > xτ ) + (δ +
ε)P (X|X ≤ xτ ). From here

PN (X) = min{(1− ε)P (X|X > xτ )
+ (δ + ε)P (X|X ≤ xτ ), sup X}.

Comparing this equality and (8),

PN (X) R E(X) iff (δ + ε)P (X|X ≤ xτ ) R εxτ . (10)

When ε = 0, c) follows directly from (10).

To prove the remaining cases, we write the right-hand
side inequality in (10) in a different form. Since δ+ε =
(1 + δ)P (X ≤ xτ ) and εxτ = ((1 + δ)− (1 + δ)P (X >
xτ ) − δ)xτ = ((1 + δ)P (X ≤ xτ ) − δ)xτ , using also

(5) we get PN (X) R E(X) iff P (XIX≤xτ ) R (P (X ≤
xτ )− δ

1+δ )xτ , or equivalently

PN (X) R E(X) iff P (XIX≤xτ
) R (FX(xτ )− τ)xτ .

From here and Proposition 4 d), parts d) and e)
follow at once (for d), recall that xτ = 0 implies
P (XIX≤xτ ) = 0).

It appears from Proposition 6 that PN is only oc-
casionally equal to E, and may easily be incoherent.
Cases a), b), d) treat really extreme situations, while
in the common case that FX is continuous at xτ , c) en-
sures that PN is incoherent, unless the limiting eval-
uation P (X|X ≤ xτ ) = 0 applies. Case e) shows that
PN can possibly be coherent when FX(xτ ) > τ . The
most important practical case concerns discrete gam-
bles (with finitely many possible values). However,
it should be checked even then whether PN ≤ E,
and this makes the use of PN less convenient. For
instance, PN > E in Example 1.

3.2 A generalization

We shall derive here E in the more general framework
of Proposition 3, that P is defined by the PMM on
S+ and E on L(IPu). We first obtain an expression
for E(B), for any event B in 2IPu .
Proposition 7. In the PMM, the natural extension
of P : S+ → R on 2IPu is

E(B) = min{(1 + δ)P̃ ∗(B), 1}, (11)

where the upper probability P̃ ∗(B) = inf{P (A) : A ∈
S+, B ⇒ A} is the outer function of P .

Proof. By Proposition 3 (a), E(B) = P
∗
(B) =

inf{min{(1 + δ)P (A), 1} : A ∈ S+, B ⇒ A}. Defining
LB = {A ∈ S+ : B ⇒ A, (1 + δ)P (A) < 1}, LB = ∅
iff (1 + δ)P̃ ∗(B) ≥ 1.

Two cases may occur: if LB = ∅, that is if (1 +
δ)P̃ ∗(B) ≥ 1, then E(B) = 1; if LB 6= ∅, that is if
(1 + δ)P̃ ∗(B) < 1, E(B) = inf{(1 + δ)P (A) : A ∈
LB} = (1 + δ) inf{P (A) : A ∈ LB} = (1 + δ)P̃ ∗(B).
In summary, equation (11) holds.

We emphasize that P̃ ∗ in (11) is generally not a pre-
cise, but an upper probability. In fact, by Proposi-
tion 3 (a), it coincides with the natural extension EP

on 2IPu of the probability P , when P is interpreted as
a special upper probability.
Proposition 8. In the PMM, the natural extension
of P : S+ → R on L(IPu) is:

E(X) = xu
τ + (1 + δ)EP ((X − xτ )+) (12)

where EP is the natural extension of P (also of P̃ ∗)
on L, and xu

τ is the (upper) quantile relative to P̃ ∗

xu
τ = sup{x ∈ R : P̃ ∗(X ≤ x) ≤ τ}. (13)
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Proof. Apply (4) and Proposition 3, (a) substituting
P
∗

= E with its expression in equation (11), getting

E(X) = inf X +
∫ sup X

inf X

min{(1 + δ)P̃ ∗(X > x), 1}dx.

From here, the derivation of (12) is identical to that
sketched in [11], Section 3.2.5, to obtain (6). In fact,
P̃ ∗ is defined on the field 2IPu , and every X ∈ L is
measurable with respect to such a field.

Clearly, (12) generalizes (6). We might summarize
the difference between the natural extension in (12)
and that in (6) as follows: computing the natural ex-
tension of P on gambles which are not necessarily
measurable with respect to the domain of P intro-
duces imprecision by transforming the precise previ-
sion P ((X − xτ )+) in (6) into the upper prevision
EP ((X − xu

τ )+) in (12). Also the quantile xτ refers
to probability P in (7), while xu

τ employs the upper
probability P̃ ∗ in (13).

But there is another attractive interpretation: E(B)
in (11) can be viewed as a kind of imprecise PMM,
defined via natural extension on 2IPu starting from a
(precise) PMM on a narrower set S+: then (12) de-
scribes the natural extension of this imprecise model.

Some properties of the natural extension of the PMM
generalize to the natural extension of the imprecise
PMM. The following proposition relaxes (8):
Proposition 9. If (X > xu

τ ) 6= ∅, it holds for the
natural extension E on L(IPu) of P : S+ → R that

E(X) ≤ εuxu
τ + (1− εu)EP (X|X > xu

τ ) (14)

where εu def= 1− (1 + δ)EP (X > xu
τ ).

Proof. Noting that (X − xu
τ )+ = (X − xu

τ )IX>xu
τ

and by subadditivity of coherent upper previsions
and, at the second equality, the GBR,3 EP ((X −
xu

τ )+) = EP ((X − xu
τ )IX>xu

τ
) ≤ EP (IX>xu

τ
(X −

EP (X|X > xu
τ ))) + EP (IX>xu

τ
(EP (X|X > xu

τ ) −
xu

τ )) = EP (IX>xu
τ
(EP (X|X > xu

τ )− xu
τ )) def= λ.

Using also the definition of εu and λ, we get further
xu

τ + (1 + δ)λ = xu
τ (1 − (1 + δ)EP (X > xu

τ )) + (1 +
δ)(λ + xu

τ EP (X > xu
τ )) = εuxu

τ + (1 + δ)(EP (X >
xu

τ )(EP (X|X > xu
τ )−xu

τ )+xu
τ EP (X > xu

τ )) = εuxu
τ +

(1− εu)EP (X|X > xu
τ ).

Finally, by (12) and the expressions above, E(X) =
xu

τ + (1 + δ)EP ((X −xu
τ )+) ≤ xu

τ + (1 + δ)λ = εuxu
τ +

(1− εu)EP (X|X > xu
τ ).

Although the inequality in (14) can be strict (we omit
proving this), when P is defined on 2IPu then EP is

3Recall also that the natural extension EP always exists
with W-coherence, cf. [7].

equal to P (or to its extension using (5)), and xu
τ , εu

to xτ , ε respectively. Thus (14) reduces to (8).

The statement corresponding to Proposition 4 d) is
εu R 0 iff EP (X > xu

τ ) Q 1
1+δ , or also εu R

0 iff EP (X ≤ xu
τ ) R τ .

We know that ε = 0 when FX is continuous at
xτ . When FX(x) = EP (X ≤ x) is continuous at
xu

τ , then FX(xu
τ ) = τ . Hence FX(xu

τ ) = EP (X ≤
xu

τ ) ≤ FX(xu
τ ) = τ . In terms of εu, as seen above,

this means that εu ≤ 0, with εu = 0 only when
FX(xu

τ ) = FX(xu
τ ), a condition obviously warranted

when FX = FX = FX . Thus continuity at xu
τ of FX

implies εu ≤ 0, typically εu < 0.

4 Risk measurement interpretations

If Y is a gamble, it is known [6] that P (−Y ) may
be interpreted as a risk measure for Y , i.e. a num-
ber measuring how risky Y is, or also the amount of
money to be reserved to cover potential losses from
Y . Several risk measures were introduced in the liter-
ature, and there is often no unanimity on the termi-
nology. To ensure comparisons with [4], we shall refer
the risk measure to X = −Y ; this corresponds, when
Y ≤ 0, to thinking in terms of losses and is frequently
done in insurance, where X represents the amount to
be paid for insurance claims (however, X is not neces-
sarily non-negative in what follows).4 Thus the upper
previsions E(X) in (6), (8) and (12) may be seen as
risk measures for X, and there is a strong correspon-
dence with measures studied in the literature.

Consider equation (6): xτ is the Value-at-Risk of X
at level τ , V aRτ (X), while P ((X − xτ )+) is the ex-
pected shortfall ESτ (X) (whenever P is replaced by or
thought of as an expectation) [4]. In fact, (X − xτ )+

measures the shortfall, i.e. the residual loss in ab-
solute value of an agent who reserves an amount of
money equal to V aRτ (X) = xτ to cover losses from
X. Also P (X|X > xτ ) corresponds to a well-known
risk measure (when P is an expectation), termed Con-
ditional Tail Expectation (CTEτ ) in [4].

Equation (6) corresponds to (2.7) in [4], which
defines another measure of risk, TailV aRτ (X) or
TV aRτ (X). This equation is identical to (6), af-
ter replacing E, xτ , P ((X − xτ )+) with, respectively,
TV aRτ (X), V aRτ (X), ESτ (X):

TV aRτ (X) = V aRτ (X) + (1 + δ)ESτ (X).

4While ensuring compatibility with the prevailing literature
and the formulae in [11], the convention of referring to losses
modifies the range of the typical values for τ . In this section
τ should be fairly close to 1, representing the probability that
the loss is not too high, while in the rest of the paper should
rather be close to 0, being a taxation or commission.
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Analogously, equation (8) corresponds to

TV aRτ (X) = (1− ε)CTEτ (X) + εV aRτ (X). (15)

The novel fact in our approach (apart from using pre-
visions instead of expectations) is that TV aRτ is de-
rived as the natural extension of the PMM, while the
starting point in the literature for defining this or
other measures is usually a set of random variables,
often a linear space equipped with a σ-additive prob-
ability measure, using which the various expectations
are computed. Recalling also Proposition 3, we de-
duce the following properties for TV aRτ :

Proposition 10. TV aRτ (X) is the natural extension
on L(IPu) of the PMM defined on 2IPu . Hence, it is
the least-committal risk measure extending the PMM
which is coherent. Actually, it is its only coherent
extension which is 2-alternating.

CTEτ complements V aRτ , in the sense that V aRτ ,
unlike CTEτ , is nearly uninformative about what are
the losses, should the threshold xτ be exceeded. Un-
fortunately, neither V aRτ nor CTEτ is generally co-
herent, even though their linear combination in (15)
originates a coherent risk measure. Conditions for
coherence of CTEτ are discussed in Section 3, and
are commoner in practice than those ensuring coher-
ence of V aRτ .5 In the classical risk measurement ap-
proach using a σ-additive probability, the comparison
between CTEτ and TV aRτ is limited to cases i), ii)
in Section 3 which, as we pointed out there, are not
exhaustive in general.

The generalization in Section 3.2 forms a basis for
further considerations on the risk measurement side.
This time, E(X) in (12) is the natural extension of
the PMM defined on S+(⊂ 2IPu), and may again be
interpreted as a risk measure, let us name it Im-
precise TailV ar or ITV aRτ . Using Proposition 3,
ITV aRτ is coherent and also 2-alternating. However,
ITV aRτ has no analogue in the risk measurement lit-
erature. The reason lies in the standard way of defin-
ing risk measures from an underlying precise probabil-
ity, which rules out potentially interesting risk mea-
sures which are functions of imprecise measures. And
looking at (12), we notice that ITV aRτ is a linear
combination of other two measures which are impre-
cise versions of V aRτ and ESτ : xu

τ is defined in (13)
as a function of the upper probability P̃ ∗, the short-
fall (X − xu

τ )+ is evaluated by the upper prevision
EP . We may conclude that the PMM provides a for-
mal justification for the existence of a new, and still
largely not investigated, kind of risk measures, those
defined in terms of imprecise uncertainty measures.

5For V aRτ , see the discussion in [6].

5 Conditioning the pari-mutuel
model

Reconsider the basic PMM, with P (A), P (A) given
by (1), (2), A ∈ D, and D is now a field of events.
We shall compute the natural extensions E(A|B),
E(A|B) of P and P on A|B, with B ∈ D, B 6= ∅.
Since P and P are, respectively, 2-alternating and 2-
monotone, from a well-known result ([10], Thm. 7.2;
see also [8]), when P (B) > 0:

E(A|B) =
P (A ∧B)

P (A ∧B) + P (Ac ∧B)
,

E(A|B) =
P (A ∧B)

P (A ∧B) + P (Ac ∧B)
.

(16)

When P (B) = 0, equations (16) do not apply, but it
can be shown (directly, using Williams coherence, or
alternatively from results in [11]) that

Lemma 1. Given a coherent lower probability P
on a set D of (unconditional) events, let B ∈ D,
P (B) = 0. The natural extension E of P on
D ∪ {A1|B, . . . , An|B} is E(Ai|B) = 1 if B ⇒ Ai,
E(Ai|B) = 0 otherwise, for i = 1, . . . , n.

Applying Lemma 1 for n = 2, A1 = A, A2 = Ac and
using conjugacy, it follows that, when P (B) = 0 in
the PMM, then E(A|B) = 0, ∀A such that B ; A,
and E(A|B) = 1, ∀A such that A ∧B 6= ∅.
We assume in the sequel P (B) > 0; note that by (2)
P (B) > 0 iff P (B) > δ

δ+1 = τ . Further, P (B) > 0
ensures that the denominators in (16) are non-zero.
Take E(A|B): using property 2.7.4 (d) in [11], P (A∧
B) + P (Ac ∧B) ≥ P (B) > 0. Similarly for E(A|B).

To derive E(A|B), from (16), two alternatives occur:

a) P (Ac ∧B) = max {(1 + δ)P (Ac ∧B)− δ, 0} = 0.
Hence E(A|B) = 1.

b) max {(1 + δ)P (Ac ∧B)− δ, 0} > 0. This hap-
pens iff P (Ac ∧ B) > δ

1+δ = τ and implies
min {(1 + δ)P (A ∧B), 1} < 1 (otherwise P (A ∧
B) ≥ 1

1+δ and P (B) > δ
δ+1 + 1

1+δ = 1). Hence

E(A|B) = (1+δ)P (A∧B)
(1+δ)(P (A∧B)+P (Ac∧B))−δ = P (A∧B)

P (B)−τ .

The derivation of E(A|B) is analogous:

a) If P (A∧B) = max {(1 + δ)P (A ∧B)− δ, 0} = 0,
E(A|B) = 0.

b) If max {(1 + δ)P (A ∧B)− δ, 0} > 0, this implies
τ < P (A ∧ B) and min {(1 + δ)P (Ac ∧B), 1} <

1; then E(A|B) = P (A∧B)−τ
P (B)−τ .
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P (A) =
{

P (A)
1−τ

1
if τ < P (Ac)
if τ ≥ P (Ac)

P (A) =
{

P (A)−τ
1−τ

0
if τ < P (A)
if τ ≥ P (A)

E(A|B) =

{
P (A∧B)
P (B)−τ

1
if τ < P (Ac ∧B)
if τ ≥ P (Ac ∧B)

E(A|B) =

{
P (A∧B)−τ

P (B)−τ

0
if τ < P (A ∧B)
if τ ≥ P (A ∧B)

Table 1: Values of P (A), P (A), E(A|B), E(A|B).

Table 1 lists the values of P (A), P (A), E(A|B),
E(A|B). They are written as functions of τ , to sim-
plify the inequalities in the ‘if’ clauses (referring to
δ, the clauses involve ratios of probabilities instead of
probabilities). Note that the expressions for E(A|B),
E(A|B) reduce to those for P (A), P (A) when B = Ω.

5.1 Dilation and imprecision increase

How does imprecision in the evaluations vary when
conditioning in the PMM model? To supply some
answers, we first recall two concepts.
Definition 1. Given a partition of non-impossible
events IP , we say that (weak) dilation occurs (with
respect to A and IP ) when

P (A|B) ≤ P (A) ≤ P (A) ≤ P (A|B),∀B ∈ IP, (17)

while there is an imprecision increase when

P (A)− P (A) ≤ P (A|B)− P (A|B),∀B ∈ IP. (18)

Dilation is a so far little investigated phenomenon (see
[9]), which implies that our a posteriori opinions on
A will be vaguer and hence also more imprecise (at
least in a weak sense, if the first or last weak inequal-
ities in (17) are equalities) than the a priori ones, no
matter which B ∈ IP is true. Even though dilation is
IP -dependent (so that we may hope that a well-chosen
partition IP avoids dilation), it is a puzzling phenom-
enon. Clearly, dilation implies the weaker concept of
imprecision increase, which captures one of the two
basic features of dilation, the growth in the degree of
imprecision.

To discuss the occurrence of dilation or of imprecision
increase in the PMM, we assume that IP = {B,Bc}
and the conditional probabilities are the natural ex-
tensions. The formulas for E(A|Bc), E(A|Bc) are
obtained from those for E(A|B), E(A|B) in Table 1
(when τ < P (Bc)) replacing B with Bc.

We present now a number of results, whose opera-
tional relevance is discussed in Section 5.2.

Notation We write A′ to denote, indifferently, either
A or Ac. For instance, min{P (A′∧B′)} is a short form
for min{P (A∧B), P (Ac∧B), P (A∧Bc), P (Ac∧Bc)}.
Proposition 11. Each of the following conditions
is necessary for dilation (of A, relative to {B,Bc}),
whenever the denominator is positive:

τ <P (A ∧B) ⇒ τ ≥ P (A∧B)−P (A)P (B)
P (Ac∧Bc) (19)

τ <P (Ac ∧B) ⇒ τ ≥ P (A)P (B)−P (A∧B)
P (A∧Bc) (20)

τ <P (A ∧Bc) ⇒ τ ≥ P (A∧Bc)−P (A)P (Bc)
P (Ac∧B) (21)

τ <P (Ac ∧Bc) ⇒ τ ≥ P (A)P (Bc)−P (A∧Bc)
P (A∧B) (22)

Proof. Impose either E(A|B′) ≤ P (A) or E(A|B′) ≥
P (A) in (17), and use Table 1 to choose the appropri-
ate values of E, E, P , P .

To exemplify, Equation (19) implements the condition
E(A|B) ≤ P (A), which is written as P (A∧B)−τ

P (B)−τ ≤
P (A)−τ

1−τ . Multiply by (P (B)− τ)(1− τ) > 0 and solve
the ensuing linear inequality in τ to get (19).

Proposition 12. Define m = min{P (A′ ∧ B′)},
M = max{P (A′ ∧ B′)}, Mτ = max{(P (A ∧
B) − P (A)P (B))/P (Ac ∧ Bc), (P (A)P (B) − P (A ∧
B))/P (A ∧ Bc), (P (A ∧ Bc) − P (A)P (Bc))/P (Ac ∧
B), (P (A)P (Bc)− P (A ∧Bc))/P (A ∧B)}

(a) If τ < m, dilation occurs if and only if τ ≥ Mτ .

(b) The condition τ ≥ M is sufficient for dilation.

Proof. (a): when τ < m = min{P (A′ ∧ B′)}, (17)
holds iff τ satisfies the weak inequalities in (19÷22)
i.e. iff τ ≥ Mτ .

(b): when τ ≥ M , E(A|B′) = 0 and E(A|B′) = 1,6

so dilation occurs no matter what are P (A), P (A).

Remark 2. At most two of the four weak inequal-
ities in (19÷22) need to be checked. In fact, let
A and B be positively correlated under P , hence A
and Bc are negatively correlated and P (A)P (B) −
P (A ∧ B) < 0, P (A ∧ Bc) − P (A)P (Bc) < 0. Thus,
(20) and (21) trivially hold (τ > 0) and Mτ =
max

{
P (A∧B)−P (A)P (B)

P (Ac∧Bc) , P (A)P (Bc)−P (A∧Bc)
P (A∧B)

}
. Simi-

larly, (19) and (22) trivially hold when A and B are
negatively correlated under P .

Let us point out some special instances of dilation.
6This ensues from Table 1 when τ ≤ min P (B′), if not use

also Lemma 1.
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Corollary 2. Dilation occurs if:

(a) P (A′ ∧B′) = P (A′)P (B′) and τ < m.

(b) P is uniform on IPA,B = {A ∧ B,A ∧ Bc, Ac ∧
B,Ac ∧Bc}, ∀τ ∈ ]0, 1[.

Proof. Condition (a) ensures dilation, as it implies
Mτ = 0 and hence (a) of Proposition 12. As for (b), it
implies P (A′∧B′) = P (A′)P (B′) and m = M = 0.25:
hence dilation occurs by (a) when τ < M = m, by
Proposition 12, (b) when τ ≥ M .

Concerning imprecision increase, it holds that
Proposition 13. Imprecision increases, i.e., Equa-
tion (18) holds, if the following system holds for τ :

{
(τ − P (A ∧B))(τ − P (Ac ∧B)) > 0
(τ − P (A ∧Bc))(τ − P (Ac ∧Bc)) > 0 (23)

Proof. Check that (18) holds, using Table 1.

Remark 3. Note that (23) holds in particular when
τ < m = min{P (A′ ∧ B′)}. Therefore imprecision
always increases in this case.

5.2 Imprecision variation in practice

As a general remark, the existence and relevance of
dilation and imprecision increase in the PMM should
be investigated distinguishing more cases, according
to the relative ordering of P (A′ ∧ B′), P (A′), and τ
in [0, 1]. However, the importance of each case varies
greatly in the applications. We present in detail the
most significant ones, while the remaining may be
analyzed using Table 1 and the preceding results to
check (17) and (18), as demonstrated in Example 3.

Case i) τ < m = min{P (A′ ∧B′)};
Case ii) P (A) ≤ τ < min{P (Ac ∧B′)}.

Case i) is probably the most important: τ will often
be rather low, recalling that it has the meaning of
a commission or taxation (this happens for instance
with Internet betting). In such circumstances case i)
applies if none among P (A′ ∧B′) is too low.

Case i) is completely solved by the results in Section
5.1: dilation occurs iff τ ≥ Mτ (Proposition 12, (a)),
imprecision always increases (Remark 3).

We do not necessarily meet case i) when A is a rare
event, or P (A) is anyway smaller than the commission
τ in favour of House or of an insurer (these cases are
relatively frequent in non-life insurance). If τ is also
smaller than min{P (Ac ∧ B′)}, case ii) occurs. We
discuss it in the next example.

Example 2. When P (A) ≤ τ < min{P (Ac∧B′)}, then
(see Table 1) P (A) = P (A)/(1−τ), E(A|B) = P (A∧
B)/(P (B)− τ), E(A|Bc) = P (A ∧ Bc)/(P (Bc)− τ),
E(A|B′) = P (A) = 0. Imposing either (17) or (18)
originates the same system of inequalities, i.e. in this
case there is dilation iff there is imprecision increase.
The system is

{
P (A∧B)
P (B)−τ ≥

P (A)
1−τ

P (A∧Bc)
P (Bc)−τ ≥

P (A)
1−τ

(24)

and its inequalities are easily seen to be equivalent to
(20) and (22). Thus dilation arises iff both (20) and
(22) hold (and the lower bound they supply for τ is not
greater than min{P (Ac ∧B′)}). In practice, only one
of them (at most) has to be checked, depending on the
correlation of A and B, by Remark 2. For instance, if
P (A) = 0.02, P (A ∧ B) = 0.005, P (A ∧ Bc) = 0.015,
P (B) = 0.4, then P (A|B) = 0.0125 < P (A) and (20)
gives the bound τ ≥ 0.2. Since min{P (Ac ∧ B′)} =
0.395 > 0.2, the bound is effective: there is dilation
(and imprecision increase) for τ ∈ [0.2; 0.395], none of
them for τ ∈ [0.02; 0.2[.

Discussion We point out that dilation occurs in both
case i) and ii) when A′ and B′ are judged stochastically
independent or at least not correlated by P (as follows
from Corollary 2 (a) and Example 2).

Further, dilation occurs when τ is too “large”: Propo-
sition 12 (b) ensures it when τ ≥ M = max{P (A′ ∧
B′)}. This happens merely because E, E are then
vague, but dilation may occur also when τ < M , as
in the next example.
Example 3. Assign P on IPA,B as follows: P (A∧B) =
1
10 , P (A ∧ Bc) = P (Ac ∧ Bc) = 2

10 ,P (Ac ∧ B) = 1
2 .

Consequently P (A) = 3
10 , P (B) = 6

10 , P (A|B) = 1
6 ,

P (A|Bc) = 1
2 .

Dilation occurs when τ ≥ 1
2 , by Proposition 12, (b).

When τ < 1
2 = P (Ac∧B), use the necessary condition

in (20), which requires that τ ≥ 4
10 , to rule out dila-

tion for τ ∈ ]0; 4
10 [. If τ ∈ [ 4

10 ; 1
2 [, (20) ensures that

E(A|B) ≥ P (A), and the other inequalities in (17)
hold too, because E(A|Bc) = 1 and E(A|B′) = 0.
Thus there is dilation for τ ∈ [ 4

10 , 1
2 [ too.

As for imprecision increase, it is ensured by Proposi-
tion 13 (Remark 3) when τ < 1

10 . For τ ∈ [ 1
10 ; 4

10 [, we
have to check whether the inequalities (18) hold, dis-
tinguishing more subcases according to the different
expressions for P , P , E(A|B′), E(A|B′). Condition-
ing on Bc, we should check whether

E(A|Bc)− E(A|Bc) ≥ P (A)− P (A). (25)

Now, E(A|Bc)−E(A|Bc) = 1 and (25) therefore holds
if τ ∈ [ 2

10 ; 4
10 [, while (25) specialises into τ

P (Bc)−τ ≥
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τ
1−τ when τ ∈ [ 1

10 ; 2
10 [, and this inequality is true.

Therefore (25) is verified for τ ∈ [ 1
10 ; 4

10 [, and impreci-
sion increase in this interval depends only on whether
the inequality E(A|B) − E(A|B) ≥ P (A) − P (A)
holds. Noting that E(A|B) − E(A|B) = P (A∧B)

P (B)−τ =
1

6−10τ , ∀τ ∈ [ 1
10 ; 4

10 [, we have to check whether:

1
6−10τ ≥ P (A)

1−τ = 3
10(1−τ) if τ ∈ [ 3

10 ; 4
10 [

1
6−10τ ≥ τ

1−τ if τ ∈ [ 1
10 ; 3

10 [.

The former inequality has no solution in [ 3
10 ; 4

10 [, the
latter is true for τ ∈ [ 1

10 ; 2
10 ]. Conclusions: dilation

occurs iff τ ∈ [ 4
10 ; 1[, imprecision increase (without

dilation) iff τ ∈ ]0; 2
10 ], neither of them iff τ ∈ ] 2

10 ; 4
10 [.

Limiting dilation or imprecision increase in the PMM
is not straightforward. This may be achieved by an
appropriate choice of τ in some, but not all cases (for
instance, τ ∈ [ 2

10 ; 4
10 [ might be too high a percent-

age in Example 3). More generally, choosing a coher-
ent extension other than the natural extension often
shrinks imprecision, by the dominance properties of
the natural extension, but finding a computationally
simple such extension may be not so easy in practice.

6 Conclusions

The pari-mutuel model represents a simple and nat-
ural way of eliciting upper/lower probabilities, and
can be extended in more directions, thanks to the
availability of standard procedures for 2-monotone
and 2-alternating previsions. We computed explicitly
its natural extension E starting from a PMM assign-
ment on a lattice of events, generalizing the approach
in [11], which is anyway discussed, focusing on com-
paring the different formulae available for E. While
a naive extension, considered in insurance premium
pricing, does not seem to be a valuable alternative to
the natural extension, being generally not coherent,
the various formulae for the natural extension have a
notable meaning in risk measurement. In fact, they
correspond to known measures of risk or generalize
them. We discussed also how to use the natural ex-
tension when conditioning, delimiting the influence of
dilation and imprecision increase for the PMM.

A tempting new direction would, in a sense, merge our
analysis in the conditional and unconditional frame-
work, studying the natural extension to conditional
gambles. Here a difficulty arises: available generalisa-
tions of equations (16), studied in [8], are lower/upper
bounds for the natural extension and might not be
reached, even when P is 2-alternating. In other words,
the available procedures seem to give weaker results.

This and the considerations at the end of Section
5.2 on how to limit dilation or imprecision increase
might motivate investigating coherent extensions of
the PMM alternative to the natural extension.
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Abstract

The α-junctions are the associative, commutative and
linear operators for belief functions with a neutral ele-
ment. This family of rules includes as particular cases
the unnormalized Dempster’s rule and the disjunctive
rule. Until now, the α-junctions suffered from two
main limitations. First, they did not have an inter-
pretation in the general case. Second, it was difficult
to compute a combination by an α-junction. In this
paper, an interpretation for these rules is proposed.
It is shown that the α-junctions correspond to a par-
ticular form of knowledge about the truthfulness of
the sources providing the belief functions to be com-
bined. Simple means to compute a combination by
an α-junction are also laid bare. These means are
based on generalizations of mechanisms that exist to
compute the combination by the unnormalized Demp-
ster’s rule.

Keywords. Transferable Belief Model, Dempster-
Shafer Theory, Belief Functions, Information Fusion,
Uncertain reasoning.

1 Introduction

The Transferable Belief Model (TBM) [16, 12] is a
model for quantifying beliefs using belief functions
[8]. An essential part of the TBM is the aggrega-
tion of belief functions, which is done using so-called
combination rules. To accodomate for various infor-
mation fusion problems, many combination rules have
been proposed (see, e.g., [15] for a recent survey) and,
in particular, the unnormalized version of Dempster’s
rule [1], referred to as the conjunctive rule in this pa-
per, the disjunctive rule [3, 9], the exclusive disjunc-
tive rule and its negation [3, 11].

The use of the conjunctive rule is appropriate when
one can assume that all sources providing the belief
functions to be combined, tell the truth [11]. On the
other hand, the disjunctive rule should be used when

it is known that at least one of the sources tells the
truth, but it is not known which one [11]. The uses
of the exclusive disjunctive rule and its negation are
also conditioned by knowledge on the truthfulness of
the sources of information: the former fits with the
case where exactly one of the sources is known to tell
the truth, but it is not known which one, whereas the
latter corresponds to a situation where either all or
none of the sources are known to tell the truth [11].
Furthermore, all of these four rules assume that the
sources are independent, meaning that those sources
are assumed to provide distinct pieces of evidence.

In [11], Smets introduced an infinite family of combi-
nation rules, which he called α-junctions. This family
basically represents the set of associative, commuta-
tive and linear operators for belief functions with a
neutral element. It includes as special cases the four
rules mentioned above. The behavior of an α-junction
is determined by a parameter α and by the neutral
element. The four special cases are recovered for par-
ticular values of α. For other values of this parameter,
the α-junctions did not have an interpretation.

To our knowledge, this family of rules has never been
exploited. This can be explained, at least in part, by
the fact that these rules suffered from two main limi-
tations until now. First, those operators did not have
an interpretation in the general case. Second, it was
difficult to compute a combination by an α-junction
using the methods proposed in [11], as already re-
marked by Smets [13].

In this paper, this theoretical contribution of Smets
is carefully reexamined: some new light on the mean-
ing of the α-junctions is shed and their mathemat-
ics are simplified to make their computation easier.
More precisely, it is first shown that these operators
correspond to a particular form of knowledge, deter-
mined by the parameter α, on the truthfulness of the
sources. The α-junctions become thus suitable as flex-
ible combination rules that allow us to take into ac-
count some particular knowledge about the sources.
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Several efficient and simple ways of computing a com-
bination by an α-junction are then presented, making
the practical use of the α-junctions in applications
possible. These new means are based on generaliza-
tions of mechanisms that can be used to compute the
combination by the conjunctive rule.

The rest of this paper is organized as follows. Neces-
sary concepts of the TBM are first recalled in Section
2. In Section 3, basic notions on α-junctions are given.
An interpretation for the α-junctions is proposed in
Section 4. Several simple means to compute a combi-
nation by an α-junction are then unveiled in Section
5. Section 6 concludes the paper.

Note that due to lack of space, the proofs of the the-
orems and propositions presented in this paper, are
not provided. They can be found in [7].

2 Fundamental Concepts of the TBM

2.1 Representation of Beliefs

In this paper, the TBM [16, 12] is accepted as a model
to quantify uncertainties based on belief functions [8].
Let Ω = {ω1, ..., ωK} denote a finite set of possible
values of a variable ω; Ω is called the frame of dis-
cernment of ω. In the TBM, the beliefs held by a ra-
tional agent Ag regarding the actual value ω0 taken by
ω is represented by a basic belief assignment (BBA)
m defined as a mapping from 2Ω to [0, 1] verifying∑

A⊆Ω m (A) = 1. Subsets A of Ω such that m(A) > 0
are called focal sets of m. A BBA m is said to be: vac-
uous if Ω is the only focal set, this BBA is denoted
by mΩ; categorical if it has only one focal set; simple
if if has at most two focal sets and, if it has two, Ω
is one of those. A simple BBA (SBBA) m such that
m (A) = 1 − α for some A 6= Ω and m (Ω) = α, can
be written Aα. This notation for SBBAs is useful in
this paper to shorten some expressions.

A BBA m can equivalently be represented by its asso-
ciated belief, plausibility and commonality functions
defined, respectively, as:

bel (A) =
∑

∅6=B⊆A

m (B) ,

pl (A) =
∑

B∩A 6=∅
m (B) ,

and

q (A) =
∑

B⊇A

m (B) , (1)

for all A ⊆ Ω. The BBA m can be recovered from any
of these functions. For instance:

m(A) =
∑

B⊇A

(−1)|B|−|A|q(B), ∀A ⊆ Ω,

where |A| denotes the cardinality of A.

The negation (or complement) m of a BBA m is de-
fined as the BBA verifying m(A) = m(A), ∀A ⊆ Ω,
where A denotes the complement of A [3]. m repre-
sents the BBA that would be induced if the agent
knows that the source providing a BBA m is not
telling the truth, i.e., is lying [11].

Another important concept of the TBM is the least
commitment principle (LCP) [9]. This principle pos-
tulates that, given a set of BBAs compatible with a set
of constraints, the most appropriate BBA is the least
informative. The LCP becomes operational through
the definition of partial orderings allowing the infor-
mational comparison of BBAs. Such orderings were
proposed in [17] and [3]. For instance, the q-ordering
is defined as follows: a BBA m1 is said to be at least
as q-committed, or at least as q-informed, than a BBA
m2 iff we have q1(A) ≤ q2(A), for all A ⊆ Ω.

2.2 Combination of Beliefs

The beliefs represented by BBAs can be aggregated
using appropriate operators, called combination rules.
In this section, the definitions of some of these com-
bination rules are provided. Some notions related to
these rules, which will be generalized in later parts of
this paper, are also given.

The conjunctive rule is denoted by ∩©. It is defined as
follows. Let m1 and m2 be two BBAs, and let m1 ∩©2

be the result of their combination by ∩©. We have, for
all A ⊆ Ω:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B) m2 (C) . (2)

This rule is appropriate when the sources that have
induced m1 and m2, are known to tell the truth and
to be independent. Furthermore, this rule is commu-
tative, associative and admits a unique neutral ele-
ment: the vacuous BBA mΩ. Of interest is that this
rule has a simple expression in terms of commonality
functions. We have:

q1 ∩©2(A) = q1 (A) · q2 (A) , ∀A ⊆ Ω.

In the TBM, conditioning by B ⊆ Ω is equivalent to
conjunctive combination with a categorical BBA mB

focused on B, i.e., mB(B) = 1. The result is denoted
by m[B], with m[B] = m ∩©mB . The conditional BBA
m[B] quantifies our belief on Ω, in a context where
B holds. This operation is called the unnormalized
Dempster’s rule of conditioning. The combination by
the conjunctive rule ∩© admits a simple expression us-
ing the unnormalized Dempster’s rule of conditioning.
Indeed, let m1 and m2 be two BBAs. We have, for all
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A ⊆ Ω

m1 ∩©2 (A) =
∑

B⊆Ω

m1 [B] (A) m2 (B) . (3)

When it cannot be assumed that all the sources tell
the truth, it may be assumed that at least one of
them tells the truth, without knowing which one. In
such a situation, and provided that the sources are
independent, the disjunctive rule [3, 9] is appropriate.
The disjunctive rule is denoted by ∪©. Let m1 and m2

be two distinct BBAs, and let m1 ∪©2 be the result of
their combination by ∪©. We have:

m1 ∪©2 (A) =
∑

B∪C=A

m1 (B) m2 (C) , ∀A ⊆ Ω.

The disjunctive rule is commutative, associative and
admits a unique neutral element: the BBA which as-
signs the total mass of belief to the empty set, i.e.,
m(∅) = 1. This BBA, which we denote by m∅, is
the negation of the neutral BBA mΩ of the conjunc-
tive rule and is sometimes called the or-vacuous BBA
[11]. The dual nature of ∩© and ∪© becomes apparent
when one notices that these operators are linked by
De Morgan’s laws [3]:

m1 ∪©m2 = m1 ∩©m2

m1 ∩©m2 = m1 ∪©m2.

Of interest for this paper are two other rules: the ex-
clusive disjunctive rule denoted by ∪© and its negation
denoted by ∩© [11], which are defined as follows. We
have, for all A ⊆ Ω:

m1 ∪©2 (A) =
∑

A=B∪C

m1 (B) m2 (C) ,

where ∪ is the exclusive OR (XOR), i.e., B∪C =(
B ∩ C

)
∪
(
B ∩ C

)
for all B,C ⊆ Ω, and

m1 ∩©2 (A) =
∑

A=B∩C

m1 (B) m2 (C) ,

where ∩ denotes logical equality, i.e., B∩C = (B ∩
C) ∪ (B ∩ C) for all B,C ⊆ Ω.

The rules ∪© and ∩© are commutative, associative and
admit a unique neutral element: m∅ and mΩ, respec-
tively. Furthermore, they are linked by De Morgan’s
laws. The rule ∪© corresponds to the situation where
it is known that exactly one of the sources of infor-
mation tells the truth, but it is not known which one
[11]. The rule ∩© corresponds to the situation where
it is known that either all or none of the sources of
information tell the truth [11].

2.3 Operations on Product Spaces

In Section 4 of this paper, some operations that allow
the manipulation of BBAs defined on product spaces,
are needed. They are succinctly presented here. Let
mΩ×Θ denote a BBA defined on the Cartesian prod-
uct Ω×Θ of the frames of two variables ω and θ. The
marginal BBA mΩ×Θ↓Ω is defined, for all A ⊆ Ω, as

mΩ×Θ↓Ω(A) =
∑

{B⊆Ω×Θ,(B↓Ω)=A}
mΩ×Θ(B),

where (B ↓ Ω) denotes the projection of B onto Ω,
defined as

(B ↓ Ω) = {ω ∈ Ω|∃θ ∈ Θ, (ω, θ) ∈ B} .

Conversely, let mΩ be a BBA defined on Ω. Its vacu-
ous extension on Ω×Θ is defined as:

mΩ↑Ω×Θ(B) =





mΩ(A) if B = A×Θ,
for some A ⊆ Ω,

0 otherwise.
(4)

Given two BBAs mΩ
1 and mΘ

2 , their conjunctive com-
bination on Ω×Θ can be obtained by combining their
vacuous extensions on Ω×Θ using (4). Formally:

mΩ
1 ∩©mΘ

2 = mΩ↑Ω×Θ
1 ∩©mΘ↑Ω×Θ

2 .

Two other operations that have been defined for
BBAs on product spaces are the conditioning oper-
ation, and its inverse operation called the ballooning
extension. They are defined as follows. Let mΩ×Θ

denote a BBA on Ω × Θ, and mΩ×Θ
B the BBA on

Ω × Θ with single focal set Ω × B with B ⊆ Θ, i.e.,
mΩ×Θ

B (Ω×B) = 1. The conditional BBA on Ω given
θ ∈ B is defined as:

mΩ[B] =
(
mΩ×Θ ∩©mΩ×Θ

B

)↓Ω
.

Now, let mΩ[B] denote the conditional BBA on Ω,
given θ ∈ B ⊆ Θ. The ballooning extension of mΩ[B]
on Ω × Θ is the least committed BBA, whose condi-
tioning on B yields mΩ[B] [9]. It is obtained as:

mΩ[B]⇑Ω×Θ(C) = mΩ[B](A),

if C = (A× B) ∪ (Ω × (Θ\B)), for some A ⊆ Ω, and
mΩ[B]⇑Ω×Θ(C) = 0 otherwise. Example 1 illustrates
the ballooning extension.
Example 1. Consider two frames Ω = {ω1, ω2} and
Θ = {θ1, θ2}. Further, let mΩ[θ2] be a conditional
BBA defined by mΩ[θ2]({ω1}) = 0.6 and mΩ[θ2](Ω) =
0.4. The ballooning extension of mΩ[θ2] is:

mΩ[θ2]⇑Ω×Θ({(ω1, θ2), (ω1, θ1), (ω2, θ1)}) = 0.6,

mΩ[θ2]⇑Ω×Θ(Ω×Θ) = 0.4.
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2.4 Matrix Notation

The matrix notation can be used to greatly simplify
the mathematics of belief function theory. In [13],
Smets proposed a review of the application of the
matrix calculus to belief functions. This section is
devoted to a summary of parts of [13] that are rele-
vant to this paper.

Belief functions as column vectors

A BBA m (and its associated functions bel, pl and q)
defined on 2Ω can be seen as a column vector of size
2|Ω|. The elements of m can be ordered arbitrarily but
the so-called binary order is particularly convenient.
The binary order means that the first element of m
is related to the empty set, the next to {a}, the next
to {b}, the next to {a, b}, etc. More generally, the ith
element of the vector m corresponds to the set with
elements indicated by 1 in the binary representation
of i − 1. For instance, let Ω = {a, b, c, d}. The first
element (i = 1) of the vector m corresponds to the
emptyset since the binary representation of 1 − 1 is
0000. The twelfth element (i = 12) corresponds to
{a, b, d} since the binary representation of 12 − 1 is
1011.

We use the following conventions. By default, the
length of vectors and matrices are 2|Ω|, and vectors
are column vectors. Matrices and vectors are written
in bold type, and their elements in normal type, e.g.,
a matrix is noted M and the element on its ith row
and jth column is noted M(i, j). Sometimes a matrix
will be defined by its general term, in this case we
write M = [M(i, j)]. For instance, if M(i, j) is de-
fined by M(i, j) = 0,∀i, j, then M is a matrix, whose
elements are zeros. Finally, I denotes the unit matrix
and Kron(A,B) denotes the mp× nq matrix result-
ing from the Kronecker product of a m× n matrix A
with a p × q matrix B. The matrix Kron(A,B) is
defined by:

Kron(A,B) =




A(1, 1)B · · · A(1, n)B
...

. . .
...

A(m, 1)B · · · A(m,n)B


 .

The transformation (1) of a BBA m into its associated
commonality function q can be represented using the
matrix notation. We have

q (A) =
∑

B⊆Ω

Q(A,B)m (B) ,

where Q(A,B) = 1 iff B ⊇ A and 0 otherwise. Letting
Q = [Q(A,B)], A,B ⊆ Ω, we have q = Q · m and
m = Q−1 · q [13]. The matrix Q may be obtained

in a very simple way using Kronecker multiplication.
Indeed, we have:

Qi+1 = Kron
([

1 1
0 1

]
, Qi

)
,Q1 = 1,

where Qi denotes the matrix Q when |Ω| = i.

Transformations of BBA into BBA

In this paragraph, we present how the transformation
of a BBA into another BBA, given a piece of evidence,
can be expressed using the matrix notation.
Definition 1. A stochastic matrix M = [M(i, j)] is
a square matrix with M(i, j) ≥ 0 and

∑
i M(i, j) =

1,∀j.

Let MΩ be the set of BBAs defined on Ω. As shown
by [13, Theorem 6.1], the set of matrices that map
every element of MΩ into an element of MΩ is the
set of stochastic matrices.

The revision of a BBA m1 by a piece of evidence Ev
can be represented by a stochastic matrix MEv,m1

that transforms m1 into m1[Ev]:

m1[Ev] = MEv,m1 ·m1.

If the value of the matrix depends only on Ev and
not on m1 (in which case the pieces of evidence that
induced m1 and Ev are said ‘distinct’ [13]), we can
write:

m1[Ev] = MEv ·m1.

The combinations by the rules ∩©, ∪©, ∪© and ∩© are
particular cases of revision. For instance, the con-
junctive revision of a BBA m1 by a distinct piece of
evidence inducing a BBA m2 is achieved by a spe-
cial kind of matrix, called a Dempsterian special-
ization matrix [5] and denoted by Sm2 . This ma-
trix is defined as a function of m2: its general term
is Sm2 (A,B) = m2[B](A), A,B ⊆ Ω. We have
m2 ∩©m1 = Sm2 ·m1.

3 α-Junctions: Basic Notions

In [11], Smets studies the set of possible associative,
commutative and linear combination rules with a neu-
tral element. Smets calls this set the α-junctions be-
cause they cover the conjunction, the disjunction and
the exclusive disjunction. We report in this section
the summary of [11] given in [13].

Let m1 and m2 be two BBAs on Ω. Suppose we want
to build a BBA m12 such that m12 = f(m1,m2), i.e.,
m12 depends only on m1 and m2. Smets [11] deter-
mines the operators that map MΩ×MΩ to MΩ and
that satisfy the following requirements (the origins of
those requirements are summarized in [13, p.25]).
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• Linearity1: f(m, pm1 + qm2) = pf(m,m1) +
qf(m,m2), p ∈ [0, 1], q = 1− p.

• Commutativity: f(m1,m2) = f(m2,m1).

• Associativity:
f(f(m1,m2),m3) = f(m1, f(m2,m3)).

• Neutral element: existence of a belief function
mvac such that f(m,mvac) = m for any m.

• Anonymity: relabeling the elements of Ω does
not affect the results.

• Context preservation: if pl1(X) = 0 and
pl2(X) = 0 for some X ⊆ Ω, then pl12(X) = 0.

It is shown in [11] that the solutions are stochastic
matrices. We have:

m12 = Km1 ·m2, (5)

where

Km1 =
∑

X⊆Ω

m1(X) ·KX . (6)

Smets [11] proves that the 2|Ω| × 2|Ω| matrices KX

depend only on mvac and one parameter α ∈ [0, 1].
Furthermore, he shows that there are only two solu-
tions for mvac: either mvac = mΩ or mvac = m∅.
Hence, there are only two sets of solutions, which are
presented now.

3.1 Case mvac = mΩ

The definition of the matrices KX that satisfy the
above requirements when mvac = mΩ is the following.

KΩ = I,

KX =
∏

x6∈X

K{x}, ∀X ⊂ Ω,

where

K{x} = [kx(A,B)] , ∀x ∈ Ω,

with

kx(A,B) =





1 if x 6∈ A, B = A ∪ {x},
α if x 6∈ B, B = A,
1− α if x 6∈ B, A = B ∪ {x},
0 otherwise,

where α ∈ [0, 1] and is constant for all KX . Example
2 illustrates the various matrices KX when Ω = {a, b}
and mvac = mΩ.

1Smets referred to this property as “linearity”. However,
it is not real linearity, as it is only valid for convex combina-
tions. We have kept the same terminology for lack of a more
appropriate term.

Example 2. From (5) and (6), we have (in the ma-
trices below, dots replace zeros and α = 1− α)

m12 = (m1(∅) ·K∅ + m1(a) ·Ka

+m1(b) ·Kb + m1(Ω) ·KΩ) ·m2

= (m1(∅) ·K{a} ·K{b} + m1(a) ·K{b}
+m1(b) ·K{a} + m1(Ω) · I) ·m2

= (m1(∅) ·




α 1 . .
α . . .
. . α 1
. . α .


 ·




α . 1 .
. α . 1
α . . .
. α . .




+m1(a) ·




α . 1 .
. α . 1
α . . .
. α . .




+m1(b) ·




α 1 . .
α . . .
. . α 1
. . α .




+m1(Ω) · I) ·m2.

When mvac = mΩ and α = 1, the matrix Km1

computed using (6) becomes the Dempsterian spe-
cialization matrix and we have Km1 · m2 = m1 ∩©2

[13]. The case α = 0 corresponds to the rule ∩©.
When mvac = mΩ, an α-junction is referred to as
an α-conjunction by Smets since mΩ is the neutral
element of the conjunction [11]. The result of the
α-conjunction of two BBAs m1 and m2 is written
m1 ∩©αm2. Let us remark that despite what the ap-
pelation “α-conjunction” might lead one to think, an
α-conjunction do not necessarily exhibit a conjunc-
tive behavior. For instance, consider a frame Ω =
{ω1, ω2} and two precise BBAs m1 and m2 such that
m1({ω1}) = m2({ω1}) = 1. We have m1 ∩©2(Ω) = 1,
which is the most imprecise BBA.

3.2 Case mvac = m∅

The definition of the matrices KX that satisfy the
above requirements when mvac = m∅ is the following.

K∅ = I,

KX =
∏

x∈X

K{x}, ∀X ∈ 2Ω\ {∅} ,

where

K{x} = [kx(A,B)] , ∀x ∈ Ω,

with

kx(A,B) =





1 if x 6∈ B, A = B ∪ {x},
α if x ∈ B, B = A,
1− α if x 6∈ A, B = A ∪ {x},
0 otherwise,
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where α ∈ [0, 1] and is constant for all KX .

When mvac = m∅, an α-junction is referred to as an
α-disjunction since m∅ is the neutral element of the
disjunction [11]; we denote an α-disjunctive rule by
∪©α. Furthermore, when mvac = m∅ and α = 1, we
have Km1 ·m2 = m1 ∪©2. The case α = 0 corresponds
to the rule ∪©.

Finally, we have, for any α ∈ [0, 1] [13, Theorem 12.2]:

m1 ∪©αm2 = m1 ∩©αm2,

m1 ∩©αm2 = m1 ∪©αm2, (7)

i.e., α-conjunctive rules and α-disjunctive rules are
linked by De Morgan laws. In particular, the De Mor-
gan duality between the conjunctive and disjunctive
rules is recovered by setting α = 1 in (7).

4 Interpretation

In this section, an interpretation for the α-junctions
is proposed. This interpretation relies on the concept
of the truthfulness of the sources of information.

4.1 Truthfulness of the Sources

Let ω be a variable, which takes its values in a frame
Ω. Suppose an agent who does not know anything
about the actual value ω0 taken by ω. Suppose a
source S1 that tells the agent that the actual value ω0

is in A ⊆ Ω, i.e., ω0 ∈ A. If the source tells the truth
or, equivalently, is truthful, then the agent believes
ω0 ∈ A. If the source does not tell the truth, then the
agent believes ω0 ∈ A.

Let τ be a variable taking its values in a frame T =
{t, f}. We use τ to denote the truthfulness of the
source. The information ω0 ∈ A provided by S1 can
be modeled by a BBA mΩ

1 such that mΩ
1 (A) = 1. The

information when the source tells the truth, ω0 must
be in A, and when the source does not tell the truth,
ω0 must be in A, may be modeled by a BBA noted
mΩ×T

1′ and defined on the product space Ω× T by

mΩ×T
1′ (A× {t} ∪A× {f}) = 1. (8)

Note that we use the index 1′ in mΩ×T
1′ , i.e., the source

number followed by the prime symbol, to highlight
that the BBA mΩ×T

1′ is obtained from the source S1,
as is the case of the BBA mΩ

1 , but that it conveys a
different information from the BBA mΩ

1 .

One verifies that the BBA mΩ×T
1′ is appropriate to

model the information available in this scenario since

• combining mΩ×T
1′ with a BBA mT

t defined on T
by mT

t (t) = 1, and then marginalizing on Ω, i.e.,

performing
(mΩ×T

1′ ∩©mT
t )↓Ω, (9)

yields a BBA mΩ
Ag such that mΩ

Ag = mΩ
1 , which

means that the agent’s beliefs are equated to
the source’s beliefs if the agent believes that the
source tells the truth;

• combining mΩ×T
1′ with a BBA mT

f defined on T

by mT
f (f) = 1, and then marginalizing on Ω, i.e.,

performing
(mΩ×T

1′ ∩©mT
f )↓Ω, (10)

yields a BBA mΩ
Ag such that mΩ

Ag = mΩ
1 , which

is sound since m represents the BBA that would
be induced if the agent knows that a source pro-
viding a BBA m is not telling the truth [11], as
mentioned in Section 2.1.

This reasoning may be generalized when the source
produces an information in the form of a BBA rather
than a set, in which case the BBA mΩ×T

1′ is such that

mΩ×T
1′ (A×{t}∪A×{f}) = mΩ

1 (A), ∀A ⊆ Ω. (11)

Here again, if we perform (9) and (10), we find mΩ
Ag =

mΩ
1 and mΩ

Ag = mΩ
1 , respectively, which means that,

as expected, the agent’s beliefs are equated to what
the source says if the source tells the truth, and the
agent’s beliefs are equal to the negation of what the
source says if the source does not tell the truth.

Using the BBA mΩ×T
1′ , as defined by (11), to represent

the agent’s beliefs when it receives a BBA mΩ
1 from

a source S1, we may now derive an interpretation for
the α-junctions.

4.2 Interpretation of the α-Conjunctions

Suppose two distinct sources S1 and S2 that induce
two BBAs mΩ

1 and mΩ
2 on Ω. Let T1 = {t1, f1} and

T2 = {t2, f2}; these two frames will be used to model
beliefs on the truthfulness of S1 and S2, respectively.
Suppose we want to quantify the agent’s beliefs on
Ω given mΩ

1 , mΩ
2 and the following distinct pieces of

evidence.

• A piece of evidence stating that both or none of
the sources tell the truth. This piece of evidence
may be modeled by a BBA mT1×T2

xand defined by

mT1×T2
xand ({(t1, t2) , (f1, f2)}) = 1.

• Distinct items of evidence for all x ∈ Ω of the
form

plT1×T2 [x]({(f1, f2)}) = 1− α, (12)
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indicating that if ω0 = x, then it is plausible with
strength 1 − α that none of the sources tell the
truth.

To compute the agent’s beliefs on Ω given these
distinct pieces of evidence, the items of evidence
of the form given by (12), must be transformed
into BBAs. In the TBM, this may be done us-
ing the LCP. The least committed BBA mT1×T2 [x]
corresponding to (12) is the SBBA mT1×T2 [x] =
{(t1, t2) , (f1, t2) , (t1, f2)}1−α. Using all these distinct
items of evidence, the agent’s belief mΩ

Ag on Ω is then
equal to

mΩ
Ag = (mΩ×T1

1′ ∩©mΩ×T2
2′ ∩©mT1×T2

xand

∩©( ∩©x∈ΩmT1×T2 [x]⇑Ω×T1×T2))↓Ω, (13)

with, for i = 1 and i = 2 and all A ⊆ Ω

mΩ×Ti

i′ (A× {ti} ∪A× {fi}) = mΩ
i (A), (14)

and, for all x ∈ Ω

mT1×T2 [x] = {(t1, t2) , (f1, t2) , (t1, f2)}1−α
,

and
mT1×T2

xand ({(t1, t2) , (f1, f2)}) = 1.

Theorem 1. Let mΩ
1 and mΩ

2 be two BBAs. The
BBA mΩ

Ag defined by (13) verifies

mΩ
Ag = mΩ

1 ∩©αmΩ
2 .

This theorem may be illustrated with a simple valu-
ation network [6] (see Figure 1), which is a graphical
display of a set of BBAs, where variables are repre-
sented by circular nodes and BBAs are represented by
square nodes.

As shown by Theorem 1, an α-conjunction is equiv-
alent to the pooling by the conjunctive rule of some
simple pieces of evidence, which can all be interpreted
and that are, moreover, all related to the truthfulness
of the sources. In particular, the parameter α involved
in the α-conjunctions can be interpreted in terms of
the plausibility, given ω0 = x, that the sources lie,
since this plausibility is equal to 1 − α. Note that
since the BBA mxand excludes the fact that one and
only one source tells the truth, we clearly see, from
the interpretation given to α, that we pass from the
conjunctive rule to the rule ∩© as α varies from 1 to
0. Finally, we may remark that, since (12) is logically
equivalent to

belT1×T2 [x]({(t1, t2) , (f1, t2) , (t1, f2)}) = α,

then the parameter α involved in the α-conjunctions
is equal to the belief, given ω0 = x, that at least one
of the sources tells the truth.

Figure 1: Valuation network for the α-conjunction
of two BBAs m1 and m2. In the network, the term
( ∩©x∈ΩmT1×T2 [x]⇑Ω×T1×T2) appearing in (13), is re-
placed by a BBA mx defined on Ω× T1 × T2.

Let us eventually remark that Theorem 1 does not
extend to more than two sources. Indeed, let m1,
m2 and m3 be three BBAs. The combination
mΩ

1 ∩©αmΩ
2 ∩©αmΩ

3 is in general not equal to

(mΩ×T1
1′ ∩©mΩ×T2

2′ ∩©mΩ×T3
3′ ∩©mT1×T2×T3

xand

∩©( ∩©x∈ΩmT1×T2×T3 [x]⇑Ω×T1×T2×T3))↓Ω,

with mΩ×Ti

i′ , i = 1, 2, 3, defined by (14), and where
mT1×T2×T3 [x] is the least committed BBA corre-
sponding to plT1×T2×T3 [x]({(f1, f2, f3)}) = 1−α, and
with mT1×T2×T3

xand ({(t1, t2, t3) , (f1, f2, f3)}) = 1.

4.3 Interpretation of the α-Disjunctions

The α-disjunctions can be interpreted in a similar
way. Suppose two distinct sources S1 and S2 that
induce two BBAs mΩ

1 and mΩ
2 on Ω. Suppose we

want to compute the agent’s beliefs on Ω given mΩ
1 ,

mΩ
2 and the following distinct pieces of evidence.

• A piece of evidence stating that the sources do
not lie simultaneously. This piece of evidence
may be modeled by a BBA mT1×T2

or defined by

mT1×T2
or ({(t1, t2) , (t1, f2) , (f1, t2)}) = 1.

• Distinct items of evidence for all x ∈ Ω of the
form

plT1×T2 [x]({(t1, t2)}) = α, (15)

indicating that if ω0 = x, then it is plausible with
strength α that both sources tell the truth.

The least committed BBA mT1×T2 [x] corre-
sponding to (15) is the SBBA mT1×T2 [x] =
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{(f1, t2) , (t1, f2) , (f1, f2)}α. Using all these dis-
tinct items of evidence, the agent’s belief mΩ

Ag on Ω
is then equal to

mΩ
Ag = (mΩ×T1

1′ ∩©mΩ×T2
2′ ∩©mT1×T2

or

∩©( ∩©x∈ΩmT1×T2 [x]⇑Ω×T1×T2))↓Ω, (16)

with mΩ×Ti

i′ , i = 1, 2, defined by (14), and where
mT1×T2 [x] = {(f1, t2) , (t1, f2) , (f1, f2)}α for all x ∈
Ω, and with mT1×T2

or ({(t1, t2) , (t1, f2) , (f1, t2)}) = 1.

Theorem 2. Let mΩ
1 and mΩ

2 be two BBAs. The
BBA mΩ

Ag defined by (16) verifies

mΩ
Ag = mΩ

1 ∪©αmΩ
2 .

As shown by Theorem 2, an α-disjunction is equiva-
lent to the pooling by the conjunctive rule of some
simple pieces of evidence. In particular, the pa-
rameter α involved in the α-disjunctions is equal to
the plausibility that the sources tell the truth given
ω0 = x. Note that since the BBA mor excludes the
fact that both sources lie, we clearly see, from the
interpretation given to α, that we pass from the dis-
junctive rule to the exclusive disjunctive rule as α
varies from 1 to 0.

To complete this section on the interpretation of the
α-junctions, we may note that the idea of recovering
the disjunctive rule and the exclusive disjunctive rule
through the use of the conjunctive rule and BBAs de-
fined on product spaces was investigated by Haenni
in [4]. The difference between Haenni’s approach and
ours is that Haenni used the notion of the reliability of
the sources, rather than their truthfulness. The main
difference between a reliable source and a truthful
source is the following. Suppose a source tells ω0 ∈ A.
If the source is lying, then the agent believes ω0 ∈ A,
whereas when the source is unreliable, the agent be-
lieves ω0 ∈ Ω. As stated in [11] and as may easily be
shown using the degenerate case α = 0 in Theorem 2,
the exclusive disjunctive rule corresponds to the situ-
ation where exactly one of the sources tells the truth,
without knowing which one. However, as shown in [7],
this rule does not correspond to the situation where
exactly one of the sources is reliable, without know-
ing which one, as wrongly claimed without proof by
Theorem 3.3 of [4]. As a matter of fact, it can even
be shown that it is actually the disjunctive rule that
corresponds to that particular situation [7].

5 Computation

In addition to lacking an interpretation, the α-
junctions suffered in [11] from another limitation:
they were hard to compute. Indeed, the definitions

of the matrices underlying the α-junctions are “quite
laborious” [13] and thus using an α-junctive rule looks
like a complicated task. It seems thus interesting to
have simpler mechanisms to perform a combination by
an α-junctive rule. As shown by Theorem 1, it is pos-
sible to compute the combination by an α-conjunctive
rule using the conjunctive rule and BBAs defined on
product spaces. In this section, several other new and
simple means are provided to compute the combina-
tion by an α-conjunction. These new methods are
based on generalizations of mechanisms that can be
used to compute a combination by the conjunctive
rule. Note that, although not provided in this paper,
similar new means exist for the computation of the
combination by an α-disjunction.

5.1 α-Conditioning Operation

Definition 2 below introduces a new notion, called α-
conditioning, which will be useful to uncover a simple
expression for the α-conjunctions.

Definition 2. The α-conditioning of a BBA by a sub-
set B ⊆ Ω is equal to the α-conjunction of this BBA
with a categorical BBA focused on B.

The result of the α-conditioning operation on a BBA
m given a subset B ⊆ Ω, i.e., the result of m ∩©αmB

with mB the categorical BBA focused on B, is de-
noted by m[B]α. We use the term “α-conditioning”
because m[B]α = m[B] when α = 1.

The following proposition provides an expression for
the α-conditioning operation.

Proposition 1. Let B ⊆ Ω. We have, for all X ⊆ Ω,

m[B]α(X) =
∑

(A∩B)∪(A∩B∩C)=X

m (A) mα (C) ,

where mα is a BBA defined by, for all A ⊆ Ω,
mα (A) = α|A|(1− α)|A|.

The following proposition introduces a new way to
compute a combination by an α-conjunction, through
the use of the α-conditioning operation.

Proposition 2. Let m1 and m2 be two BBAs. We
have, for all A ⊆ Ω

m1 ∩©αm2 (A) =
∑

B⊆Ω

m1 [B]α (A) m2 (B) . (17)

Note that, when α = 1, Equation (17) becomes equiv-
alent to (3). Hence, Equation (17) may be seen as a
generalization of (3).
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5.2 “Classical” Expression

Using Propositions 1 and 2, it may be shown that the
following proposition holds.

Proposition 3. Let m1 and m2 be two BBAs. Let
m1 ∩©α2 denote m1 ∩©αm2. We have, for all X ⊆ Ω,

m1 ∩©α2 (X) =
∑

(A∩B)∪(A∩B∩C)=X

m1 (A) m2 (B) mα (C) ,

(18)
where mα (A) = α|A|(1− α)|A|, for all A ⊆ Ω.

This proposition gives us yet another new expression
for the α-conjunctions. We call (18) the “classical”
expression for the α-conjunction since (18) is a gener-
alization of the classical, or most often encountered,
definition of the conjunctive rule given by Equation
(2). Indeed, if α = 1, then the BBA mα of Proposi-
tion 3 is such that mα (∅) = 1 and thus the term on
the right side of (18) reduces to

∑

(A∩B)∪(A∩B∩∅)=X

m1 (A) m2 (B) mα (∅)

=
∑

(A∩B)=X

m1 (A) m2 (B)

= m1 ∩©m2(X),

as expected. Similarly, if α = 0, then mα (Ω) = 1,
and thus the term on the right side of (18) reduces to
m1 ∩©m2(X), as expected.

5.3 α-Commonality Function

Using the eigendecomposition of Km when mvac =
mΩ, Smets [11] showed that we have

g1 ∩©α2 = g1 · g2 (19)

with

g1 ∩©α2 = G ·m1 ∩©α2, (20)

and g1 = G · m1 and g2 = G · m2, where G is a
matrix of eigenvectors of Km (due to lack of space,
we refer the reader to [13, p. 26] for the definition of
G). From (19) and (20), we obtain

m1 ∩©α2 = G−1 ·Diag(g1) · g2, (21)

where Diag(g1) denotes the diagonal matrix, whose
diagonal elements are the elements of the vector g1.
As shown by (21), the combination of two BBAs m1

and m2 by an α-conjunctive rule can be simply ex-
pressed as the pointwise product of the functions g1

and g2 associated, respectively, to m1 and m2. This
is a first step in the simplification of the computation

by an α-conjunction. However, the definition of the
matrix G is as tedious as the definition of the matrix
Km. Fortunately, Theorem 3 shows that it is possible
to obtain the matrix G in a simple manner.
Theorem 3. The matrix G may be obtained using
Kronecker multiplication. We have:

Gi+1 = Kron
([

1 1
α− 1 1

]
, Gi

)
,G1 = 1,

where Gi denotes the matrix G when |Ω| = i.

We now have a very simple way to compute an α-
conjunction, i.e., pointwise product of functions g
which may themselves be obtained by a simple Kro-
necker product. Furthermore, it may now easily be
seen that the G matrix generalizes the Q matrix in
that we have G = Q when α = 1 and thus g = q
in this case. The fact that the function g generalizes
the commonality function can be used to call g the
α-commonality function associated to a BBA m.

5.4 Comparison of the Computation
Methods

In this section, the various new means proposed
for the computation of the combination by an α-
conjunctive rule, are briefly compared.

We have laid bare four new ways of performing such a
combination: (1) using the α-conditioning operation
(see Proposition 2), (2) using a “classical” expression
(see Proposition 3), (3) using the conjunctive rule and
BBAs defined on product spaces (see Theorem 1) and
(4) using the α-commonality function obtained from
a Kronecker product (see (21) and Theorem 3).

Each of these techniques has some advantages and
some drawbacks. Method 4 is arguably the simplest
one to implement. However, it may rapidly become
impossible to use if the frame of discernment Ω is too
big, since this method requires computing matrices G
of size 2|Ω| × 2|Ω|, which are, in addition, not sparse,
and it requires performing the pointwise product of
vectors g of size 2|Ω|. Method 3 is also rather simple
to implement, since we merely need to perform combi-
nations by the conjunctive rule. However, it requires
working in the space Ω × T1 × T2. Method 1 and 2
share the same characteristics: they are more efficient
than method 4 when the frame is big, since they do
not require to work with vectors of size 2|Ω| as m1

and m2 may have only a few focal sets, but they are
harder to implement.

6 Conclusion

The α-junctions represent the set of associative, com-
mutative and linear combination operators for belief
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functions with a neutral element. They include as par-
ticular cases familiar combination rules such as the
conjunctive and disjunctive rules. They have never
been used in the literature due, most certainly, to two
limiting factors: in the original article of Smets [11],
they lacked (1) an interpretation and (2) simple means
to compute them. This paper has proposed solutions
to these two issues.

It was first shown that the α-junctions correspond to
some particular form of knowledge about the truthful-
ness of the sources, making the α-junctions interesting
for applications where such kind of knowledge may be
available. This might for instance be the case when
dealing with automatic deceiving agents [14]. Then,
it was shown that various notions that can be used
to perform the computation by the conjunctive rule
can be generalized to the α-junctions. This allowed
us to uncover simple methods to perform a combina-
tion by an α-junctive rule. The α-junctions become
thus more usable in practice and potentially useful,
irrespective of their meaning, for, e.g., classification
applications, as demonstrated in [7].

To conclude, let us mention that, as suggested in [13]
and shown in [7], it is possible to obtain α-junctive
canonical decompositions of a belief function, gener-
alizing the conjunctive and disjunctive canonical de-
compositions [10, 2].
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Abstract

We consider ordinary stochastic differential equations
whose coefficients depend on parameters. Conditions
are given under which modelling the parameter uncer-
tainty by compact-valued random sets leads to set-
valued stochastic processes. Finally, we define ana-
logues of first entrance times for set-valued processes.

Keywords. Stochastic differential equation, random
set, set-valued stochastic process, first entrance time.

1 Introduction

Stochastic differential equations of the form

dxt = f(t, xt)dt + G(t, xt)dwt (1)

or the equivalent integral form

xt = xt0 +
∫ t

t0

f(s, xs)ds +
∫ t

t0

G(s, xs)dws (2)

with initial value xt0 , coefficients f : [t0, t]×Rd → Rd,
G : [t0, t] × Rd → Rd×m and {wt}t∈[t0,t] being an
m-dimensional Wiener process (Brownian motion)
are used in many applications to model classical
problems in physics and engineering under random
disturbances. The theory of such equations and their
solutions being stochastic processes can be found in
[1] or [12], for example.

The motivation for this work is the desire for ul-
timately investigating mechanical systems under
stochastic excitations depending on parameters. The
purpose of this article is thus to consider SDEs
whose initial value xt0 and coefficients f and G
depend on parameters. The uncertainty of these
parameters can be modelled by random variables
which requires the assumption of certain probability
distributions. But in practice, there may only be
scarce information available like a small sample size

or estimates on the mean value and the variance.
Hence, the classical probabilistic approach might
involve tacit assumptions that cannot be verified
and the need for alternative uncertainty models may
arise (for a general discussion see for example [24]).
Among those alternative models are random sets
which can be interpreted as imprecise observations
of random variables, that is, instead of a single value
one assigns a set which is supposed to include the
actual value to each of the elements of the under-
lying probability space. It has been demonstrated
in [23, 25, 26] how random intervals constructed
from Tchebycheff’s inequality can serve as a non-
parametric model of the variability of a parameter,
given its mean value and variance as sole information.

We will start in Section 2 with a rather detailed
review of the basic theory of stochastic processes
and measurability of random sets which is necessary
to understand the definitions and propositions of
Section 3 where conditions will be given under
which solution processes continuously depend on
the parameters contained in xt0 , f and G. We will
show that this continuity together with using random
compact sets for modelling parameter uncertainty
leads to set-valued processes with compact values
which are continuous with respect to the Hausdorff
metric. Section 4 discusses possible definitions
of analogues of first entrance times for set-valued
processes and their representability by first entrance
times of selections. In Section 5 an example is given
to illustrate the theoretical concept developed in the
foregoing sections.

We point out that this article addresses the case where
f and G are Rd-valued coefficient functions depending
on random set parameters. This is in contrast with
the case where f and G are functions taking values
in the space of (closed) subsets of Rd which is dis-
cussed in [15, 18, 19, 20, 27, 28]. Note that the latter
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approach could also be applied to the case of single-
valued coefficients involving set-valued (even time de-
pendent) parameters. But one substantial restriction
is that a set-valued coefficient G in the noise term can
lead to unbounded random sets in the solution process
(even in very simple examples - see [27], Theorem
1) whereas using the method proposed in this paper
leads to compact values when random compact sets
are used to model parameter uncertainty. Of course,
instead of random sets we could use fuzzy sets. But
since each fuzzy set can be interpreted as a conso-
nant random set on the interval [0, 1] as underlying
probability space, dealing with random sets is more
general.

2 Preliminaries

2.1 Stochastic Processes

Throughout this section let (Ω,Σ, P ) denote a proba-
bility space with σ-algebra Σ and probability measure
P and let (T, r) and (E, ρ) be metric spaces. A sto-
chastic process is a map

x : T × Ω → E, ω 7→ xt(ω) = x(t, ω)

such that for each t ∈ T the map

xt : Ω → E, ω 7→ xt(ω)

is a random variable, that is, it is measurable. For
fixed ω ∈ Ω the map

x·(ω) : T → E, t 7→ xt(ω)

is called sample function. Very often properties of
stochastic processes cannot be verified for all ω ∈ Ω
but only for almost all ω, that is, for some subset of Ω
whose probability is 1. That is why the term version
is frequently used. Two stochastic processes x and
x̃ are called versions of each other (or stochastically
equivalent) if for all t ∈ T it holds that

P ({ω : xt(ω) = x̃t(ω)}) = 1.

The first property that should be mentioned here is
separability.

Definition 1. ([5, 11]) Suppose that (T, r) is separa-
ble. A stochastic process x : T ×Ω → E is said to be
separable if there exists a dense countable subset D
of T and a set N ∈ Σ of measure 0 such that for each
open subset G ⊆ T and every closed subset F ⊆ E
the two sets

{ω : ∀t ∈ G ∩D : xt(ω) ∈ F}
{ω : ∀t ∈ G : xt(ω) ∈ F}

differ at most in N .

Hence, one could say that separability means that
considering x for countably many t ∈ T is enough
to observe the behavior of the whole process. The fol-
lowing theorem whose proof can for example be found
in [5] or [11] is fundamental for the theory of stochas-
tic processes.

Theorem 1. ([5, 11]) Suppose that T is separable
and E is compact. Then for any stochastic process
x : T × Ω → E there is a separable version.

Note that if E is only locally compact (which is the
case if E = Rd) then one can always find a separable
version in some compactification of E and its values
are still in E with probability 1 for each t ∈ T .

Definition 2. A stochastic process is called (almost
surely) continuous if (almost) all sample functions are
continuous.

Recall that a probability space (Ω,Σ, P ) is said to be
complete if all subsets of sets N ∈ Σ with P (N) = 0
are measurable, that is, lie in Σ. The completion of a
probability space (Ω,Σ, P ) is denoted (Ω,Σ

P
, P ).

Proposition 1. ([10]) Suppose that (T, r) is separa-
ble and (Ω,Σ, P ) is complete. Then a separable sto-
chastic process which has an almost surely continuous
version is almost surely continuous itself.

The next theorem states the so-called Kolmogorov-
Chentsov criterion for almost sure continuity of sam-
ple functions.

Theorem 2. ([16]) Let T = Rp, let (E, ρ) be
a complete metric space. Suppose that a process
x : T × Ω → E satisfies for some positive constants
α, β, γ the following condition

E(ρ(xs, xt)α) ≤ γ ‖s− t‖p+β ∀s, t ∈ T = Rp. (3)

Then x has an almost surely continuous version.

In the situation of the above Theorem 2, separability
of x implies almost sure continuity of x if (Ω,Σ, P ) is
complete.

Definition 3. A stochastic process x : T ×Ω → E is
called measurable if x is a measurable function with
respect to the product-σ-algebra B(T )⊗Σ where B(T )
denotes the Borel-σ-algebra of (T, r).

Theorem 3. ([13]) Suppose that T is separable.
Then a continuous process x : T × Ω → E is mea-
surable.

In the case where it is only known that almost all
sample functions are continuous one can construct a
version possessing only continuous sample functions
by choosing a continuous sample path and replacing
all discontinuous sample functions with this path.
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2.2 Random Sets

A random set is a random variable whose values
are sets. It is usual to consider random closed
sets, that is, random variables whose values are
closed subsets of some topological space E. The
Borel-σ-algebra on E is denoted by B(E) while G(E),
F(E) and K(E) denote, respectively, the family of
open, closed and compact subsets of E. By F ′(E) and
K′(E) we mean F(E)\{∅} and K(E)\{∅}, respectively.

Again let (Ω,Σ, P ) be a probability space. As with
random variables a random closed set A : Ω → F(E)
has to fulfill some measurability condition. We shall
demand that

A−(B) = {ω : A(ω)∩B 6= ∅} ∈ Σ, ∀B ∈ B(E). (4)

For other measurability definitions for set-valued
maps we refer to [2, 13], for example. Furthermore,
we call A a random compact set if Condition (4) is
satisfied and for all ω ∈ Ω it holds that A(ω) ∈ K(E).

One can view a random set A as a collection of ran-
dom variables that fit inside A. Such single-valued
measurable functions α : Ω → E fulfilling

α(ω) ∈ A(ω), ∀ω ∈ Ω

are called selections of A. Let S(A) denote the set of
all measurable selections of A. The following theorem
which is referred to as the Fundamental Measurabil-
ity Theorem gives conditions for the measurability of
random closed sets and the existence of measurable
selections. For its proof and related results see [2]
and [13].

Theorem 4. ([2, 13]) Suppose that (E, ρ) is a com-
plete separable metric space. Let A : Ω → F ′(E) be a
set-valued mapping with non-empty values. Consider
the following properties:

(i) For all B ∈ B(E) it holds that A−(B) ∈ Σ,

(ii) for all F ∈ F(E) it holds that A−(F ) ∈ Σ,

(iii) for all G ∈ G(E) it holds that A−(G) ∈ Σ,

(iv) there is a Castaing representation of A, that is, a
sequence {αn}n∈N of measurable selections such
that for all ω ∈ Ω

A(ω) = cl({αn(ω)}n∈N)

where cl denotes the closure in E,

(v) for all x ∈ E the function ω 7→ infy∈A(ω) ρ(x, y)
is measurable,

(vi) the graph of A belongs to Σ⊗ B(E).

Then the following implications hold:

(i)⇒(ii)⇒(iii)⇔(iv)⇔(v)⇒(vi)

If (Ω,Σ, P ) is a complete probability space then all
properties are equivalent.

Note that in the literature (for example in [22]) one
can also find “almost all” versions of the above theo-
rem and definitions. For further background informa-
tion on random sets see [21, 22, 29].

3 Stochastic Differential Equations

with Random Set Parameters

3.1 Deterministic parameters

Let us consider stochastic differential equations of the
form (2) whose initial value xt0 and coefficients f and
G depend on some vector a = (a1, . . . , ap) ∈ A of
parameters where A ⊆ Rp denotes the set of possi-
ble parameter values, that is, we consider differential
equations of the form

xt,a = xt0,a +
∫ t

t0

f(s, a, xs,a)ds +
∫ t

t0

G(s, a, xs,a)dws

(5)
where t0 ≤ t ≤ t < ∞, a ∈ A, wt denotes an m-
dimensional Wiener process on a probability space
(Ω,Σ, P ) and

xt0 : A× Ω → Rd, (a, ω) 7→ xt0,a(ω),
f : [t0, t]× A× Rd → Rd, (t, a, x) 7→ f(t, a, x),
G : [t0, t]× A× Rd → Rd×m, (t, a, x) 7→ G(t, a, x).

Assume that for each a ∈ A the partial maps f(·, a, ·)
and G(·, a, ·) are measurable functions and the usual
conditions for the existence of a solution process ([1,
12]) are fulfilled, that is,

(IV) xt0,a is a random variable independent of the
increments wt − wt0 for t ≥ t0.

(Lip) Lipschitz condition: There is a constant L > 0
such that for all t ∈ [t0, t] and all x, y ∈ Rd it
holds that

‖f(t, a, x)− f(t, a, y)‖
+ ‖G(t, a, x)−G(t, a, y)‖ ≤ L‖x− y‖.

(RG) Restriction on growth: There is a constant
K > 0 such that for all t ∈ [t0, t] and all x ∈ Rd

it holds that

‖f(t, a, x)‖2 + ‖G(t, a, x)‖2 ≤ K(1 + ‖x‖2).
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Note that the constants L and K can depend on a.
If the above conditions are fulfilled we get for each
a ∈ A a solution process {xt}t∈[t0,t] = {xt,a}t∈[t0,t],
which leads to a map of the form

x : [t0, t]× A× Ω → Rd, (t, a, ω) 7→ xt,a(ω). (6)

Since for each a ∈ A and each t ∈ [t0, t] the partial
map xt,a = x(t, a, ·) : Ω → Rd is measurable, (6) can
be interpreted as a stochastic process on [t0, t] × A
which is a metric space. Hence, according to Theo-
rem 1, we can assume x to be separable.

Looking at the process x defined by Equation (6) the
question arises if it is continuous in (t, a). From Itô’s
theory it is well-known that for fixed a ∈ A the solu-
tion process {xt,a}t∈[t0,t] is continuous in t. Further-
more, it fulfills the inequality in Theorem 2 (see [1] or
[12]), that is, there is some constant C such that for
all s, t ∈ [t0, t]

E(‖xt − xs‖2n) ≤ C|t− s|n, t, s ∈ [t0, t] (7)

holds if the 2n-th moment of the initial value is finite.
The next proposition will give conditions under which
the corresponding inequality with respect to t and a
is fulfilled on a bounded subset of [t0, t]× A.
Proposition 2. Let {xt,a}(t,a)∈[t0,t]×A denote the
process defined by Equation (6), let U ⊆ A be an ar-
bitrary bounded subset of A and let n ∈ N. Assume
that Conditions (IV), (Lip) and (RG) are fulfilled and
in addition, the following conditions hold:

(C1) L : A → R≥0 from (Lip) and K : A → R≥0

from (RG) are bounded on U .

(C2) Local Lipschitz condition with respect to a: For
all x ∈ Rd there exists a constant L̃ = L̃(U, x) >
0 such that for all t ∈ [t0, t] and for all a, b ∈ U
it holds that

‖f(t, a, x)− f(t, b, x)‖
+ ‖G(t, a, x)−G(t, b, x)‖ ≤ L̃(U, x)‖a− b‖

where the growth of L̃ is bounded by a polyno-
mial in ‖x‖, that is, there is an M = M(U) > 0
and a k = k(U) ∈ N such that for all x ∈ Rd

L̃(U, x) ≤ M(U)(1 + ‖x‖)k.

(C3) The 2nk-th moments of the initial values xt0,a

exist and are bounded on U , that is,

sup
a∈U

E(‖xt0,a‖2nk) < ∞.

In addition, there is a constant c = c(U, n) such
that for all a, b ∈ U it holds that

E(‖xt0,a − xt0,b‖2n) ≤ c‖a− b‖2n.

Then there is a constant C = C(U, n) > 0 such that
for all s, t ∈ [t0, t] and for all a, b ∈ U the following
inequality holds

E(‖xs,a − xt,b‖2n) ≤ C

∥∥∥∥
(

s− t
a− b

)∥∥∥∥
n

. (8)

The rather technical proof is omitted since it is similar
to the proof of (7) (see [1, 12]).

Now, we can conclude that a separable version of our
process (6) is almost surely continuous with respect
to (t, a) if the conditions of the above proposition are
satisfied for n ∈ N big enough.

Proposition 3. The stochastic process
{xt,a}(t,a)∈[t0,t]×A defined by (6) is almost surely con-
tinuous with respect to (t, a) if there is an n ≥ p + 2
such that the conditions of Proposition 2 are satisfied
for each bounded subset U ⊆ A.

Proof. Let c ∈ A and let U(c) ⊆ A denote a bounded
neighborhood of c. Since the conditions of Proposi-
tion 2 are fulfilled for some n ≥ p+2 we know that (8)
holds for all (s, a), (t, b) ∈ [t0, t] × U(c) which means
that, according to Proposition 1, x is an almost surely
continuous process on [t0, t]×U(c), that is, there is a
measure-zero set N(c) ∈ Σ such that for all ω ∈ N(c)c

the sample function x·,·(ω) is continuous. Since A can
be covered by bounded neighborhoods of countably
many c ∈ A the set N c =

⋂
c N(c)c is measurable and

has probability 1 which means that x is an almost
surely continuous process on [t0, t]× A.

If we replace, as described at the end of Section 2.1,
{xt,a}(t,a)∈[t0,t]×A by a continuous version, we can in-
fer measurability from Theorem 3.

Corollary 1. Let A ∈ B(Rp) be a Borel set and
let {xt,a}(t,a)∈[t0,t]×A be a continuous process of the
form (6). If we choose an ω ∈ Ω such that x·,·(ω) is
continuous and replace all discontinuous sample func-
tions by x·,·(ω) we get a continuous version which is,
according to Theorem 3, measurable with respect to
B([t0, t])⊗ B(A)⊗ Σ.

3.2 Parameters modelled by random
variables

From now on the probability space on which the
Wiener process {wt}t≥t0 is defined shall be denoted
(Ωw,Σw, Pw). We assume that the stochastic process
{xt,a}(t,a)∈[t0,t]×A defined by Equation (6) is measur-
able with respect to the product-σ-algebra B([t0, t])⊗
B(A) ⊗ Σw and all sample functions are continuous
on [t0, t] × A. The measurability of x allows us to
model the parameter uncertainty of a by a random
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variable, that is, a measurable function α : ΩA → A on
some probability space (ΩA,ΣA, PA). Consequently,
the map

α̂ : [t0, t]× ΩA × Ωw → [t0, t]× A× Ωw

(t, ωA, ωw) 7→ (t, α(ωA), ωw)

is measurable with respect to the product σ-algebra
B([t0, t])⊗ΣA⊗Σw. Composing α̂ and x leads to the
measurable map ξ = x ◦ α̂

ξ : [t0, t]× ΩA × Ωw → Rd

(t, ωA, ωw) 7→ x(t, α(ωA), ωw) (9)

which can be interpreted as a stochastic process
{ξt}t∈[t0,t] on the time interval [t0, t] and the prod-
uct space (Ω,Σ, P ) = (ΩA × Ωw,ΣA ⊗ Σw, PA ⊗ Pw).

Proposition 4. The map ξ defined by (9) can
be interpreted as a stochastic process {ξt}t∈[t0,t] on
the time interval [t0, t] and the probability space
(Ω,Σ, P ). The process {ξt}t∈[t0,t] is measurable and
all sample functions are continuous.

Proof. The map ξ = x◦ α̂ is measurable since it is the
composition of the two measurable functions α̂ and x
where the domain of x is the same measure space as
the range of α̂. Consequently, for each t ∈ [t0, t] the
partial map

ξt : Ω → Rd, ω 7→ xt,α(ωA)(ωw)

is a random variable which means that ξ is a measur-
able stochastic process. Note that for each a ∈ A and
each ωw ∈ Ωw the partial map x·,a(ωw) is continuous
because the sample function x·,·(ωw) is continuous.
Since for all ωA we have α(ωA) ∈ A we can infer that
ξ·(ω) = x·,α(ωA)(ωw) is continuous for all ω ∈ Ω.

3.3 Parameters modelled by random sets

The uncertainty of the parameter a in Equation (5)
shall now be modelled by a random compact set

A : ΩA → K′(A)

where K′(A) denotes the set of all non-empty compact
subsets of Rp being also a subset of A. Then we can
define a set-valued function X by

X : (t, ω) 7→ {xt,a(ωw) : a ∈ A(ωA)} (10)

where (t, ω) ∈ [t0, t] × Ω and x is the process defined
by (6) which is still assumed to be measurable and
continuous. The next proposition states that X is a
set-valued process with compact values, that is, for
each t ∈ [t0, t] it holds that Xt is a random compact
set which particularly means that the measurability
condition (4) is fulfilled.

Proposition 5. Let A : ΩA → K′(A) be a random
compact set and let X be the set-valued map defined
by Equation (10). Then the following holds:

1. X can be interpreted as a set-valued process on
the time interval [t0, t] and the completed prob-
ability space (Ω,Σ

P
, P ) with values in K′(Rd),

2. All sample functions of X are continuous with
respect to the Hausdorff-metric H on K′(Rd).

3. X is measurable with respect to the product-σ-
algebra B([t0, t])⊗ ΣA ⊗ Σw

PA⊗Pw .

4. For a Castaing representation {αn}n∈N of A the
processes {ξn}n∈N defined by

ξn
t (ω) = xt,αn(ωA)(ωw), (t, ω) ∈ [t0, t]× Ω

form a Castaing representation of X and for each
t ∈ [t0, t] the family {ξn

t }n∈N forms a Castaing
representation of Xt.

Proof. First note that Xt(ω) is a non-empty compact
subset of Rd for all t ∈ [t0, t] and all ω ∈ Ω since
xt,·(ωw) is continuous in a and A(ωA) is a non-empty
compact subset of Rp for all ωA ∈ ΩA. Since for the
proof of the first three statements the Castaing repre-
sentation {ξn}n∈N is used Assertion 4 is proved first.
Hence, we show that for all (t, ω) ∈ [t0, t]×Ω it holds
that

{xt,a(ωw) : a ∈ A(ωA)} = cl({ξn
t (ω)}n∈N).

In fact, since {αn}n∈N is a Castaing representa-
tion of A we know that for all a ∈ A(ωA) there
is a subsequence {αnj

}j∈N such that αnj
(ωA) → a

for j → ∞. Continuity of xt,·(ωw) in a implies
ξ

nj

t (ω) = xt,αnj
(ωA)(ωw) → xt,a(ωw) which means

that xt,a(ωw) ∈ cl({ξn
t (ω)}). On the other hand,

it is clear that αn(ωA) ∈ A(ωA) for all ωA ∈ ΩA,
n ∈ N and consequently ξn

t (ω) ∈ Xt(ω) for all ω ∈ Ω
and n ∈ N. Since Xt(ω) is closed, it holds that
cl({ξn

t (ω)}n∈N) ⊆ Xt(ω). Hence, for each t ∈ [t0, t]
it follows that Xt(ω) = cl({ξn

t (ω)}n∈N) for all ω ∈ Ω.
According to the Fundamental Measurability Theo-
rem 4, this means that Xt is a random compact set
on the completion of the probability space (Ω,Σ, P ),
that is,

(ΩA × Ωw,ΣA ⊗ Σw
PA⊗Pw

, PA ⊗ Pw).

The continuity of X is a consequence of the continuity
of the processes ξn (n ∈ N). Indeed, after recalling
that for A,B ∈ K′(Rd) the Hausdorff-metric H is de-
fined by

H(A,B) = max(sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖)
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suppose that for arbitrary ω ∈ Ω there is a t ∈ [t0, t]
and an ε0 > 0 such that for all δ > 0 there is an
s = s(δ) such that |s− t| < δ and

H(Xs(ω), Xt(ω)) ≥ ε0.

Because of the closedness of Xt(ω) and Xs(ω) this
corresponds to the assumption that at least one of
the following two inequalities holds

sup
n∈N

inf
m∈N

‖ξn
s (ω)− ξm

t (ω)‖ ≥ ε0,

sup
m∈N

inf
n∈N

‖ξn
s (ω)− ξm

t (ω)‖ ≥ ε0.

From the first inequality one can infer that there is
an n ∈ N such that for all m ∈ N it holds that

‖ξn
s (ω)− ξm

t (ω)‖ ≥ inf
m∈N

‖ξn
s (ω)− ξm

t (ω)‖ ≥ ε0

2
.

Of course, this inequality also holds for the choice
m = n which leads to

‖ξn
s (ω)− ξn

t (ω)‖ ≥ ε0

2
,

but this would mean that ξn is not continuous at t. If
we apply the same argument to the second inequality
we can conclude that H(Xs(ω), Xt(ω)) ≥ ε0 cannot
hold. Hence, X is a continuous process.

Since K′(Rd) together with the Hausdorff metric H
is a metric space the measurability of X is a direct
consequence of the continuity of all sample functions
X·(ω) and Theorem 3.

The different maps that appeared in this section
together with the underlying measure spaces are
summarized in the following table. (Note that λ and
λp denote the Lebesgue measures on B([t0, t]) and
B(A), respectively.)

map underlying measure space
x ([t0, t]× A× Ωw,

B([t0, t])⊗ B(A)⊗ Σw, λ⊗ λp ⊗ Pw)

α, A (ΩA,ΣA, PA)

α̂, ξ ([t0, t]× ΩA × Ωw,
B([t0, t])⊗ ΣA ⊗ Σw, λ⊗ PA ⊗ Pw)

X ([t0, t]× ΩA × Ωw,

B([t0, t])⊗ ΣA ⊗ Σw
PA⊗Pw

, λ⊗ PA ⊗ Pw)

4 First Entrance and Inclusion Times

for Set-valued Processes

In many applications, it is useful to observe the first
time where a single-valued stochastic process enters

some subset of the state space or the last time where
it leaves this subset. For example, one could be
interested in the first exceedance of a certain level
by a real-valued process to assess the reliability of
a system described by this process (see for example
[30]). In his book [7], Dynkin discusses the theory
of first entrance and exit times of right-continuous
Markov processes. Other theoretical background can
be found in [4, 17].

For a (single-valued) d-dimensional process {ξt}t∈[t0,t]

on a probability space (Ω,Σ, P ) and a subset B ⊆ Rd

we shall call

τB
ξ : Ω → [t0, t], ω 7→ inf{t : ξt(ω) ∈ B} (11)

the first entrance time of ξ into B. Note that if the
infimum does not exist we set τB

ξ (ω) = t. One can
show (see [7]) that (11) is measurable if B ∈ B(Rd)
and ξ is right-continuous. Furthermore, if ξ is con-
tinuous and B is a closed subset of Rd then τB

ξ is a
stopping time w.r.t. the natural filtration {At}t∈[t0,t]

defined by

At = σ(ξ−1
s (B) : s ∈ [t0, t], B ∈ B(Rd)), (12)

and if B is open then τB
ξ is a stopping time w.r.t. the

right-continuous filtration {At+}t∈[t0,t] where

At+ =
⋂

t<s≤t

As, At+ = At. (13)

If we consider a continuous process {Xt}t∈[t0,t] with
values in K′(Rd) we can define the following two maps
that correspond to (11):

τB : Ω → [t0, t], ω 7→ inf{t : Xt(ω) ∩B 6= ∅} (14)
τB : Ω → [t0, t], ω 7→ inf{t : Xt(ω) ⊆ B} (15)

If the infimum does not exist, we set τB(ω) = t or
τB(ω) = t, respectively. We call τB the first entrance
time of X into B, and we call τB the first inclusion
time of X in B.

Considering the natural filtration {Σt}t∈[t0,t] of X de-
fined by

Σt = σ(X−
s (B) : s ∈ [t0, t], B ∈ B(Rd)) ⊆ Σ (16)

the next proposition (which is the set-valued analogue
of Dynkin’s Lemma 4.1 in [7]) gives conditions under
which τB and τB are measurable or even stopping
times w.r.t. the augmented filtration {Σ̂P

t }t∈[t0,t],
that is the ascending family of complete σ-algebras
defined by

Σ̂P
t = σ(Σt ∪N ) ⊆ Σ

P
(17)

where N is the set of all subsets of measure-zero sets
in Σ.
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Proposition 6. Suppose that {Xt}t∈[t0,t] is a con-
tinuous K′(Rd)-valued process on a probability space
(Ω,Σ, P ) and {Σt}t∈[t0,t] is its natural filtration de-
fined by (16).

1. If B ∈ G(Rd) is an open subset of Rd then

{ω : τB(ω) ≤ t}, {ω : τB(ω) ≤ t} ∈ Σ̂P
t+.

2. If B ∈ F(Rd) is a closed subset of Rd then

{ω : τB(ω) ≤ t}, {ω : τB(ω) ≤ t} ∈ Σ̂P
t .

Proof. The proof is omitted here since it is very sim-
ilar to the proof of Lemma 4.1 in [7].

An interesting question is if τB and τB can be at-
tained by first entrance times of selections of X. The
next proposition states that this is possible.

Proposition 7. Let X : [t0, t] × Ω → K′(Rd) be a
continuous set-valued process with non-empty com-
pact values and let B ⊆ Rd be an arbitrary subset of
Rd. Then for all ω ∈ Ω it holds that

inf
ξ∈S(X)

τB
ξ (ω) = τB(ω),

sup
ξ∈S(X)

τB
ξ (ω) ≤ τB(ω).

If (Ω,Σ, P ) is complete and B ∈ G(Rd) then for all
ω ∈ Ω the second inequality becomes an equality.

Proof. The equality for τB and the inequality for τB

can be seen easily by using the equation

Xt(ω) = {ξt(ω) : ξ ∈ S(X)}

which holds for all t ∈ [t0, t] and ω ∈ Ω. If (Ω,Σ, P )
is complete and B is an open subset of Rd then τB is
Σ-measurable by Proposition 6. Consider the map

Y : (t, ω) 7→
{

Xt(ω) if τB(ω) ≤ t

Xt(ω) ∩Bc if τB(ω) > t

which has non-empty closed values. Note that

M = {(t, ω) ∈ [t0, t]× Ω : τB(ω) ≤ t} ∈ B([t0, t])⊗ Σ

since (t, ω) 7→ τB(ω) − t is a measurable function.
Furthermore, it can be checked easily that for any
C ∈ B(Rd) it holds that

Y −(C) = (X−(C) ∩M) ∪ (X−(Bc ∩ C) ∩M c)

which means that Y is a random closed set. From
Theorem 4 one can infer that there is a selection ξ ∈
S(Y ) which implies that τB

ξ (ω) = τB(ω) for all ω ∈ Ω.
Since Y (ω) ⊆ X(ω) for all ω ∈ Ω the map ξ is also a
selection of X.

For a set-valued process defined by (10) which fulfills
the conditions of Proposition 5 we can consider for
each α ∈ S(A) and a ∈ A the special entrance times

τB
α : ω 7→ inf{t ∈ [t0, t] : xt,α(ωA)(ωw) ∈ B},

τB
a : ωw 7→ inf{t ∈ [t0, t] : xt,a(ωw) ∈ B}.

Proposition 8. Let X : [t0, t] × Ω → K′(Rd) be a
set-valued process defined by (10) which fulfills the
conditions of Proposition 5. Then the following rela-
tions hold for all ω ∈ Ω

inf
a∈A(ωA)

τB
a (ωw) = inf

α∈S(A)
τB
α (ω) = inf

ξ∈S(X)
τB
ξ (ω)

sup
a∈A(ωA)

τB
a (ωw) = sup

α∈S(A)

τB
α (ω) ≤ sup

ξ∈S(X)

τB
ξ (ω).

Proof. Let ω ∈ Ω. Note that τB
α (ω) = τB

α(ωA)(ωw) for
all α ∈ S(A) and A(ωA) = {α(ωA) : α ∈ S(A)}. Then
in both lines the left equality is obvious. According
to Proposition 7 the second equality in the first line
is proved by showing

inf
a∈A(ωA)

τB
a (ωw) = τB(ω).

From the relations {x·,α : α ∈ S(A)} ⊆ S(X) and
τB
x·,α(ω) = τB

α (ω) we get the inequality in the second
line.

This means that for processes of the form (10) the
first entrance time τB can be attained by observing
the first entrance times of the special selections x·,a or
x·,α. This can be useful for the practical calculation
of τB . Unfortunately, there does not seem to be an
obvious condition under which the attainability of τB

holds.

5 Example

In the following we shall give an illuminating example
how the concept described in the foregoing sections
can be applied to problems from structural mechanics
where systems of ODEs of order one and two play an
important role.

For the sake of simplicity we consider the so-called
Langevin equation

dxt = −a1xtdt + a2dwt

with initial value x0 where wt is a one dimensional
Wiener process, a1 > 0 and a2 ∈ R (d = m = 1,
t0 = 0). Its unique solution is the so-called Ornstein-
Uhlenbeck process

xt = e−a1tx0 + a2

∫ t

0

e−a1(t−s)dws (18)
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which is a Gaussian stochastic process if and only if
x0 is normally distributed or constant. For modelling
the uncertainty of the parameters a1 and a2 we shall
use the following two finite random sets

A1 : ωA11 7→ [1, 3], PA1(ωA11) = 2/5
ωA12 7→ [2, 4], PA1(ωA12) = 3/5

A2 : ωA21 7→ [0.5, 1.5], PA2(ωA21) = 1/3
ωA22 7→ [1, 2], PA2(ωA22) = 2/3

which can be written in the shorter form

A1 = {([1, 3], 2/5), ([2, 4], 3/5)},
A2 = {([0.5, 1.5], 1/3), ([1, 2], 2/3)}.

From these random sets we construct the follow-
ing joint random set on a probability space ΩA =
{ωAi}1≤i≤4 with values in K′(R2)

A = {([1, 3]× [0.5, 1.5], 2/15), ([1, 3] × [1, 2], 4/15),
([2, 4]× [0.5, 1.5], 1/5), ([2, 4]× [1, 2], 2/5)}

by taking as focal elements the Cartesian products of
each focal element of the first with each focal element
of the second random set and multiplying the respec-
tive weights. This is a kind of independence which is
called random set independence (see [3, 8, 9]). Ac-
cording to Equation (10) we get a set-valued process
X with values in K′(R) which can be bounded by the
single-valued processes L and U defined by

Lt(ω) = inf
x∈Xt(ω)

x, Ut(ω) = sup
x∈Xt(ω)

x.

Furthermore, we consider the selection

α : ωA1 7→ (1.7, 1.1), PA(ωA1) = 2/15
ωA2 7→ (2.3, 1.5), PA(ωA2) = 4/15
ωA3 7→ (3.0, 0.9), PA(ωA3) = 1/5
ωA4 7→ (3.2, 1.4), PA(ωA4) = 2/5

and the corresponding process ξ defined by (9).

Figure 1 shows details of sample functions of the
boundary processes L and U (solid lines) with respect
to the same sample function of the Wiener process
and the choice ωA = ωA1. The dashed line shows the
corresponding sample function of ξ. The graphs were
simulated by using the Euler method (see for exam-
ple [14]) with 1000 time steps from t0 = 0 to t = 10,
x0 ≡ 0. The interval [1, 3] × [0.5, 1.5] was discretized
by a grid of 101× 101 points applying to each of the
grid points the Euler scheme and choosing in each
time step the greatest value for U and the smallest
value for L.

-1.5

-0.5

-1

0

0.5

1

1.5

2

2.5

0 1 2 30.5 1.5 2.5

Figure 1: Sample functions of X (boundaries in solid
lines) and ξ (dashed line).

Figure 2 shows upper and lower cumulative distribu-
tion functions

F t(x) = P (Xt ⊆ (−∞, x)) = P (Ut < x)
F t(x) = P (Xt ∩ (−∞, x) 6= ∅) = P (Lt < x)

of the random set Xt at time t = 10. They were
calculated by simulating 1000 sample functions of the
Wiener process and considering all four possible focal
elements of A. The dashed line shows the cumulative
distribution function Ft,α of the random variable ξt

(t = 10).

F t

F t

Ft,α

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-4 2-3 3-2 4-1 0

Figure 2: P-box of Xt (solid lines) and cumulative
distribution function of ξt (dashed line) (t = 10).

Finally, one can consider the first entrance times τB ,
τB
α and the first inclusion time τB for B = (0.5,∞).

The corresponding cumulative distribution functions
are displayed in Figure 3.
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Figure 3: CDFs of first entrance time τB and first
inclusion time τB (solid lines), CDF of first entrance
time τB

α (dashed line).

6 Summary and Conclusions

In this paper, we consider ordinary stochastic dif-
ferential equations whose coefficients depend on
parameters. Conditions are given under which
solution processes continuously depend on these
parameters. If this is the case then modelling
parameter uncertainty by using random compact sets
leads to set-valued processes with compact values
which are continuous with respect to the Hausdorff
metric. We show that the single-valued solutions of
the stochastic differential equation under scrutiny
obtained by choosing single parameter values are se-
lections which can be used to represent the set-valued
process. Furthermore, analogues of first entrance
times for set-valued processes are defined and their
attainability by selections is discussed. Finally, an
example is given to illustrate the theoretical concept.

As a topic for future research, we plan the investiga-
tion of further properties of the set-valued processes of
the form (10). Furthermore, this theoretical concept
will be applied to engineering problems (from struc-
tural mechanics) and it will be explored how first en-
trance and inclusion times (defined by (14), (15)) can
be calculated or simulated.
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Abstract

Coefficients of ergodicity are an important tool in
measuring convergence of Markov chains. We ex-
plore possibilities to generalise the concept to impre-
cise Markov chains. We find that this can be done
in at least two different ways, which both have in-
teresting implications in the study of convergence of
imprecise Markov chains. Thus we extend the exist-
ing definition of the uniform coefficient of ergodicity
and define a new so-called weak coefficient of ergod-
icity. The definition is based on the endowment of a
structure of a metric space to the class of imprecise
probabilities. We show that this is possible to do in
some different ways, which turn out to coincide.

Keywords. Markov chain, imprecise Markov chain,
coefficient of ergodicity, lower expectation, upper ex-
pectation

1 Introduction

Markov chains are a very popular mathematical
model used to describe various dynamical systems.
Their properties have been studied in great detail.
The modelling of a Markov chain requires estimat-
ing a relatively large number of parameters, which is
in many practical situations very difficult to achieve
precisely. Thus sometimes parameters are estimated
with high imprecision, and the theory provides virtu-
ally no better answer than regarding the most likely
estimates as precise, leading to seemingly precise re-
sults that do not reflect the lack of certainty in the
input data.

The rapid development of the methods of imprecise
probabilities has allowed the study of Markov chains
where the imprecision in input data can be incorpo-
rated in the results. A detailed study in this topic
has been presented by Hartfiel [8] who considered the
model where precise initial and transition probabil-
ity matrices are replaced by sets of possible initial

probabilities and transition matrices. This model is
known under the name Markov set-chains (see also
Hartfiel and Seneta [9]). He pays special attention to
the case where the sets can be described using proba-
bility intervals. This basically means that every prob-
ability of an elementary event is bounded by a lower
and upper bound. A similar model was studied from
the perspective of the theory of interval probabilities
by Kozine and Utkin [11]. The more general interval
probabilities based on the Weichselberger’s model [20]
were involved in the study of Markov chains by Škulj
[16, 17]. A more recent approach by de Cooman et al.
[2] further generalises the way imprecision is involved
into Markov chains, taking an approach based on up-
per expectation operators. This approach is known
from the study of the related field of Markov deci-
sion processes used by Satia and Lave [14], followed
by [7, 10, 12, 21].

In this paper we follow the approach of de Cooman
et al. The topic we study here is the convergence of
imprecise Markov chains. The most common result
in the classical theory is the Perron-Frobenius theo-
rem that implies unique convergence for the case of
regular Markov chains. In [17] the concept of regular-
ity was generalised to imprecise Markov chains and
a similar theorem was proved. However, it turns out
that weaker conditions than regularity are sufficient
to ensure convergence of Markov chains, both in pre-
cise and imprecise case. In both cases coefficients of
ergodicity prove to be very useful tools. They have
been widely used in the precise case (see e.g. Seneta
[15]), while Hartfiel [8] generalises them to imprecise
Markov chains.

Recently, de Cooman et al. give conditions for con-
vergence of imprecise Markov chains that are substan-
tially weaker than those used by Hartfiel [8], although
in the precise case they seem to be very similar. The
different generalisations of the conditions for conver-
gence suggest that there may be different possibilities
to define coefficients of ergodicity for the case of im-
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precise Markov chains. In this paper we show that
indeed a generalisation different from the one used by
Hartfiel is possible. We also believe, although we have
not yet explored this relation, that conditions implied
by our new generalised coefficients are closely related
to those found by de Cooman et al. The definition of
the new coefficient of ergodicity is based on endowing
the set of imprecise probabilities with a structure of
a metric space.

The paper has the following structure. In the next
section we review some theory on lower expectation
operators that form a basis for the model of imprecise
Markov chains. Further, in Section 3 we explore some
possibilities to endow the family of imprecise proba-
bilities with the structure of a metric space, and in
Section 4 we describe the model of imprecise Markov
chains that we use. Finally, in Section 5 we study the
generalisations of coefficients of ergodicity and com-
pare them to the existing generalisations.

2 Lower expectation operators

Let Ω be a finite set of states and let F be the set of
real-valued maps on Ω. Further let F1 denote the sub-
set of all non-negative real-valued maps with f(ω) ≤ 1
for every ω ∈ Ω. We denote by 1Ω, or sometimes just
1, the constant map on Ω such that f(ω) = 1 for
all ω ∈ Ω. For a pair of maps f and g such that
f(ω) ≥ g(ω) for every ω ∈ Ω we write f ≥ g, and if at
least one of the inequalities is strict we write f > g.

The set F can be equipped with the maximum norm
given by

||f ||∞ = max
ω∈Ω
|f(ω)|,

which induces the Chebyshev distance:

dc(f, g) = max
ω∈Ω
|f(ω)− g(ω)|.

We can write F1 = {f ∈ F | f ≥ 0, ||f ||∞ ≤ 1}.
We characterise a probability measure or a probability
p as a real valued map on Ω such that

∑

ω∈Ω

p(ω) = 1

and

p(ω) ≥ 0 for every ω ∈ Ω.

Therefore p(A) =
∑
ω∈A p(ω) for every A ⊆ Ω. Thus

every probability can be considered to belong to the
set F1. We also consider sets of probabilities, which
we usually assume to be closed and convex. Some-
times we assume an enumeration of elements of Ω and
for short denote, for instance, fi = f(ωi).

There is a one-to-one correspondence between closed
convex sets of probabilities and the corresponding
lower and upper expectation operators. We denote the
lower expectation operator of a closed convex set of
probabilities M by P and the upper expectation op-
erator by P . So for any f ∈ F we define:

P (f) = min
p∈M

Epf (1)

and

P (f) = max
p∈M

Epf. (2)

The min and max in the above equations can be writ-
ten because of the finiteness of the probability space
which assures that all closed sets of probabilities are
compact and therefore all minima and maxima exist.
In the case of the above correspondence between a set
of probabilities and an expectation operator we say
that M is a credal set of P and we may denote

M =M(P ).

Every lower expectation operator P has the following
properties. Let f, f1, f2 be arbitrary elements from A.
Then:

superadditivity: P (f1 + f2) ≥ P (f1) + P (f2);

non-negative homogeneity: P (λf) = λP (f) for
every λ ≥ 0;

constant additivity: P (f + µ1Ω) = P (f) + µ for
every real µ.

Further we note that any expectation operator is com-
pletely determined by its values on the space F1. To
see this take any map f ∈ F and define the corre-
sponding f̃ ∈ F1 with

f̃ =
f

2||f ||∞
+

1
2

1Ω,

if ||f ||∞ > 0, and f̃ = 1
21Ω otherwise. The value

ã = P (f̃) then determines

P (f) =
(
ã− 1

2

)
· 2||f ||∞,

as follows from non-negative homogeneity and con-
stant additivity.

3 Distance measures between
imprecise probabilities

The set of probability measures on a measurable space
(Ω,A) can be metricised using the following metric:

d(p, p′) = max
A∈A
|p(A)− p′(A)| = 1

2

∑

ω∈Ω

|p(ω)− p′(ω)|,

(3)
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for every pair of probability measures p and p′.

Given a metric space M and non-empty compact sub-
sets X,Y ⊂ M the Hausdorff metric (see e.g. [1]) is
defined as

dH(X,Y ) = max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}
.

(4)
This metric makes the set of non-empty compact sets
a metric space denoted by F (M). Moreover, if M
is a compact space, so is F (M). Note also that ev-
ery compact metric space is complete. The Hausdorff
distance can be applied to the family of compact sets
of probabilities using the distance function (3) in (4),
making it, in the case of a finite space, a complete
metric space.

Let P and P ′ be lower expectation operators. Then
we define the following distance between them:

d̃(P , P ′) = max
f∈F1

|P (f)− P ′(f)|. (5)

Because of the finiteness of Ω the max in the above
equation exists. If f is any non-negative real map

on Ω then we have that f̃ =
f

||f ||∞
∈ F1. Because

of positive homogeneity of lower expectation operator
we conclude that

|P 1(f)− P 2(f)| ≤ d̃(P 1, P 2)||f ||∞. (6)

The next proposition shows that the metrics (5) and
(3) coincide for probability measures. Therefore, from
now on we denote both distances with d.

Proposition 1. Let p and p′ be probability measures
on (Ω,A). Then we have that

max
f∈F1

|Epf − Ep′f | = d(p, p′).

Proof. Define the function

F (ω) =

{
1, p(ω) ≥ p′(ω);
0, otherwise.

For any real function f ∈ F1 we have

|Epf − Ep′f | =
∣∣∣∣∣
∑

i

(pi − p′i)fi
∣∣∣∣∣

≤
∣∣∣∣∣
∑

i

(pi − p′i)Fi
∣∣∣∣∣

= max
A⊂Ω
|p(A)− p′(A)|

= d(p, p′).

The following theorem shows that the metric (5) be-
tween lower expectation operators coincides with the
Hausdorff metric between their credal sets. (A similar
result can be found in [6], Lemma 6.7.)

Theorem 1. Let M1 and M2 be closed convex sets
of probabilities and let P 1 and P 2 be their lower ex-
pectation operators. Then we have that

d(P 1, P 2) = dH(M1,M2). (7)

Proof. First we show that for any probabilities p1 and
p2 we have that

max
f∈F1

|Ep1f − Ep2f | = max
f∈F1

Ep1f − Ep2f. (8)

This follows from the fact that f ∈ F1 implies 1Ω−f ∈
F1 and Ep1f − Ep2f = −(Ep1(1 − f) − Ep2(1 − f))
which implies

max
f∈F1

|Ep1f − Ep2f | = max
f∈F1

max{Ep1f − Ep2f,

Ep1(1− f)− Ep2(1− f)}
= max
f∈F1

Ep1f − Ep2f.

The definition of the Hausdorff distance and the equa-
tion (8) implies that

dH(M1,M2) = max
p1∈M1

min
p2∈M2

max
f∈F1

Ep1f − Ep2f (9)

or in the last expression the roles ofM1 andM2 can
be exchanged, and that case would be treated equally
because of symmetry. Now fix any p1 ∈ M1 and
consider the map:

Γ: M2 ×F1 → R

where

(p2, f) 7→ Ep1f − Ep2f.

Now the set M2 is compact by definition, and the
mapping p2 7→ Γ(p2, f) is continuous and linear,
therefore also convex, for any fixed f ∈ F1. Fur-
thermore for a fixed p2 the mapping f 7→ Γ(p2, f) is
also linear, and therefore concave. Now we can use
the minimax theorem (see [5]: Theorem 2) to obtain:

min
p2∈M2

max
f∈F1

Γ(p2, f) = max
f∈F1

min
p2∈M2

Γ(p2, f).

That is

min
p2∈M2

max
f∈F1

Ep1f − Ep2f = max
f∈F1

min
p2∈M2

Ep1f − Ep2f.
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Using the above equality we obtain:

max
p1∈M1

min
p2∈M2

d(p1, p2)

= max
p1∈M1

min
p2∈M2

max
f∈F1

Ep1f − Ep2f

= max
p1∈M1

max
f∈F1

min
p2∈M2

Ep1f − Ep2f

= max
f∈F1

max
p1∈M1

min
p2∈M2

Ep1f − Ep2f

= max
f∈F1

P 1(f)− P 2(f)

= max
f∈F1

P 1(1− f)− P 2(1− f)

= max
f∈F1

P 2(f)− P 1(f).

Finally, using this and the symmetry betweenM1 and
M2, we get

dH(M1,M2) = max{ max
p1∈M1

min
p2∈M2

d(p1, p2),

max
p2∈M2

min
p1∈M1

d(p1, p2)}

= max
f∈F1
{P 2(f)− P 1(f), P 1(f)− P 2(f)}

= max
f∈F1

|P 1(f)− P 2(f)|

= d(P 1, P 2),

which completes the proof.

We will also need the maximal distance between prob-
ability measures belonging to a pair of credal setsM1

and M2 with the corresponding lower and upper ex-
pectation operators P 1, P 1 and P 2, P 2 respectively.
Using Proposition 1 we have that

max
p1∈M1
p2∈M2

d(p1, p2) = max
p1∈M1
p2∈M2

max
f∈F1

|Ep1f − Ep2f |

= max
f∈F1

max
p1∈M1
p2∈M2

|Ep1f − Ep2f |

= max
f∈F1

max{P 1(f)− P 2(f),

P 2(f)− P 1(f)}.
However, instead of taking the maxima over the whole
F1 in the above equation it would be enough to only
consider characteristic functions of subsets of Ω, as
follows from Proposition 1. Therefore

max
p1∈M1
p2∈M2

d(p1, p2) = max
A⊂Ω

max{P 1(1A)− P 2(1A),

P 2(1A)− P 1(1A)}.
It follows that for any pair of lower and upper expec-
tation operators P 1 and P 2 we have that

max
f∈F1
{P 2(f)−P 1(f)} = max

A⊂Ω
{P 2(1A)−P 1(1A)}.

(10)

We will also need some results on convergence of
lower expectation operators. We study the conver-
gence in the metric (5). In proving the convergence
results we will use the result that any decreasing se-
quence of non-empty compact sets is non-empty (see
[4]: Lemma I.5.6).

Proposition 2. Let {Pn}n∈N be an increasing se-
quence of lower expectation operators and {Mn}n∈N
the sequence of the corresponding credal sets. Then
the sequence {Mn}n∈N is decreasing with respect to
set inclusion and the limit

P∞ = lim
n→∞

Pn

exists and
M(P∞) =

⋂

n∈N
Mn.

Moreover, the above credal set is non-empty.

Proof. For every f ∈ F1 we have that the sequence
{Pn(f)} is an increasing sequence bounded from
above by 1 and is therefore convergent. Now take any
p ∈ ⋂n∈NMn. Then by definition, for every f ∈ F1

we have that Epf ≥ P∞(f), so
⋂
n∈NMn ⊆M(P∞).

To see the converse inclusion take any probability p
such that Epf ≥ P∞(f) ≥ Pn for every n ∈ N.
Therefore p ∈ Mn for every n ∈ N and every
f ∈ F1, which implies that p ∈ ⋂n∈NMn. Thus,
M(P∞) ⊆ ⋂n∈NMn. As follows from the above re-
mark, the set

⋂
n∈NMn is non-empty.

Proposition 3. Let {Pn}n∈N be any convergent se-
quence of lower expectation operators and {Mn}n∈N
the sequence of the corresponding credal sets. Then
the set

M∞ =
⋂

n∈N
co
( ⋃

m≥n
Mm

)
,

where co denotes the convex hull, is the credal
set of the limit lower expectation operator P∞ =
limn→∞ Pn. Moreover, the setM∞ is non-empty and
therefore the lower expectation operator P∞ is well
defined.

Proof. First we define the following sequence of lower
expectation operators:

P̃n = inf
m≥n

Pm.

Clearly, the convergence of the sequence {Pn} implies
the convergence of {P̃n} with the same limit. We only
need to see that the credal set of P̃n is co(

⋃
m≥nMm).

To see this take any convergent sequence {pr} in⋃
m≥nMm. For every f ∈ F we have that Epr

f ≥
P̃n(f) and therefore limr→∞Epr

f = Elimr→∞ pr
f ≥
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P̃n(f), and thus limr→∞ pr belongs to the credal set
of P̃n(f). Further, given any f ∈ F1 there is some
pr ∈ Mm, for m ≥ n so that Epr

f ≤ P̃n(f) + 1
r .

Since the set of all probabilities on a finite set is com-
pact, the sequence {pr} has a convergent subsequence
converging to a probability p and Epf = P̃n(f).
Thus, P̃n is the lower expectation operator of the set⋃
m≥nMm which implies that its closure is the credal

set of P̃n.

To finish the proof we apply Proposition 2 to the in-
creasing sequence {P̃n} and the corresponding credal
sets co(

⋃
m≥nMn).

Corollary 1. The set of all lower expectation opera-
tors is complete in the metric (5).

4 Imprecise Markov chains

One of the most natural ways to involve imprecision in
a probabilistic model is to allow a set of possible prob-
ability distributions instead of a single one. In the
case of Markov chains such sets can be allowed in place
of transition probabilities as well as initial probability
distributions. Additionally, we usually assume such
sets are closed and convex. This assumption is par-
ticularly useful because, as described in Section 2, the
sets can be equivalently described using lower or up-
per expectation operators. There are of course many
models that allow description of sets of probabilities,
such as interval probabilities (see e.g. [20]) or lower
and upper previsions (see e.g. [18, 19]).

The most basic form used in most of the approaches
taken until now is to put constraints, usually in the
form of intervals, on the probabilities belonging to
the elementary sets (see [8], [11]). The imprecision
concerning the initial distribution is thus presented
through the intervals [pi, qi] which are supposed to
contain the unknown initial probability P (X0 = i).
Similarly, the probabilities of transition from the state
i to j are given in the form of intervals [pij , qij ] sup-
posed to contain the unknown true transition prob-
ability P (Xn+1 = j|Xn = i). Even though the true
probabilities are unknown, it is certain that the sum
of all probabilities is 1. Thus the values within the in-
tervals must be taken so that they sum to 1, or in the
case of transition interval matrices, all rows must sum
to 1. An additional assumption that is usually made
about the intervals is that all values within the inter-
val are reachable or, in particular, that the interval
bounds are reachable. In the common terminology
of imprecise probabilities this requirement is named
coherence. To each set of intervals, the set of prob-
abilities assuming their values within those intervals
can be assigned.

One of the crucial differences between precise and im-
precise probabilities is that a precise probability can
be fully determined by far less information than an
imprecise probability. Thus to determine any pre-
cise probability, only its values on elementary sets are
needed to be found, while the sets of probabilities
able to be represented via simple intervals described
above is fairly limited. (Many examples can be found
e.g. in [20], [19], [18].) Another difference compared
to the classical model is that transition probabilities
that govern transitions of a Markov chain in the im-
precise case may change in time. Thus, we are dealing
with possibly non-homogeneous chains, which conse-
quently require considering non-homogeneous matrix
products.

Now we introduce the terminology used to describe
imprecise Markov chains. We will assume a non-
empty set Ω whose elements are called states. For
simplicity we will assume they are the consecutive in-
tegers 1, . . . ,m, since in the basic model their val-
ues have no special consequences. We will follow the
approach similar to the one taken by de Cooman et
al. [2] to describe the sets of probabilities using the
corresponding expectation operators, usually this will
mean lower expectation operators.

We will thus assume a set M0 of initial probability
distributions and let P 0 be its lower expectation oper-
ator (see (1)). Further, we assume a set of transition
matrices P, whose rows are separately specified, i.e.
for any two transition matrices p and p′ with rows pi
and p′i replacing the ith row of p with p′i results in a
matrix that still belongs to P. By adopting this prop-
erty we can associate row sets of distributions Pi to P
so that any independent choice of rows from the row
sets gives a transition matrix in P. If additionally we
assume that row sets are closed and convex, we have
the following important property.

Lemma 1. Let P be a convex set of transition ma-
trices with separtely specified rows and let M be a
convex set of probabilities. Then the set of probability
distributions at the next step M · P is a convex set.

We slightly modify the proof of [8]: Lemma 2.5.

Proof. We prove the lemma by showing that given the
probabilities q and q′ ∈ M and transition matrices p
and p′ ∈ P then, whenever α, β ≥ 0 and α+ β = 1,

(αq · p+ βq′ · p′) = (αq + βq′)r (11)

with r ∈ P.
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Take j ∈ Ω. We have

(αq · p+ βq′ · p′)j = α

m∑

i=1

qipij + β

m∑

i=1

q′ip
′
ij

=
m∑

i=1

(αqipij + βq′ip
′
ij)

=
m∑

i=1

(αqi + βq′i)
(

αqi
αqi + βq′i

pij +
βq′i

αqi + βq′i
p′ij

)
.

Thus taking r with rij = αqi

αqi+βq′i
pij + βq′i

αqi+βq′i
p′ij sat-

isfies (11). Notice that ith row of r is a convex com-
bination of some elements of Pi and therefore itself
a member of Pi too. Now, because rows are sepa-
rately specified the resulting matrix is also a member
of P.

To each row set of probabilities we associate the lower
expectation operator T i. Let T then be the matrix
lower expectation operator whose ith row is T i. We
will say that the set P is the credal set of T .

Let X0, X1, . . . , Xn, . . . be a sequence of random vari-
ables assuming the values in Ω. According to the
given assumptions we have

P (X0 = i) = q0
i ,

where q0 ∈ M0. The role of the transition matrices
is given by

P (Xn+1 = j|Xn = i) = pnij ,

where pn ∈ P.

A basic feature of the theory of Markov chains is the
ability to calculate the probability of being in some
state j at time n given an initial probability. Of
course, since the initial and transition probabilities
are imprecise, the answer will also be given in the
form of an imprecise probability, that is, in the form
of a set of probabilities. Previous works such as Hart-
fiel’s [8] provide the general answer to this question
based on the classical theory. The set of possible prob-
ability distributions at step n is equal to the set of all
possible initial distributions multiplied by all possi-
ble sequences of transition matrices. Let Mn denote
the set of possible probability distributions at step n
given the initial distribution M0. Then we have

Mn = {q · p1 · . . . · pn | q ∈M0, pi ∈ P
for every i = 1, . . . , n} =Mn−1 · P. (12)

It follows from Lemma 1 that in the case where the set
of transition matrices P has closed convex separately
specified row sets, everyMn is also a closed convex set

of probabilities. Therefore, they can be equivalently
represented using lower expectation operators. The
lower expectation operator corresponding to the set
Mn is denoted by Pn.

To calculate the values of Pn on real functions on Ω
we follow the approach proposed in [2]. They first
calculate the nth power of the transition operator T
using so-called backwards recursion. This method can
be described in the following way. Let f be any real
valued map on Ω. Every expectation operator assigns
to it a real number corresponding to the lower ex-
pectation. In particular, every row lower expectation
operator T i assigns to it the value T i(f). A transition
operator T thus assign to every f a vector of values

T (f) =




T 1(f)
T 2(f)

...
Tm(f)


 . (13)

Now T (f) is another real valued function on Ω to
which a new instance of T can be applied to obtain
T 2(f) and so on. Finally, applying P 0 to Tn(f) gives
exactly the lower expectation of the lower expectation
operator Pn corresponding to the set Mn. For the
proof see [2].

Once probabilities of states on different steps are cal-
culated, we are often interested in the limiting be-
haviour of these probabilities. Thus, the question is
what can be said about the probability P (Xn = i) for
a large n and how does it depend on the initial dis-
tribution? In the classical theory, Perron-Frobenius
theorem assures convergence for the class of regu-
lar Markov chains (a Markov chain with the transi-
tion matrix p is regular if for some positive integer r
the power pr has only strictly positive entries). The
Perron-Frobenius theorem states that the probabili-
ties p(n)

i = P (Xn = i) converge to some unique limit
probabilities independently on the initial distribution.

Regularity is therefore a sufficient condition for
unique convergence of a Markov chain, but not also
a necessary one. This is true already in the case of
precise Markov chains, where a more general criteria
are derived using coefficients of ergodicity that besides
telling whether a chain is convergent also measure the
rate of convergence (see e.g. Seneta [15]). Hartfiel [8]
then applies a generalised coefficient of ergodicity to
study the convergence of Markov set-chains. Recently,
de Cooman et al. [2] find that the conditions applied
by Hartfiel are in general too strong to assure the con-
vergence of imprecise Markov chains. They define a
class of regularly absorbing imprecise Markov chains,
based on the accessibility between states, for which
they show unique convergence.
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5 Coefficients of ergodicity

Coefficients of ergodicity or contraction coefficients
measure the rate of convergence of Markov chains.
Seneta in his paper [15] defines a general coefficient
of ergodicity for a stochastic matrix p with no zero
columns to be

τ(p) = sup
x,y

d(xp, yp)
d(x, y)

where d is some metric on the set of vectors with
positive coordinates and whose components sum to 1
and x, y are such vectors. The value of τ(p) is between
0 and 1 and further τ has the following properties:

(i) τ(p1p2) ≤ τ(p1)τ(p2) for every pair of stochastic
matrices with no zero columns p1 and p2;

(ii) τ(p) = 0 whenever rank of p is 1 i.e. p = 1v for
some vector v.

Depending on the metrics, different coefficients of er-
godicity are used. In this paper we are concerned with
the coefficient generated by the metric (3). This coef-
ficient was introduced by Dobrushin [3] and its direct
evaluation is derived by Paz [13]:

τ(p) =
1
2

max
i,j

m∑

s=1

|pis − pjs|.

In view of (3), the above can be stated as

τ(p) = max
i,j

d(pi, pj). (14)

where pi and pj denote the ith and jth row of p re-
spectively.

For the case of imprecise Markov chains, Hartfiel [8]
extends the concept of a coefficient of ergodicity to
Markov chains where sets of transition probabilities
are considered. For a set of transition matrices P he
defines the uniform coefficient of ergodicity as

τ(P) = sup
p∈P

τ(p).

If P is an interval [P,Q], i.e. P = {p | p is a stochastic
matrix such that P ≤ p ≤ Q}, then he finds that

τ(P) ≤ 1
2

max
i,j

m∑

k=1

max{|qik − pjk|, |qjk − pik|}.

where pik and qik are the components of P and Q
respectively.

In our setting of lower and upper expectation opera-
tors, the calculation of the uniform coefficient of er-
godicity is given by the following proposition.

Proposition 4. Let P be a set of transition matrices
and let T and T be its lower and upper expectation
matrices. Then we have that

τ(P) = max
i,j

max
f∈F1

T i(f)− T j(f)

= max
i,j

max
A⊂Ω

T i(1A)− T j(1A).

Proof. The second equality follows from (10). Let p ∈
P be arbitrary transition matrix. Then its ith and jth
row are arbitrary probability distributions belonging
to the credal sets of ith and jth row of P. We have
that

τ(P) = max
p∈P

τ(p)

= max
i,j

max
pi∈Mi
pj∈Mj

d(pi, pj)

= max
i,j

max
A⊂Ω

max{T i(1A)− T j(1A),

T j(1A)− T i(1A)}
= max

i,j
max
A⊂Ω

T i(1A)− T j(1A),

as required.

Thus, we may define τ(T ) = τ(M(T )).

The uniform coefficient of ergodicity can be used as a
contraction measure for a set of transition matrices.
The following theorem holds ([8]: Theorem 3.3):

Theorem 2. LetM1 andM2 be non-empty compact
sets of probabilities. Then

dH(M1 · P,M2 · P) ≤ τ(P)dH(M1,M2).

A stochastic matrix p whose coefficient of ergodicity
τ(p) is strictly smaller than 1 is called scrambling (see
[15]). Further if P is a set of transition matrices such
that τ(p1 · p2 · · · pr) < 1 for any matrices pi ∈ P then
such a set is called product scrambling (see [8]), and
r is then called its scrambling integer. Thus we have
that τ(Pr) < 1. Something very similar can be said
about lower expectation matrices. We will say that
a lower expectation matrix T is scrambling whenever
τ(T ) < 1 and if instead only τ(T r) < 1 we will say
that it is product scrambling with scrambling integer
r.

Theorem 2 implies the following more general corol-
lary ([8]: Theorem 3.4):

Corollary 2. Let P be be product scrambling with
scrambling integer r and letM0 be a non-empty com-
pact set of probabilities. Then, for any positive integer
h,

dH(M0Ph,M∞) ≤ Kβh
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where K = τ(Pr)−1dH(M0,M∞) and β = τ(Pr) 1
r <

1 and M∞ is the unique compact set of probabilities
such that

M∞P =M∞.
Thus,

lim
h→∞

M0Ph =M∞.

Theorem 2 implies the convergence of a Markov set-
chain in the Hausdorff metric. Moreover, if τ(P) < 1
for a set of transition matrices then given any initial
probability distribution q0 and a sequence of tran-
sition matrices {pi}i∈N such that every pi ∈ P we
have that the sequence qn = q0p1 · · · pn converges
to some p∞. This is a consequence of the fact that
τ(p1 · · · pn)→ 0 as n tends to infinity. Moreover, since
clearly τ(P ′) ≤ τ(P) for every P ′ ⊆ P, it follows that
given a convergent Markov chain with the set of tran-
sition probabilities P then a Markov chain with the
set of transition probabilities P ′ is also convergent.

De Cooman et al. [2] show that it not necessary to
require that every possible transition matrix is a con-
traction, but instead, what is needed is only that the
corresponding upper (or lower) expectations are be-
coming more and more similar. As a simple demon-
stration consider the following example.
Example 1. Let a set of transition matrices on the
set Ω = {1, 2} be given by the following lower and
upper transition matrix

P =
(

0 0
0 0

)
and Q =

(
1 1
1 1

)
.

Clearly this set contains the matrix
(

0 1
1 0

)

which is not contractive. However, given any initial
set of distributions the Markov chain with the above
set of transition matrices converges to the set of all
probability distributions on Ω.

De Cooman et al. further find sufficient conditions
for unique convergence by studying the accessibility
relation between states. Our aim here is to find a
coefficient of ergodicity that would describe this type
of convergence for imprecise Markov chains. We im-
plement the following idea. Given a lower transition
matrix T , the backwards recursion allows the calcula-
tion of its powers Tn for every positive integer n. In
the case of a precise transition matrix, the rows of its
consequent powers get more and more similar, which
is measured by the coefficient of ergodicity (14). In
the case of a lower expectation matrix, the same effect
will be achieved by measuring the distances between
the row lower expectation operators corresponding to
the powers of T .

Definition 1. Let T be a transition lower expecta-
tion matrix. Then we define the weak coefficient of
ergodicity as

ρ(T ) = max
f∈F1
i,j

|T i(f)− T j(f)|,

where T i and T j are ith and jth row lower expectation
operators respectively.

The following proposition is an immediate conse-
quence of the definitions.

Proposition 5. Let T be a transition lower expecta-
tion matrix with rows T i. Then:

ρ(T ) = max
i,j

d(T i, T j).

Proposition 6. Let P 1 and P 2 be lower expectation
operators and T a transition lower expectation matrix.
Then we have that

d(P 1T , P 2T ) ≤ ρ(T )d(P 1, P 2).

Proof. Denote cf = T (f) (see (13)) and let cf and
cf be its minimal and maximal element respectively.
Further let P̃1 = P 1T and P̃2 = P 2T . Then using
constant additivity and (6) we obtain

|P̃1(f)− P̃2(f)| = |P1(cf )− P2(cf )|
= |P 1((cf − cf ) + cf )

− P 2((cf − cf ) + cf )|
≤ d(P 1, P 2)||cf − cf ||∞
= d(P 1, P 2)(cf − cf )

≤ d(P 1, P 2)ρ(T )

Corollary 3. Let R and S be any transition lower
expectation matrices. Then:

ρ(RS) ≤ ρ(R)ρ(S).

Proof. Denote T = RS and let T i and T j be the ith
and jth row lower expectation operators. We have
that, for instance,

T i(f) = RiS(f).

Proposition 6 then yields

|T i(f)− T j(f)| = |RiS(f), RjS(f)|
≤ d(Ri, Rj)ρ(S)

≤ ρ(R)ρ(S),

as required.
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The next corollary is now immediate.

Corollary 4. For any lower expectation operator T
we have that

ρ(Tn) ≤ ρ(T )n.

Thus, it may happen that even if ρ(T ) = 1 it may be
that ρ(Tn) < 1.

The following proposition shows that the credal set
of a contractive lower expectation operator contains
at least one contractive transition matrix. The con-
verse does not hold, as demonstrated by the example
following the proposition.

Proposition 7. Let T be a transition lower expec-
tation matrix such that ρ(T ) < 1. Then there ex-
ists a precise transition matrix p ∈ M(T ) such that
τ(p) < 1.

Proof. Denote ρ := ρ(T ). Then for any pair of indices
i and j we have d(T i, T j) ≤ ρ. Coherence of T implies
that for every set A ⊂ Ω we have a probability mea-
sure pA such that pAi (A) = T (1A) for every 1 ≤ i ≤ m.
Then |pAi (A)− pAj (A)| < 1 and |pAi (A′)− pAj (A′)| ≤ 1
for any A′ ⊂ Ω. Let λA > 0 for every A ⊂ Ω and
let
∑
A⊂Ω λA = 1. Let p =

∑
A⊂Ω λAp

A. Clearly
then pi(A) − pj(A) < 1 for every A ⊂ Ω and thus
τ(p) < 1.

Example 2. Let the lower expectation operator T =(
1 0
0 0

)
be given. Thus the credal set of T contains all

possible stochastic matrices with the first row equal
to (1, 0). Clearly, the weak coefficient of ergodicity
of T = Tn, for every n ∈ N, is equal to 1; however,
the credal set contains, for instance, the matrix p =(

1 0
0.5 0.5

)
, whose coefficient of ergodicity is equal to

0.5.

Proposition 8. Let T be a transition lower expecta-
tion matrix such that ρ(T ) < 1. Then there exists a
lower expectation operator P∞ satisfying the property:

P∞T = P∞. (15)

We will call a lower expectation operator satisfying
the property (15) an invariant lower expectation op-
erator for a transition lower expectation matrix T .

Proof. Consider the sequence Pn = P 0T
n. We will

show that it is a Cauchy sequence in the metric (5).
To see this, take some positive integers m and n with
m > n. Using the fact that d(P , P ′) ≤ 1 for any pair

of expectation operators, we have that

d(Pn, Pm) = d(P 0T
n, P 0T

m)

= d(P 0T
n, P 0T

m−nTn)

≤ d(P 0, P 0T
m−n)ρ(Tn)

≤ ρ(Tn)
≤ ρ(T )n,

and since ρ(T ) < 1 it follows that, with n large
enough, this distance can be arbitrarily small. Be-
cause of the completeness of the set of lower expecta-
tion operators (Corollary (1)), the sequence converges
to some lower expectation operator P∞.

Clearly the invariant lower operators of T is the same
as the one for Tn, and thus the above result also holds
for a transition lower expectation matrix T such that
ρ(Tn) < 1.
Theorem 3. Let T be a transition lower expectation
matrix with ρ(T ) < 1 and P 0 an initial lower expecta-
tion operator and P∞ the invariant lower expectation
operator for T . Then

d(P 0T
n, P∞) ≤ d(P 0, P∞)ρ(T )n.

Therefore,
lim
n→∞

P 0T
n = P∞

independently of P 0, and P∞ is thus the unique in-
variant lower expectation operator for T .

Proof. Using (15) and Proposition 6 and Corollary 4
we obtain

d(P 0T
n, P∞) = d(P 0T

n, P∞T
n)

≤ d(P 0, P∞)ρ(T )n.

Now since ρ(T ) < 1 the right hand side converges to
0.

A corollary analogous to Corollary 2 of the last the-
orem can also be stated. We extend the notion of
scrambling lower expectation matrices to the case
where the weak coefficient of ergodicity is used. We
will say a lower expectation matrix T is weakly scram-
bling if ρ(T ) < 1 and if ρ(T ) = 1 but ρ(T r) < 1
for some positive integer r that it is weakly product
scrambling with scrambling integer r.
Corollary 5. Let T be weakly product scrambling with
scrambling integer r and let P 0 be a lower expectation
operator. Then, for any positive integer h,

d(P 0T
h, P∞) ≤ Kβh

where K = ρ(T r)−1d(P 0, P∞) and β = ρ(T r)
1
r .

Thus,
lim
k→∞

P 0T
k = P∞.
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The type of convergence measured by the weak coef-
ficient of ergodicity is clearly closely related to that
described in [2]. This suggests that regularly absorb-
ing and weakly scrambling lower expectation matrices
are closely related, if not identical. One of the direc-
tions in our future research is therefore to clarify this
relation.
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Abstract

This paper reports an empirical study of buying and
selling prices for three kinds of gambles: Risky (with
known probabilities), ambiguous (with lower and up-
per probabilities), and conflictive (with disagreeing
probability assessments). The latter two types of
gambles were constructed so that the variances in
their probabilities were approximately equal, thereby
ensuring that uncertainty type was not confounded
with variance. Participants devaluated both ambigu-
ous and conflictive gambles relative to risky gambles
with equivalent expected utilities, but the ambigu-
ous and conflictive valuation means did not signifi-
cantly differ. Moreover, the endowment effect (the
gap between buying and selling prices) was exagger-
ated for these two kinds of gambles in comparison
with risky gambles. Conflictive gambles also were
found to be devalued less than ambiguous gambles,
relative to their risky counterparts. Several self-report
measures of attitudes towards uncertainty and risk
were included as potential predictors of pricing. The
most effective predictors were a measure of instru-
mental risk orientation and a functional impulsivity
scale. Instrumental risk positively predicted valua-
tion of ambiguous and conflictive gambles but not of
risky gambles. Functional impulsivity positively pre-
dicted valuation of risky gambles but neither of the
other two kinds. No individual differences measures
predicted relative devaluation.

Keywords. Ambiguity, conflict, prices, risk aversion,
buying, selling.

1 Introduction

1.1 Preferences for Risk, Ambiguity and
Conflict

The subject of this paper is the valuation of uncer-
tain prospects when the uncertainty is not limited
to known probabilities. We investigate two kinds of

imprecise probabilities. Numerous studies since Ells-
berg’s [1] classic paper have demonstrated a general
tendency for people to prefer risky gambles, i.e., with
precise probabilities to ambiguous gambles, i.e., whose
probabilities are imprecise in the sense of having a
lower and upper bound. There have been only a few
studies examining the effect of conflicting information
[2], [3], and these have indicated that people prefer
agreeing but ambiguous sources of information to con-
flictive but precise sources. To our awareness only
one study has investigated conflictive gambles, i.e.,
gambles in which there are conflicting assessments of
outcome probabilities [3].

Smithson [2] has argued that people treat ambigu-
ity and conflict as distinct kinds of uncertainty in
the sense that attitudes towards one may not cor-
relate with attitudes toward the other, and his ex-
periments and their replication by Cabantous [3] sug-
gest that people prefer ambiguity to conflict. Sev-
eral researchers also have investigated whether atti-
tudes towards risk and ambiguity are correlated. An
early study by Curley et al. [4] found no significant
correlation, but later more nuanced investigations by
Lauiola and his colleagues did find a positive corre-
lation [5],[6]. Only one study to our knowledge has
investigated the correlation between ambiguity and
conflict attitudes [7], and found no significant corre-
lation.

Nearly all of the studies in this vein have been based
on choice tasks. However, a few have examined pric-
ing, mainly regarding insurance premiums. There is
a well-known reluctance for insurers to offer insur-
ance on risks whose probabilities are unknown. When
subjective probabilities are used by insurers such as
Lloyds of London to estimate such risks, they regard
those probabilities as ambiguous and charge higher
premiums than they would if the probabilities were
based on relative frequency data. The earliest em-
pirical studies to test this effect found that insurers
demand higher premiums under ambiguity than un-
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der risk [8], and clients are willing to pay more for
insurance under ambiguity than under risk [9]. The
only study to include conflict [3] found that insur-
ers demand higher premiums under conflict than un-
der ambiguity. These findings suggest that ambigu-
ous and conflictive gambles are devalued relative to
expected-utility equivalent risky gambles, and conflic-
tive gambles may be viewed as having less value than
ambiguous ones.

There are two ways preferences among gambles may
be inferred from buying and selling prices. The first
is simply through the prices themselves, i.e., valua-
tion. The second is by comparing the price assigned
to a gamble against an appropriate subjective bench-
mark, i.e., relative valuation. Such comparisons op-
erationalize uncertainty aversion or seeking in terms
of prices. The benchmark in this study was the in-
dividual’s price for a risky gamble with an expected
utility equal to that of the ambiguous or conflictive
gamble under comparison. In turn, the comparison
was operationalized by the log of the ratio of the two
prices.

On the basis of the literature reviewed thus far, we
propose the following hypotheses.
Hypothesis 1: For mid-range probabilities, both val-
uation and relative valuation will be lowest for con-
flictive gambles, second lowest for ambiguous gambles,
and highest for risky gambles.
Hypothesis 2: Valuation and relative valuation of
risky and ambiguous gambles will be positively corre-
lated, but neither will be correlated with valuation of
conflictive gambles.

To our knowledge, none of the aforementioned stud-
ies investigated the effect of ambiguity or conflict on
the difference between buying and selling prices. In
a well-known violation of subjective expected utility
known as the endowment effect [10], people tend to
offer higher selling than buying prices for risky gam-
bles. The standard betting interpretation of lower
and upper probabilities also stipulates a higher selling
than buying price for ambiguous gambles, but there
appears to be no similar standard interpretation for
conflictive gambles. Moreover, although it is psycho-
logically plausible that an endowment effect should
be greater for ambiguous than for risky gambles, it is
not clear how that effect for conflictive gambles would
compare. Thus, we posit
Hypothesis 3: For mid-range probabilities, the dif-
ference between buying and selling prices will be
higher for ambiguous and conflictive gambles than for
risky gambles.

1.2 Individual Differences

Research on risk and ambiguity attitudes has paid
only limited attention to individual differences, de-
spite obvious variability among individual responses
to risk or ambiguity. By far the most widely docu-
mented individual difference is due to gender: Men
are more risk-seeking than women [11]. Nevertheless,
several psychological traits have emerged in the liter-
ature as potential predictors of attitudes toward risk
and ambiguity.

Research into dispositional components of risk atti-
tudes and risky behaviour has revealed several key
relationships. Dispositional traits such as Impulsiv-
ity, Locus of Control, and Sensation Seeking have
been linked as predictors of risk preferences and risky
behaviour in activities ranging from simple games of
chance to financial risks, stimulatory hobbies such as
rock climbing [12]. In the Big Five personality frame-
work, openness has most commonly been linked with
risk-seeking. Our study has included the ten-item-
personality inventory (TIPI), a short version of the
five-factor model [13]. Finally, Zaleskiewicz [14] de-
veloped a two-factor model of risk-taking disposition,
with stimulating risk correlating with risk-taking in
domains such as recreation, and instrumental risk cor-
relating with risk-taking in the financial domain. We
have included his scales in our study.

We propose the following hypothesis involving the
measures described above.
Hypothesis 4: Openness and the stimulating risk
scales will be positively correlated with valuation and
relative valuation for risky gambles. We leave as ex-
ploratory matters the question of whether openness,
stimulating risk, or instrumental risk will be corre-
lated with valuation or relative valuation for the am-
biguous and conflictive gambles.

Likewise, a few researchers have posited individual
difference predictors of attitudes towards ambiguity.
In Lauriola and Levin’s first paper [5], interviews with
participants showing marked ambiguity seeking sug-
gested that they preferred the ambiguous to the risky
gamble because they were curious. Huettel et al. [15]
found that a measure of impulsivity predicted ambi-
guity seeking in their fMRI study. These findings sug-
gest including measures of analogs to curiosity and im-
pulsivity. For the first, we have incorporated two re-
cently developed measures based on the theory of un-
certainty orientation [16], namely need for discovery
and need for certainty [17]. Need for discovery mea-
sures the extent to which people actively seek novel
information, and need for certainty measures the dis-
position to bolster and maintain current beliefs. For
the second, we have included Dickman’s [18] measures
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of functional and dysfunctional impulsivity.

Finally, we propose the following hypothesis.
Hypothesis 5: Instrumental risk, need for discov-
ery and functional impulsivity will be positively cor-
related and need for certainty negatively correlated
with valuation and relative valuation for ambiguous
and conflictive gambles.

2 Method

2.1 Participants, Design and Procedures

There were 88 participants with valid responses (58
females and 30 males), ranging in age from 18 to 57
(M = 26.9, SD = 7.5). A majority (78) of participants
were friends and colleagues of the second author and
were recruited via email. All participants had little
background in probability or mathematics generally.
The remaining participants were first year Australian
National University psychology students participating
for partial course credit. Participants gave informed
consent, and were notified prior to commencement
that their participation was voluntary and were given
online feedback on the study’s aims upon completion
of the survey.

The study was administered via an online survey with
two components, the second of which contained ex-
perimental stimuli. In the experimental component
described below, participants were presented with 11
Card Game gambles. They were randomly assigned
to one of two conditions: Vendor, where they were
asked for a minimum selling price for each gamble,
or Purchaser, where they were asked for a maximum
buying price for each gamble.

2.2 Materials and Tasks

The first section of the study consisted of the individ-
ual differences measures. These included the need for
discovery and need for certainty scales, the stimulat-
ing and instrumental risk inventories, functional and
dysfunctional impulsivity scales, and the TIPI.

The second major component of the study consisted
of three different tasks, designed to elicit uncertainty
preferences. These tasks were extensively pilot-tested
before the experiment was launched online. We re-
strict attention in this paper to the first task, the Card
Game. The Card Game is comparable to Ellsberg’s
(1961) original two-colour task. It required partici-
pants to consider a gambling game in which players
select a single card from a deck of 100. The deck
consists of Old Maid and Go Fish cards in varying
proportions. A player wins 10 dollars if they select
a Go Fish card, and nothing if they select an Old

Maid card. Participants were asked to consider 11
such games, and rate their preferences for each by ei-
ther specifying the most they would be willing to pay
to play the game (Pay to Play endowment condition)
or the lowest price for which they would sell a free
ticket to play (Selling Price endowment condition).

In the first five scenarios, the full contents of the deck
were specified, and risk was manipulated by varying
the number of Go Fish (winning) cards in the deck.
The proportions of winning cards in the deck for these
scenarios were .25, .4, .5, .6, and .75. The proportions
were varied to enable estimation of the effect of proba-
bility on each participant’s valuations of the gambles.

The next three scenarios contained ambiguous infor-
mation about the deck. The probability intervals were
[.3, .7] , [.15, .85], and [0, 1]. Because the midpoint for
each interval was .5, the expected value of each gam-
ble was 5 dollars.

In the final three scenarios, participants were pre-
sented with conflicting pieces of information about
the contents of the deck from two previous players,
and were told that in each case one of the play-
ers was approximately correct. The expected value
was again maintained at 5 dollars (probability 1/2 of
winning 10 dollars), and the conflicting proportions
of winning cards claimed by the two sources were
{.4, .6} , {.3, .7} , and {.2, .8}. Because the average of
each conflictive pair of probabilities was .5, the ex-
pected value of each gamble was 5 dollars.

The conflictive probabilities in each scenario were set
such that the variance of the probabilities associated
with each gamble was approximately equal to the vari-
ance in a corresponding ambiguous gamble. Sensitiv-
ity to variance has been posited as an explanation for
ambiguity aversion, and this eliminates variance as
a potential differentiating factor between ambiguous
and conflictive gambles. Assuming a uniform distribu-
tion, the variance of the probability for an ambiguous
gamble with winning probability [p, 1− p] is

σ2
a = (1− 2p)2 /12.

Likewise, the variance of the probability for a conflic-
tive gamble with winning probability {p, 1− p} is

σ2
c = ((1− 2p)/2)2 .

Thus, the variances for the three ambiguous gambles
are 0.083, 0.041, and 0.013 respectively; and the vari-
ances for the conflictive gambles are 0.09, 0.04, and
0.01 respectively.
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3 Results

3.1 Uncertainty and Endowment Effects

The raw dependent variable was valuation, the buying
or selling price (in Australian dollars) elicited from
respondents. As described earlier, a relative valuation
measure also was analyzed. We begin by analyzing
valuation.

A minority of participants’ valuations were equivalent
to the expected utilities (EU’s) of the gambles (e.g.,
valuing at 5 dollars a gamble with probability of .5 of
gaining 10 dollars). In the Purchaser condition there
were 13 EU responses for risky gambles, 13 for am-
biguous gambles and 14 for conflictive gambles. In
the Vendor condition, however, these dropped to 5,
3, and 9 EU responses respectively. A two-level logis-
tic regression model found that the difference between
the Vendor and Purchaser conditions was significant
(p = .031), but found no difference among the three
types of gambles.

All of the valuations were analyzed with a 2-level
GLMM to test Hypotheses 1 and 3 on the valuation
data. The GLMM is a choice model without a weight-
ing parameter for probabilities, to ensure model iden-
tifiability. The final version of the choice model has
the form

yij ≈ N
(
µij , σ

2
)
.

The µij are defined as subjective expected utilities:

µij = Uij πi,

where Uij is the subjective utility and πi is the ex-
pected probability for the ith gamble and jth subject.
In turn, the Uij comprise a 2-level model:

Uij = β0j +β1j x1i +
(
β2j +β22j x1i

)
z1i

+
(
β3j +β33j x1i

)
z2i +

(
β4j +β44j z1i

)
x2i,

where
x1i = 0 for the purchaser condition and 1 for the ven-
dor condition,
x2i is the variance of the probability in the ith gamble,
z1i = 0 for a precise or conflictive probability and 1
an ambiguous probability, and
z2i = 0 for a precise or ambiguous probability and 1
a conflictive probability.
The random-effects coefficients are defined as follows:
βkj = νk + ukj , with ukj ≈ N

(
0, σ2

kj

)
.

The model was estimated via Bayesian MCMC us-
ing WinBUGs1.4, in a 2-chain model with a burn-in
length of 5,000 iterations and estimations based on a
subsequent 10,000 iterations. Convergence diagnos-
tics were favorable for all parameters.

The fixed-effects parameter ν1 establishes the classic
effect of devaluation in the vendor condition if it is
negative. The ν2 and ν3 parameters compare valua-
tion of ambiguous and conflictive gambles with risky
gambles under the purchaser condition, whereas ν22

and ν33 do so under the vendor condition. All four of
these parameters are engaged for testing Hypothesis
1 and the latter two for testing Hypothesis 3. Finally,
the ν4 parameter tests the effect of variance in the
probabilites for conflictive gambles and ν4 + ν44 does
so for ambiguous gambles.

The parameter estimates are displayed in Table 1,
along with their standard errors and 95% credible in-
tervals. For risky gambles, the ν0 estimate suggests a
tendency to devalue the $10 monetary amount slightly
in the purchaser condition and the negative ν1 esti-
mate reproduces the classic further devaluation under
the vendor condition.

lower upper
parameter estimate se credib. credib.
ν0 9.298 0.177 8.954 9.651
ν1 -0.772 0.290 -1.341 -0.205
ν2 -1.462 0.201 -1.856 -1.071
ν22 -0.782 0.290 -1.347 -0.208
ν3 -1.317 0.200 -1.709 -0.924
ν33 -0.520 0.296 -1.100 0.063
ν4 0.092 0.024 0.044 0.139
ν44 -0.088 0.033 -0.153 -0.022

Table 1: Fixed-Effect Parameter Estimates

Although it is not immediately clear from Table 1,
Hypothesis 1 receives only partial support from the
findings. The risky gambles are valued more highly
(M = 4.320) than the ambiguous (M = 3.166) and
conflictive (M = 3.568) gambles, but the ambigu-
ous and conflictive valuation means do not signifi-
cantly differ. Hypothesis 3, on the other hand, is
well-supported. Both ν22 and ν33 are negative and
not significantly different from each other, reflecting
greater differences between buying and selling prices
for the ambiguous and conflictive gambles than for
risky gambles.

Additionally, the effect of variance in the probabili-
ties on valuation was positive for conflictive gambles
(ν4 = 0.092). However, this effect did not emerge for
ambiguous gambles because ν4 + ν44 = 0.004 which
did not differ significantly from 0.

We now turn to relative valuation. Recall that the
relative valuation measure was the log-ratio of the
valuation of the benchmark risky gamble vr and an
alternative gamble va:

cr = ln (vr / va)
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The measure is defined so that higher scores indicate
greater relative devaluation of the alternative gam-
ble, so it behaves much like an uncertainty aversion
measure.

A mixed ANOVA yielded significant main effects for
variance and endowment, and type of gamble. The
variance and endowment effects were in the expected
directions, so that greater variance resulted in greater
relative devaluation (F (2, 59) = 5.695, p = .005) and
purchasers gave greater relative devaluations than
vendors (F (1, 60) = 9.327, p = .003). Likewise,
there was a significant tendency for conflictive gam-
bles to be relatively devalued less than ambiguous
ones (F (1, 60) = 4.557, p = .037). There were no
interaction effects.

Finally, Hypothesis 2 was tested initially by exam-
ining correlations among the valuation and relative
valuation measures. These revealed that although
valuations and relative valuations of risky and am-
biguous gambles were indeed positively correlated, so
were they with their counterparts in the conflictive
gambles. There were no discernible differences in the
strength of correlations between the different types of
gambles. The correlations of valuations among gam-
bles were relatively high, ranging from .625 to .950,
with RMS r = .786. The corresponding findings were
similar for both measures of relative valuation (dif-
ference and log-ratio), although the correlations were
not as strong.

A major limitation of simply correlating valuations
across gambles is its inability to address correla-
tions between specific effects. This limitation can be
overcome by examining correlations between random-
effects parameter estimates in the choice model devel-
oped earlier. Table 2 displays these correlations.

β0j

0.67 β1j

-0.21 -0.10 β2j

0.18 0.23 0.41 β22j

-0.24 -0.12 0.63 -0.05 β3j

0.27 0.39 0.11 0.52 0.27 β33j

-0.01 0.01 -0.14 0.02 -0.31 -0.18 β4j

0.04 0.02 -0.38 -0.42 0.09 0.08 -0.50 β44j

Table 2: Random-Effect Parameter Correlations

The parameters relevant to risky gambles alone (β0j

and β1j) are more strongly correlated with each other
than with any of the other parameters. Likewise, the
parameters measuring effects relevant to the ambigu-
ous and conflictive gambles are more strongly corre-
lated among each other than they are with β0j , β1j

or β4j . These findings contradict Hypothesis 2 and
suggest a moderately strong link between ambiguous

and conflictive gambles in terms of the effects that
endowment and variance have on them.

3.2 Individual Differences

Hypotheses 4 and 5 were assessed by excluding the
responses that conformed to expected utility theory,
because those cases would not be predicted by any-
thing other than the value of the gamble and its prob-
ability. To enhance statistical power, the variance in
the probabilities was ignored in these analyses, so that
only endowment and gamble type were taken into ac-
count. Individual differences variables were entered
one at a time on their own and a final model was built
up by forward addition and likelihood-ratio tests.

Hypothesis 4 was not supported by the prediction
of valuation, relative devaluation, or random-effects
coefficients. Neither the Openness nor stimulating
risk scales predicted any of these dependent vari-
ables. Only functional impulsivity predicted valu-
ation of risky gambles, with a positive coefficient
(z = 0.540, p = .005). However, functional impulsiv-
ity did not predict relative devaluation of risky gam-
bles. The relevant random-effects coefficients, β0j and
β1j , were weakly positively correlated with scores on
the instrumental risk scale (r = .22 and .23 respec-
tively).

Hypothesis 5 received some support only for the pre-
diction of valuation and random-effects coefficients.
No individual differences measures predicted relative
devaluation. For valuation data, there were sig-
nificant two-way interaction terms between gamble
type and instrumental risk and functional impulsiv-
ity. The functional impulsivity interaction term was
significantly negative for ambiguous gambles (z =
−0.452, p = .005) and nearly so for conflictive gambles
(z = −0.358, p = .063). The instrumental risk inter-
action term, on the other hand, was significantly pos-
itive for ambiguous gambles (z = 0.426, p = .012) and
nearly so for conflictive gambles (z = 0.337, p = .058).
As for random-effects coefficients, two of the relevant
coefficients, β2j and β3j , were positively correlated
with scores on the instrumental risk scale (r = .27 for
both).

4 Discussion

Our data reproduced the classic endowment effect, the
routine violation of expected utility theory whereby
people nominate higher selling prices than buying
prices for gambles with precise probabilities. The
fact that this effect emerged clearly in this study sug-
gests that the experimental manipulation of endow-
ment condition was effective, despite the fact that the
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gambles did not yield actual monetary rewards.

Hypotheses 1 and 2 received partial support, but
there were some unexpected findings. Conflictive and
ambiguous gambles were valued less than expected-
utility-equivalent risky gambles. This finding is in
line with the aforementioned insurance literature re-
garding ambiguous gambles, and establishes a simi-
lar result for conflictive gambles. However, valuations
of ambiguous and conflictive gambles with equivalent
variances in the probabilities did not differ. The find-
ing that the random-effects coefficients for ambigu-
ous and conflictive gambles were correlated with each
other but not with risky gambles adds weight to the
impression that people may evaluate these two kinds
of nonprobabilistic uncertainty in similar ways.

However, relative devaluation behaved differently: A
significant tendency for conflictive gambles to be rel-
atively devalued less than ambiguous ones and no in-
teraction with endowment or variance. The main ef-
fect is unexpected and directly counterindicative of
hypothesis 1. It is possible that respondents are more
willing to bet on a gamble where the probability of
winning is either very high or very low, and this sug-
gests investigating this effect for much higher stakes
and also for loss frames.

These findings appear contrary to the preference for
ambiguity over conflict established in [2] and repli-
cated in [3]. Moreover, in a recent study of choices
among gambles quite similar to those used in this
study [7], conflictive gambles were selected less often
than ambiguous ones. However, it certainly is possible
for people to show preferences in their choices that do
not emerge in their valuations (and vice-versa). Pref-
erence reversals, after all, are one of the most thor-
oughly studied violations of expected utility theory.
More specifically, response mode (direct comparison
versus rating or pricing) has been shown to affect
the strength of ambiguity aversion ([19], [20]), with
stronger effects found in forced-choice tasks.

A worthwhile extension of the current study would in-
clude appropriate choice tasks along with valuation.
However, Bowen et al. [21] have observed that when
forced to choose, individuals would choose the less
ambiguous option and their choice in turn motivates
them to overly value the unambiguous option pre-
cisely because they need to justify having chosen it.
An obvious way around this problem would be to ran-
domize the order of response mode (i.e., half choosing
first and half valuing first).

Hypothesis 3 received fairly strong support. The en-
dowment effect was decidedly stronger for conflictive
and ambiguous gambles than for risky ones. The
random-effects coefficients for these endowment ef-

fects were moderately correlated (r = .52) but they
also were weakly but positively correlated with the
endowment effect for risky gambles (r = .23 and .39).

Could the extra endowment effect for ambiguous
and conflictive gambles be explained by the standard
betting interpretation of lower and upper probabili-
ties, and therefore by a function of the variance in
probabilities? Our findings indicate otherwise, and
in fact when variance is taken into account by in-
troducing the appropriate variance*endowment and
variance*endowment*gamble-type interaction terms
into the choice model, these terms do not significantly
improve model fit. Therefore, the betting interpreta-
tion of lower and upper probabilities does not explain
the extra devaluation of ambiguous and conflictive
probabilities, so the cause probably is an alternative
psychological response to those types of gambles.

Almost all evidence for candidate explanations comes
from studies of ambiguous gambles [22]. However,
there is also direct evidence that people simply regard
options with missing information as inferior to those
with complete information [23], and that this view
holds even when the outcomes are losses instead of
gains [24]. There appears to be no difference between
ambiguous and conflictive gambles; the endowment ef-
fect is enhanced equally for both. Respondents appear
to devalue both types of gamble as if they perceive a
solitary feature that makes both of them inferior to
gambles with known probabilities. These findings are
compatible with the missing-information explanation.

The absence of correlations between the stimulating
risk scale, openness, need for discovery or need for cer-
tainty and the valuation of risky gambles (Hypothesis
4) is somewhat surprising, although not very unusual
for research in this area. Self-report measures of risk-
taking dispositions, tolerance of uncertainty, and the
like often do not correlate strongly and can vary con-
siderably across different domains [25]. The study of
attitudes towards and responses to nonprobabilistic
uncertainty is beset with difficult issues in terminol-
ogy and measurement [26].

Functional impulsivity and the instrumental risk
scale, on the other hand, predicted valuation and
random-effects coefficients, albeit in some ways not
anticipated in Hypothesis 5. Instrumental risk posi-
tively predicted valuation in the ambiguous and con-
flictive gambles but not in the risky gambles, in line
with Hypothesis 5. Likewise, instrumental risk was
positively associated with the random-effects coeffi-
cients that differentiate the valuation of the ambigu-
ous and conflictive gambles from risky gambles. In
other words, higher instrumental risk scores predicted
greater valuation of conflictive and ambiguous gam-
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bles relative to risky ones. Functional impulsivity, on
the other hand, positively predicted valuation only in
risky gambles. That effect was reduced to insignif-
icance in the ambiguous and conflictive gambles, in
contrast to the Huettel et al. [15] finding that related
functional impulsivity to ambiguity seeking.

The instrumental risk scale measures the extent to
which people are willing to bear risks in the pur-
suit of goals or achievements, in contrast to enjoy-
ing risks for thrill or excitement. One consequence of
this effect is that people scoring high on functional
impulsivity value ambiguous and conflictive gambles
more like a subjective expected utility agent. A goal-
oriented attitude towards risk-taking may lessen the
deleterious impact of missing information on the val-
uation of uncertain prospects, perhaps by motivat-
ing people to seek additional information about such
prospects. This explanation is compatible with Lauri-
ola and Levin’s [5] surmise about the role of curiosity
in ambiguity-seeking.

We have already suggested extending this study by
comparing preferences as revealed in choice and pric-
ing tasks. We conclude with three additional sugges-
tions for future experimental research on this topic.
The most severe limitation on our study is the re-
striction of the expected probability in the ambiguous
and conflictive gambles to a single value (.5) and the
prize to $10. Those restrictions make it impossible to
ascertain whether devaluation of ambiguous and con-
flictive gambles is due to decreasing subjective utility,
pessimistic down-weighting of probabilities, or both.
Systematically varying the monetary amounts and
expected values of the imprecise probabilities would
enable separate estimation of probability weighting
and subjective utility functions. Second, loss frames
need to be studied as well as gain frames. Although
Einhorn and Hogarth [24] found ambiguity aversion
for loss frames, Smithson [2] found a reflection ef-
fect for conflictive scenarios in line with prospect the-
ory’s claim that people become risk-seeking under the
prospect of loss. Third, the effects of ambiguous ver-
sus conflicting utility assessments have yet to be inves-
tigated. Taken together, these four suggestions offer a
research program that should enrich our understand-
ing of judgment and choice under imprecise probabil-
ities.
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Abstract
This paper analyzes the construction of con�dence in-
tervals for a parameter �0 that is �interval identi�ed,�
that is, the sampling process only reveals upper and
lower bounds on �0 even in the limit. Analysis of in-
ference for such parameters requires one to reconsider
some fundamental issues. To begin, it is not clear
which object � the parameter or the set of parame-
ter values characterized by the bounds � should be
asymptotically covered by a con�dence region. Next,
some straightforwardly constructed con�dence inter-
vals encounter problems because sampling distribu-
tions of relevant quantities can change discontinuously
as parameter values change, leading to problems that
are familiar from the pre-testing and model selection
literatures. I carry out the relevant analyses for the
simple model under consideration, but also empha-
size the generality of problems encountered and con-
nect developments to general themes in the rapidly
developing literature on inference under partial iden-
ti�cation. Results are illustrated with an application
to the Survey of Economic Expectations.

Keywords. Partial identi�cation, bounds, con�-
dence regions, hypothesis testing, uniform inference,
moment inequalities, subjective expectations.

1 Introduction

Analysis of partial identi�cation is an area of recent
growth in statistics and econometrics. To understand
its premise, recall the classic de�nition of identi�ca-
tion [16]: A parameter is identi�ed if the mapping
from its true value to population distributions of ob-
servables is invertible; thus, if we knew the latter dis-
tribution, we could back out the parameter value. In
benevolent settings like those of this paper, identi-
�cation implies that the parameter�s true value can
be learned as data accumulate.1 In contrast, par-

1 In general, identi�ability is a necessary but not su¢ cient
condition for learnability; e.g., consider incidental parameters

tial identi�cation means that even in the limit, one
will only learn some restrictions on this value. Some-
what more formally, if the parameter of interest is �0
and is contained in some parameter set �, then par-
tial identi�cation means that the population distrib-
ution of observables is consistent with any parameter
value � 2 �0, where �0 is an identi�ed set contain-
ing �0. Conventional identi�cation (�point identi�ca-
tion�) obtains when �0 = f�0g; the data generating
process reveals nothing of interest if �0 = �. Par-
tial identi�cation (�set identi�cation�) obtains in be-
tween.

Standard theories of (frequentist) estimation and in-
ference presuppose point identi�cation and require
signi�cant adaptation to be applicable to partially
identi�ed models. Estimation is the somewhat easier
case because it is immediately clear that consistent
estimators of �0 are unavailable, whereas the object
�0 itself is identi�ed in the usual sense (if one thinks
of the power set of � as a set of feasible parameter
values). Questions that arise in estimating this set
are typically more of a technical than a conceptual
nature. Indeed, in many applications including this
paper�s, �0 is a well-behaved set whose boundary can
be parametrically characterized, so that consistent es-
timators of �0 obtain straightforwardly. Theories of
estimation for more general cases were provided in [5]
and [9], among others.

The construction of con�dence regions, on the other
hand, raises a fundamental question. Should a con-
�dence interval be constructed to cover (with some
pre-speci�ed probability) �0 or rather �0? Beyond
that, a speci�c technical problem emerges. Construc-
tion of con�dence intervals typically requires estima-
tion of the limiting sampling distribution of some cri-
terion function or test statistic. These limiting dis-
tributions may change discontinuously as the shape
of �0 changes qualitatively, e.g. as �0 loses measure.

or parameters that are discontinuous functions of population
distributions.
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To be uniformly valid in such critical regions, con�-
dence regions have to implicitly or explicitly deal with
a �model selection�or �pre-testing�problem.

This paper discusses these issues and illustrates their
impact in a simple but, as it turns out, already quite
subtle problem of inference under partial identi�ca-
tion. I will discuss the methodological di¤erences be-
tween con�dence intervals for �0 and for �0 and, for
either case, provide con�dence regions that deal with
the aforementioned model selection problem as well as
simple ones that do not. I also illustrate all of these in
a simple application to real-world data. Parts of the
paper have survey character; in particular, section 5.2
reprises results that were recently derived by this au-
thor elsewhere [28]. What�s new is some technical
arguments in section 5.1, the methodological discus-
sion, the intuitions in sections 5.2 and 5.3, and the
numerical examples. But to some degree, the pur-
pose of the paper is to provide an entry point to a
rapidly developing literature that might be of interest
to members of the interval probabilities community.

2 The Setting

Consider the real-valued parameter �0 � �(P0) of a
probability distribution P0(X); here P0 is known a
priori to lie in a set P that is characterized by ex
ante constraints (maintained assumptions), and �0 is
known to lie in � � �(P). The nonstandard fea-
ture is that the random variable X is not completely
observable, thus �0 may not be identi�able: even per-
fect knowledge of the observable aspects of P0 might
not reveal it. Assume, however, that those observ-
able aspects identify bounds �l(P0) and �u(P0) s.t.
�u > �l and �0 2 [�l; �u] almost surely. The inter-
val �0 � [�l; �u] will also be called identi�ed set. Let
� � �u � �l denote its length.

Here is a motivating example that will later be ana-
lyzed numerically. Between 1994 and 1998, the Sur-
vey of Economic Expectations elicited worker expec-
tations of job loss by asking the following question:

I would like you to think about your employment
prospects over the next 12 months. What do you think
is the percent chance that you will lose your job during
the next 12 months?

Responses could be any number in [0; 100]; with ex-
tremely few exceptions near the extremal values, inte-
gers were chosen. The survey also elicited covariates,
which will be ignored here. The quantity of interest is
the population average of subjectively expected prob-
ability of job loss, a number that can alternatively be
read as the aggregate expected fraction of jobs lost.
3688 of n = 3860 sample subjects answered the ques-

tion, and the average subjective probability expressed
by them was 14:8%. However, there was signi�cant
item nonresponse: 172 respondents refused to pro-
vide an answer. Their subjective expectations of job
loss are naturally unknown, although they must lie
between 0 and 100 percent. One could pin down an
aggregate job loss expectation by making su¢ ciently
strong assumptions about the missing data. For ex-
ample, if it is assumed that data are missing com-
pletely at random, i.e. nonresponders entirely resem-
ble responders other than by not responding, then
the aggregate expectation is estimated as 14:8%. As
the original data set contains covariates, one could �
somewhat more sophisticatedly � assume that data
are missing at random conditional on observables.
Propensity score or other estimation methods would
then lead to a somewhat di¤erent estimate that takes
into account the distribution of covariates among non-
responders.2 While they lead to sharp conclusions,
these assumptions are very strong and may be ac-
cordingly controversial. Partial identi�cation analysis
seeks to avoid them, accepting that conclusions may
become weaker as a result. An extreme example of
this are worst-case bounds. In the present example,
one could estimate such bounds on aggregate expec-
tations by imputing answers of 0 respectively 100 for
all missing data. Numerically, this leads to a lower
bound of 14:1% and an upper one of 18:6%. In a next
step, these bounds can be re�ned by re-introducing
additional (but not fully identifying) information, and
analyses of this kind now constitute a lively literature
(see [18] or [19] for surveys). Worst-case bounds suf-
�ce to exhibit the inference problem, though, and I
will be content with doing that here.

The example is an instance of the �mean with missing
data� problem, about the simplest scenario of par-
tial identi�cation that one can think up.3 In gen-
eral, assume that X is supported on [0; 1] and that
the quantity of interest is EX, but X is observable
only if a second, binary random variable D 2 f0; 1g
equals 1. Technically, the sampling process generates
a random sample not of realizations xi, but of realiza-
tions (di; xidi) which are informative about xi only if
di = 1. This sampling process identi�es the following
worst-case bounds:

E (XjD = 1)Pr(D = 1) � EX �
E (XjD = 1)Pr(D = 1) + 1� Pr(D = 1):

These bounds are best possible without further as-

2The classic reference on these assumptions is [26]; for a
textbook treatment, see [25].

3There are many natural examples in which pure identi�ca-
tion analysis, i.e. characterization of bounds that are implied
by identi�able quantities, amounts to a nontrivial optimization
problem ([6], [12], [14], [27]).
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sumptions; they are attained if all missing data equal
0 respectively 1.4

It is obvious that �0 cannot be estimated consistently.
At the same time, I will impose assumptions that ren-
der trivial the problem of estimating �0. Speci�cally,
assume that estimators b�l and b�u exist and are uni-
formly jointly asymptotically normal:

p
n

" b�l � �lb�u � �u
#

d! N

��
0
0

�
;

�
�2l ��l�u

��l�u �2u

��

uniformly in P 2 P, where
�
�2l ; �

2
u; �
�
is known. Also,

let b� � b�u � b�l,
The full strength of

p
n-consistency and asymptotic

joint normality of
�b�l;b�u� is required only to sim-

plify the presentation. For example,
�b�l;b�u� could

also converge at a nonparametric rate, and it would
su¢ ce for its distribution to be consistently estimated
by the bootstrap. Similarly, assuming that

�
�2l ; �

2
u; �
�

is unknown but can be uniformly consistently esti-
mated (as is the case in the numerical example) would
only add notation and require some additional reg-
ularity conditions exhibited in [28]. The important
substantive assumption that I do make is that the
problem of estimating the asymptotic distribution of
p
n
hb�l � �l;b�u � �ui has been solved. This assumes

away many issues which are not particular to partial
identi�cation problems. Note right away that in the
motivating example, if one assumes that E (XjD = 1)
and Pr(D = 1) are boundedly away from f0; 1g, then
the Berry-Esseen theorem implies uniform joint nor-
mality of the obvious estimators

b�l =
1

n

nX
i=1

yidi

b�u =
1

n

nX
i=1

(yidi + 1� di)

b� = 1� 1

n

nX
i=1

di:

In this application, �0 would naturally be estimated

by the plug-in estimator b� � hb�l;b�ui, which was al-
ready discovered to numerically equal [14:1%; 18:6%].
I now turn to the di¢ cult problem, namely how to
compute con�dence regions.

4 In the speci�c example, the identi�ed bounds can be seen
as characterizing an interval probability for X. This generally
occurs with missing data problems because these identify prob-
ability distributions up to contamination neighborhoods, and
also in many but not all other settings of partial identi�cation.

3 What Should a Con�dence Region
Cover?

If a parameter �0 is conventionally identi�ed, one
would like a con�dence region CI to ful�l

Pr(�0 2 CI) � 1� �

for some pre-speci�ed �, at least asymptotically as
n ! 1. Subject to this constraint, con�dence re-
gions should be short or ful�l some other desiderata.
However, it is not obvious how to generalize this con-
dition to situations of partial identi�cation. The ear-
lier strand of this literature aimed at the coverage
condition

Pr(�0 � CI) � 1� �;
thus the idea was to cover the identi�ed set. The
methodological contribution of [15] was to rather de-
�ne coverage by

inf
�02�0

Pr(�0 2 CI) � 1� �;

i.e. to attempt coverage of the parameter. This has to
be expressed in terms of an in�mum over �0 because
it is not generally feasible to make coverage probabili-
ties constant over �0. For example, if �0 has an inte-
rior, then under regularity conditions any reasonable
(i.e. consistent in the Hausdor¤ metric) estimator b�
of �0 covers any point in this interior with a limiting
probability of 1. The probability limit of (1��) must,
therefore, apply only in some least favorable case that
is typically attained on the boundary of �0. Note the
following, one-sided implication:

[�0 � CI =) �0 2 CI] ;8�0 2 �0:

Thus, if one is content with coverage of the parameter,
then a con�dence region for the identi�ed set will be
valid but generally conservative and therefore need-
lessly large. On the other hand, if one strives for cov-
erage of the set, coverage of the parameter is simply
not su¢ cient.

Before even attempting to de�ne a con�dence region,
a researcher must decide which type of coverage is
desired. The answer seems to be that it depends on
whether �0 or �0 is the ultimate object of interest. A
reasonable case can be made for either, and I will now
attempt to do so.5

5A super�cial answer to this question would be that �it de-
pends on the loss function.� In general, one will want to cover
the parameter if in the corresponding hypothesis testing prob-
lem, loss is incurred from falsely rejecting a null hypothesis
about �0 as opposed to �0. However, the analogy is not quite
precise because coverage of �0 can be justi�ed from testing of
compound nulls about �0, especially if one is interested in fam-
ilywise control of the error rate. Also, this would only push
back the methodological question by one level. Why, after all,
is �0 and not �0 in the loss function?
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An interest in covering �0 seems to hinge on the
premise that �0 is indeed a true parameter value in
the sense of being descriptive of some feature of the
real world in a way that other, observationally equiv-
alent values � 2 �0 are not. This presupposes what
one might call a realist interpretation of one�s statisti-
cal model, meaning that (i) di¤erent parameter values
correspond to substantially di¤erent facts about the
real world, (ii) we can on principle learn, at least in
some approximate way, the truth about these facts,
even though the data set at hand allow this only to
a degree that is limited even beyond the usual issues
of sampling variation. An analogy from physics for
this setting might be that observations generated by
a particular experiment generate very imprecise in-
formation about some object of interest, but this is
because of limitations of measurement, e.g. the res-
olution of telescopes, and it is accepted that better
experimental methods could on principle lead to more
precise learning. Among the schools of thought that
can be found within the interval probabilities com-
munity, this attitude might particularly appeal to re-
searchers who think of interval probabilities mainly as
a robustness or sensitivity tool.

In contrast, a statistician who accepts that �0 is all
that could ever be learned might �nd specious the
aim of covering �0. This attitude would seem espe-
cially apt if the underspeci�ed (e.g., interval) proba-
bilities that partially identi�ed models reveal in the
limit correspond to fundamental limits to our ability
to model underlying phenomena. An analogy from
physics might be that observations are imprecise due
to fundamental limitations as famously encountered
in quantum physics. I conjecture that this attitude
might particularly appeal to researchers who think of
interval probabilities as a philosophical alternative to
conventional probabilities, which they may think of
as hopelessly optimistic.

I generally believe that both approaches have merit,
and I will discuss both types of con�dence regions
below. In this paper�s speci�c example, it is this au-
thor�s feeling that coverage of �0 might have special
merit. With item nonresponse in surveys, there is of-
ten a clear sense in which some precise answer to the
item is a matter of fact; sometimes, this answer could
even be gleaned from alternative data sources except
for legal or practical reasons. (Income and age are
salient examples.) In these cases, underidenti�cation
of �0 seems to stem from practical as opposed to epis-
temological problems; losses incurred by future policy
decisions might well depend on �0 rather than �0; and
it might be reasonable to think of �0 as the quantity
of ultimate interest.

4 A (Too) Straightforward Approach

The simplest extension of Wald-type con�dence re-
gions to inference on �0 is the following construction
which has been used frequently in the literature:

CI1��(�) =

�b�l � c��lp
n
;b�u + c��up

n

�
;

where c� = ��1(1� �=2) and � is the standard nor-
mal c.d.f.; e.g. c� � 1:96 for a 95%-con�dence inter-
val. In words, just enlarge the plug-in- estimator of
�0 by the usual number of standard errors. A Bon-
ferroni argument establishes that

lim
n!1

Pr(�0  CI1��(�))

= lim
n!1

Pr

�b�l � c��lp
n
> �l _ b�u + c��up

n
< �u

�
� lim

n!1

�
Pr

�b�l � c��lp
n
> �l

�
+ Pr

�b�u + c��up
n
< �u

��
= lim

n!1
Pr

�p
n

�l

�b�l � �l� < c��
+ lim
n!1

Pr

�p
n

�l

�b�u � �u� < �c��
! 1� � (c�) + � (�c�) = �;

thus this interval appears valid (if potentially conser-
vative). By the preceding section�s reasoning, it must
then be conservative for �0. Indeed, one can de�ne a
con�dence region for �0 by using the above construc-
tion but lowering its con�dence level. To see this,
observe that

lim
n!1

Pr(�0 =2 CI1��(�))

= lim
n!1

Pr

�b�l � c��lp
n
> �0 _ b�u + c��up

n
< �0

�
:

If �l < �0 < �u, then both Pr
�b�l � c��l=pn > �0�

and Pr
�b�u + c��u=pn < �0� vanish at exponential

rate as n!1, thus

lim
n!1

Pr(�0 =2 CI1��(�)) = 0:

If �0 = �l, then this reasoning still holds for

Pr
�b�u + c��u=pn < �0�, but one has

lim
n!1

Pr(�l =2 CI1��(�))

= lim
n!1

Pr

�b�l � c�b�lp
n
> �0

�
= �=2.

A similar reasoning applies if �0 = �u, thus

lim
n!1

inf
�02�0

Pr(�0 =2 CI1��(�)) = �=2;
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and CI1��(�) is a (non-conservative) (1� �=2) con-
�dence interval for �0. Thus one can simply gener-
ate a (1 � �) con�dence interval for �0 by writing
CI1��(�) = CI1�2�(�). The intuition for this trick
is that in the limit as n!1, at least one end of the
true identi�ed set is far away from the true parameter
value, so the hypothesis testing problem that corre-
sponds to the con�dence region is really one-sided.

5 Uniform Con�dence Regions

The preceding, simple constructions may be com-
pelling at �rst look, but they su¤er from a severe
problem: Coverage fails to be uniform over interesting
regions of parameter space. This is especially easy to
see with respect to coverage of �0. While it is true
for any �xed (P0;�0) that limn!1 inf�02�0 Pr(�0 2
CI1��(�)) = 1 � �=2, one also �nds that Pr(�0 2
CI1��(�))! 1�� along any local sequence of para-
meters where � = o(n�1=2), i.e. when � is asymptot-
ically small relative to sampling error. The algebraic
reason is a failure, under this condition, of the above

observation that Pr
�b�u + c��u=pn < �l� ! 0. The

intuitive reason is that the testing problem remains
two-sided in the limit. In any case, the con�dence
region fails to be valid precisely when conventional
identi�ability of �0 is approached, i.e. when the un-
derlying problem actually becomes easier.

Uniformity failures are standard in statistics. Indeed,
they are unavoidable if the set of distributions P is
large enough so that the information contained in a
sample cannot be bounded away from zero, as fa-
mously demonstrated in [4]. The assumption of uni-
form joint normality is more than su¢ cient to exclude
such situations, however. Accordingly, the present
uniformly failure has a much more avoidable cause,
namely that � is assumed to be large relative to stan-
dard errors. If cases of near point identi�cation are
of substantive interest, as they often will be, this as-
sumption plainly reveals an inappropriate asymptotic
framework. Indeed, were one to neglect this unifor-
mity failure, one would be led to construct con�dence
intervals that shrink as a parameter moves from point
identi�cation to slight underidenti�cation. I therefore
now turn to constructions that are valid uniformly
over possible values of �.

The uniformity failure in the coverage argument for
�0, and di¤erent ways to �x the construction, have re-
ceived signi�cant attention in the literature, and rele-
vant results will be reported. Somewhat surprisingly,
CI1��(�) has seen application even though it is not
uniformly valid either. The problem can be intuitively
seen as follows. Suppose that �l = 1 but �u = 10. An
oracle version of CI95%(�) that uses infeasible knowl-

edge of these values would be

CI95%(�) =

�b�l � 1:96p
n
;b�u + 19:6p

n

�
;

but for � small enough, this interval is strictly con-
tained in the standard Wald con�dence region for �u,�b�u � 19:6p

n
;b�u + 19:6p

n

�
;

thus it cannot possibly be valid for �0 in such
cases. The upshot is that CI1��(�0) is simultane-
ously conservative, and hence potentially too large,
under pointwise asymptotics and invalid under uni-
form ones, a rather unsatisfactory state of a¤airs.

5.1 A Con�dence Region for �0

If CI� is interpreted as con�dence region for �0, the
root cause of its uniformity failure is the same one
that underlies its potential conservativeness: Its con-
struction fails to properly account for the fact that the
underlying estimation problem is bivariate. This can
be �xed by an alternative construction that takes just
that bivariate problem �i.e., estimation of (�l; �u) �as
its starting point. Thus, de�ne an arbitrary joint con-
�dence region CI1��(�l; �u) for f�l; �ug. Denote by
�l � R the projection of this con�dence region onto
the �l-axis and by �u � R its projection onto the �u-
axis. Then limn!1 Pr(�l 2 �l; �u 2 �u) � 1��. Let
CI 01�� be the convex hull of �l [ �u, then it follows
that

lim
n!1

Pr(�l 2 CI 01�� ^ �u 2 CI 01��) � 1� �

=) lim
n!1

Pr([�l; �u] 2 CI 01��) � 1� �;

where the conclusion uses convexity of CI 01��.

This construction will be uniformly valid as long as
normal approximations apply uniformly. Of course,
due to the two steps of �rst forming projections and
then computing convex hulls, it is in general conserva-
tive, and potentially very much so. This conservatism
can be avoided by appropriately choosing the initial
con�dence region CI1��(�l; �u). In particular, one
should not pick the con�dence region of smallest area,
i.e. the usual con�dence ellipse for bivariate normal
means. A better choice is the con�dence region that
minimizes the length of the convex hull of its projec-
tions onto the axes. This con�dence region is easily
identi�ed as the smallest one to be expressed as [a; b]2

for a; b 2 R, i.e. the optimal choice for CI1��(�l; �u)
is

CI�1��(�l; �u) = argminfb� ag

s.t.
Z
[a;b]2

dFN

�b�l;b�u; �ln�1=2; �un�1=2; �� = 1� �;
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where FN (�1; �2; �1; �2; �) denotes a bivariate nor-
mal distribution with the speci�ed parameters. Write
CI�1��(�l; �u) = [a

�; b�]2, then the convex hull of the
projection of this region onto the axes is CI�1�� (�) =
[a�; b�], and one obtains

lim
n!1

Pr([�l; �u] � CI�1�� (�)) = 1� �

uniformly. This construction does not seem to appear
in the relevant literature, although projection tech-
niques were used before. In particular, [8] propose to
make the initial con�dence region CI1��(�l; �u) bal-
anced, that is, to equalize each parameter�s contri-
bution to noncoverage risk. A new justi�cation for
this idea in the present context will be encountered
below.6

5.2 A Con�dence Region for �0

Uniform con�dence regions for �0 were recently devel-
oped in the literature, with an initial proposal by [15],
some issues with which were diagnosed and alleviated
in [28]. I will here provide an intuitive development
that di¤ers from the original one but connects this
section to the preceding one.

The basic idea is the same as before, namely to start
from the bivariate problem of estimating (�l; �u). The
di¤erence is that as interest is in covering �0 and not
�0, the intuitive starting point would be an inter-
val that exhibits pre-speci�ed coverage probability for
both �l and �u, but not necessarily jointly. Some te-
dious algebra reveals that the shortest such construc-
tion is

CI�1��(�) �
�b�l � �lclp

n
;b�u + �ucup

n

�
;

where (cl; cu) minimize the length of CI�1��(�) s.t.Z cl

�1
�

 
�z + cu +

p
n�
�up

1� �2

!
d� (z) � 1� � (1)

Z cu

�1
�

 
�z + cl +

p
n�
�lp

1� �2

!
d� (z) � 1� �: (2)

(These expressions simplify if � = �1.) The con-
straints separately calibrate coverage probabilities at
�l and �u and can be generated by writing out bivari-
ate normal approximations to sampling distributions.

There is a catch however: Expression (1-2) includes
�, which is not known, thus I just de�ned an infea-
sible or �oracle� con�dence region. In more elemen-
tary inference problems, it is routine to initially do

6 [13] also propose a similar construction but make it sym-

metric about
nb�l;b�uo. [15] and [28] mention CI1��(�) as

con�dence region for �0; in fairness, their focus is squarely
elsewhere.

just that and then show that estimators can be sub-
stituted for unknown population quantities. But this
does not work out here. Under the joint normality

assumption, one generally has
�b���� = O(n�1=2),

thus
p
nb� does not converge to

p
n�. This will not

matter if
p
n� diverges, in which case

p
nb� diverges

as well, but it renders CI�1��(�) invalid along local
parameter sequences where

p
n� converges.

To resolve this issue, one must ensure that the estima-
tor �� of � substituted into (1-2) is supere¢ cient at
zero. More precisely, �� must have the property that
there exists some sequence fang that vanishes slowly
(i.e., an ! 0 but

p
nan ! 1) s.t. if the sequence

f�ng is dominated by fang, then
p
n (�� ��n)! 0.

Verbally, �� converges at a faster rate than n�1=2 for
parameter sequences �n that vanish su¢ ciently fast,
including all sequences s.t. �n � O(n�1=2).

A striking �nding in [28] is that b� � b�u � b�l itself
ful�ls just this condition in a rather wide set of appli-

cations, namely whenever (i)
�b�l;b�u� are uniformly

jointly asymptotically normal, as assumed here, and
(ii) b� � 0 almost surely, e.g. b�l � b�u by construc-
tion. Thus, if estimators of upper and lower bounds
are jointly asymptotically normal and are necessarily
ordered in the right way, then the implied estimator
of the di¤erence between the bounds is supere¢ cient
at zero. This condition turns out to have reasonably
wide applicability. Among other things, it means that
the estimator b� in this paper�s example �the mean
with missing data �is supere¢ cient.7

However, there are also many cases (e.g. in [22] and
[24]) where supere¢ ciency of b� will not obtain natu-
rally. It must then be induced arti�cially. A simple
way to do this is to shrink b� toward zero, writing

�� = b� � Ifb� � ang; (3)

where If�g is the indicator function and an is a user-
speci�ed sequence of numbers s.t. an ! 0 butp
nan ! 1. One of the main results in [28] is that

CI�1��(�) is uniformly valid for �0 upon substitution
of �� for � in (1-2):

A second, less troublesome issue with CI�1��(�) is
that it may not be well de�ned as written, namely ifb�l��lcl=pn > b�u+�ucu=pn, which absent supere¢ -
ciency of b� is an event with nonvanishing (more pre-
cisely: not uniformly vanishing) �nite sample prob-
ability. This author�s proposal is to leave the in-
terval empty in such cases. This does not a¤ect its

7 In the speci�c example, supere¢ ciency of b� can also be
seen heuristically. The estimator b� is the sample analog of a
population probability � = Pr(D = 0), thus it has variance
�(1��)=N , the numerator of which vanishes as �! 0.
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validity; hence, any other �x will lead to a need-
lessly long interval. It can also be interpreted as an
embedded speci�cation test: Samples which induceb�l � �lcl=pn > b�u + �ucu=pn really cast doubt on
the maintained hypothesis that �u � �l. Having said
that, some users might not like con�dence sets that
can be empty. They could de�ne CI�1��(�) in an arbi-
trary manner whenever b�l��lcl=pn > b�u+�ucu=pn.
A natural solution might be to proceed as if one had
learned that �u = �l, thus one could write

CI�1��(�) =

�b� � c��p
n
;b� + �c�p

n

�
;

where b� �
�b�l=�2l + b�u=�2u� = �1=�2l + 1=�2u� is a

variance weighted average of b�l and b�u and �2 �
1=
�
1=�2l + 1=�

2
u

�
is its sampling variance.

5.3 Relation to Model Selection and to
Moment Inequalities

To understand the workings of CI�1��(�), it is in-
structive to emphasize the model selection, or �pre-
testing,�issue that is lurking below the surface here.
Recall that con�dence regions typically correspond to
hypothesis tests, that is, they can be thought of as
lower contour set of some test statistic, thus collecting
parameter values � for which the data do not reject
the null hypothesis H0 : �0 = �. When construct-
ing a con�dence region for �0, the corresponding hy-
pothesis test appears one-sided in the pointwise limit
as n ! 1 for any � > 0, thus one seemingly gets
away with lower cuto¤ values c� than would be re-
quired for two-sided tests. Yet the test remains two-
sided if � = 0, in which case the con�dence region
would surely have to be a standard Wald con�dence
region. The pointwise limit distributions of relevant
test statistics thus change discontinuously as �! 0.
Of course, their true �nite sampling distribution are
continuous in � for any n. It follows that for any n,
the pointwise approximations must be misleading for
some �. This is why C1��(�) fails to be uniformly
valid.

This type of problem is familiar to researchers investi-
gating model selection or pre-testing. Essentially the
same issues occur at the boundary between models
that a pre-test or model selection procedure aims to
separate. Indeed, one can think of the present prob-
lem as one of model selection, namely as deciding
whether a point identi�ed (� = 0) or partially iden-
ti�ed (� > 0) model better describes the data. The
shrinkage step (3) can then be interpreted as a pre-test
that decides among these models, with �� = 0 indi-
cating that point identi�cation should be presumed.8

8 In the speci�c example, the discontinuity issue could also

A general problem with pre-tests is that their sam-
pling error must be taken into account in subsequent
inference and will frequently invalidate it. To avoid
this, the test underlying CI�1��(�) has a conservative
slant. Point identi�cation requires more conservative
inference in the sense of larger cuto¤ values, therefore
one can achieve validity (at cost of having longer con-
�dence intervals) by erring in favor of presuming point
identi�cation. This is here implemented because the
sequence an vanishes at a rate slower than O(n�1=2),
thus along any local sequence where � � O(n�1=2),
point identi�cation will eventually be presumed with
probability 1. The price is that CI�1��(�) will be uni-
formly valid (i.e. valid along all moving parameter
sequences) and pointwise exact (i.e., not conservative
under asymptotics that hold true parameter values
�xed), but conservative along certain local sequences.
Some features of this sort are essentially unavoidable
when working with pre-tests; the question is mainly
whether researchers acknowledge them or not, an is-
sue on which [17] o¤er some cautionary tales.

It is also noted that upper and lower bounds on a
real-valued parameter �0 are a special case of mo-
ment inequalities, a rather general framework that
recently attracted much interest ([1], [2], [3], [7], [10],
[21]). Moment inequalities occur when a true para-
meter value �0 is incompletely characterized by a set
of inequalities

E(mj(xi; �0)) � 0; j = 1; : : : ; J;

where the expectations are population expectations
and the mj are known functions. Clearly such a set
of conditions generally identi�es a set, e.g. a poly-
hedron if the mj are linear. This paper�s scenario
�ts this framework as the special case of two moment
inequalities

E(�0 � dixi) � 0

E(dixi + 1� di � �0) � 0:

Many of the problems encountered for moment in-
equalities are just more intricate versions of the ones
analyzed here. In particular, the adequate de�nition
of con�dence regions will depend on which moment in-
equalities bind, which can potentially be determined
via a pre-test; but this will encounter the problem just
described. Sure enough, numerous papers on moment
inequalities ([2], [3], [7], [10], [21]; see also [11] for re-
lated ideas about compound hypothesis testing more
generally) contain a step in which sample analogs of
moment inequalities are shrunk toward zero, i.e. they

be avoided by calibrating cuto¤ values through subsampling
[23] although not through the bootstrap [7]. See [1] for a more
general analysis of subsampling and its limits in cases of partial
identi�cation.
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perform the exact trick introduced in the previous
subsection.9

5.4 Unbiasedness of Con�dence Regions

I conclude the theoretical analysis with some remarks
about unbiasedness of con�dence intervals under par-
tial identi�cation.10 Recall that a con�dence region
CI for �0 is unbiased if Pr(� 2 CI), seen as a function
of �, is maximized at �0. The corresponding concept
for hypothesis tests is that the probability of rejection
should be minimized on the null.11

Unbiasedness in this sense will not apply here. Con-
sider �rst coverage of �0 when the identi�ed set is
[�l; �u]. Any reasonable con�dence region will cover
points in the interior of this set with probability ap-
proaching one and thus cannot be unbiased when the
truth is �0 = �u. The situation is not better regard-
ing coverage of �0. Clearly any subset of �0 will be
covered more frequently than �0 itself. Even exclud-
ing subsets from the comparison, problems with small
sets remain. For example, as long as some noncover-
age risk stems from the lower end of [�l; �u], some set
of the form [�u�

p
n; �u+

p
n] will be covered more

frequently than [�l; �u].

It seems more promising to take a cue from compound
hypothesis testing and be content with the require-
ment that �0 is an upper contour set of Pr(� 2 CI).
Yet even this aim seems unrealistic when � is allowed
to be small. For example, if � = n�1=2 and �u suf-
�ciently exceeds �l, then any convex 95% con�dence
region for �u is conservative for �l and hence for a
parameter value locally below �l. Unbiasedness could
then only be achieved at the price of substantial con-
servatism, if at all. Thus, one might further weaken
the unbiasedness criterion by requiring it only to hold
along parameter sequences that hold (�; �l; �u) �xed.

With these adjustments in place, CI�1��(�) is (asymp-
totically) unbiased. In particular, (1-2) bind with
probability approaching 1, and in the limit, Pr(� 2
CI�1��(�)) � 1 � � on �0 but Pr(� 2 CI�1��(�)) <
1 � � otherwise. CI�1��(�), on the other hand, does
not ful�l the requirement because it is based on an un-
balanced simultaneous con�dence region for (�l; �u).
If these parameters are measured with di¤erent preci-
sion, then CI�1��(�) will be more likely to cover the
more precisely measured one because some such al-

9Note that � = E(1�di), thus shrinking b� amounts to arti-
�cially tightening the second of the above moment inequalities.
10 I thank a referee for raising this question.
11None of this can here be shown for �nite samples because

this paper�s assumptions do not restrict �nite sample distrib-
utions. I therefore mean unbiasedness to apply asymptotically
as n!1; this is a nontrivial requirement because it is under-
stood to apply to (

p
n-)local alternatives.

location of noncoverage risk minimizes length. As a
result, if �u > �l, say, then some local value of the
form �l �

p
n is covered more frequently than �u.

This may be acceptable because it is not obvious that
a con�dence region designed for �0 as object of inter-
est need be unbiased for �0. Having said that, such
unbiasedness is achieved by the balanced construction
in [8], so one arguably encounters a trade-o¤ between
unbiasedness and length of con�dence regions.

6 Numerical Illustrations

This section illustrates the above �ndings with some
numerical examples. The �rst one is the empirical
application described in section 2; the other two use
arti�cial data. Recall that interest was in an aver-
age subjective probability of one-year-ahead job loss.
Sample size is n = 3860; using the notation from sec-
tion 2, the sample analog of E(XjD = 1) is 14:8%
and the sample analog of Pr(D = 1), i.e. the prob-
ability of response, is 95:5%. These numbers imply
that apart from their asymptotic validity, normal ap-
proximations should be expected to work well for the
given sample. Simple computations establish that fur-
thermore�b�l;b�u; b�; b�l; b�u;b��

= (14:10; 18:55; 4:45; 23:53; 29:22; 0:714) :

The estimator of the identi�ed set and the di¤erent
con�dence regions then compute as follows:b� = [14:10; 18:55]

CI95% (�0) = [13:36; 19:48]

CI95% (�0) = [13:48; 19:33]

CI�95% (�0) = [13:33; 19:45]

CI�95% (�0) = [13:48; 19:33] :

The results show the expected features: CI5% (�0) �
CI5% (�0) (as is the case by construction), and
CI�5% (�0) di¤ers from CI5% (�0) without nesting
it. Having said that, the quantitative di¤erences are
small. This comes from two facts: First, in the exam-
ple, b� is large relative to b�l=pn� 1, so that the uni-
formity issues are not salient and the �xes hence mar-
ginal; indeed CI5% (�0) and CI�5% (�0) cannot be dis-
tinguished numerically. Second, the estimators of the
bounds have strong positive correlation (b� = 0:714),
so that the construction of CI5% (�0) is not all that
conservative.

To bring these issues a bit more to the forefront, I also
generate intervals for a hypothetical dataset in which
n = 100, I continue to assume that b� is supere¢ cient,
and �b�l;b�u; b�; �l; �u; �� = (15; 17; 2; 20; 30;�:3) :
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Results then are:

b� = [15; 17]

CI95% (�0) = [11:08; 22:88]

CI95% (�0) = [11:71; 21:93]

CI�95% (�0) = [10:28; 22:63]

CI�95% (�0) = [11:54; 22:01] :

This example is somewhat rigged to showcase the
e¤ect of � being small. The di¤erence between
CI5% (�0) and CI�5% (�0) is much larger. The for-
mer is substantially too small at its left end and must
be extended to account for the large sampling varia-
tion in b�u. At the same time, the negative correlation
means that noncoverage at the upper and lower end
of the interval are likely to occur in the same samples,
thus the overall probability of noncoverage is notice-
ably less than the sum of those two individual prob-
abilities. This can be exploited to make the interval
shorter, and it is this e¤ect that dominates at its right
end. Finally, the higher precision of b�l is exploited by
CI�95% (�0) to minimize interval length at the price
of unbalancedness as discussed above; a balanced ver-
sion of the interval would have a higher minimum as
well as maximum but be longer.

The second hypothetical example features a large �
but a very negative correlation between estimators,
implying that the Bonferroni construction CI95% (�0)
is quite conservative. With n = 100 and�b�l;b�u; b�; �l; �u; �� = (10; 20; 10; 20; 20;�:9) ;
one accordingly gets

b� = [10; 20]

CI95% (�0) = [6:08; 23:92]

CI95% (�0) = [6:71; 23:29]

CI�95% (�0) = [6:40; 23:59]

CI�95% (�0) = [6:71; 23:29]

and CI�95% (�0) is noticeably smaller than
CI95% (�0).

7 Summary and Outlook

Analysis of partial identi�cation aims to provide con-
clusions which are robust, even at the price of not
always being very strong. It is close in spirit and in
methods to much work on interval probabilities (and
also to robust Bayesian approaches). The system-
atic analysis of estimation and inference under partial
identi�cation is the object of a currently active litera-
ture. One general �nding is that compared to well

known methods that apply to conventionally iden-
ti�ed methods, basic questions about inference have
to be asked anew, and �ndings become substantially
more nuanced.

This paper illustrated some of these issues in the very
simple setting of an interval identi�ed real-valued pa-
rameter. Inference toward an expected value when
some data are missing served as motivating example
that was carried out with real-world data. The issues
encountered along the way range from the method-
ological or even philosophical to the pragmatic and
quite technical. In particular, it was seen that sim-
ple asymptotic frameworks can inform misleading re-
sults, and that there are some nontrivial complica-
tions which link the inference problem to the large
and growing literature on post model selection esti-
mation and inference. Work on much more general
settings than the one investigated here is under way;
it encounters essentially the same problems, and then
some. It is hoped that once these general theories are
in place, thinking in terms of partial identi�cation,
rather than assuming away all identi�cation problems,
becomes part of many statisticians� and applies re-
searchers�toolkit.
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Abstract

In classic decision theory it is assumed that a decision-
maker can assign precise numerical values correspond-
ing to the true value of each consequence, as well as
precise numerical probabilities for their occurrences.
In attempting to address real-life problems, where
uncertainty in the input data prevails, some kind of
representation of imprecise information is important.
Second-order distributions, probability distributions
over probabilities, is one way to achieve such a rep-
resentation. However, it is hard to intuitively under-
stand statements in a multi-dimensional space and
user statements must be provided more locally. But
the information-theoretic interplay between joint and
marginal distributions may give rise to unwanted ef-
fects on the global level. We consider this problem
in a setting of second-order probability distributions
and find a family of distributions that normalised
over the probability simplex equals its own product
of marginals. For such distributions, there is no flow
of information between the joint distributions and the
marginal distributions other than the trivial fact that
the variables belong to the probability simplex.

Keywords. Second-order probability distribution,
Dirichlet distribution, Beta distribution, Kullback-
Leibler divergence, relative entropy, product of
marginal distributions.

1 Introduction

In attempting to address real-life decision problems,
where uncertainty about data prevails, some kind of
representation of imprecise information is important
and several have been proposed. In particular, first-
order representations, such as sets of probability mea-
sures [9], upper and lower probabilities [2], and in-
terval probabilities and utilities of various kinds, see
e.g. [15, 16], have been suggested for enabling a better
representation of the input sentences for a subsequent
decision analysis. To facilitate a better qualification

of the various possible functions, higher-order esti-
mates, such as distributions expressing various beliefs,
can be introduced over n-dimensional spaces, where
each dimension corresponds to possible probabilities
of events or utilities of consequences. Such hierar-
chical model approaches are sometimes better suited
for modelling incomplete knowledge and can add im-
portant information when handling aggregations of
imprecise representations, as is the case in decision
trees or probabilistic networks [3]. There are, how-
ever, at least two problems herein. Firstly, a normal
decision maker cannot have any meaningful intuition
regarding a multi-dimensional space and the informa-
tion must be provided more locally, and secondly, it
is hard to obtain global information from such local
information. Of particular interest in this context is
therefore to investigate the relation between global
and local distributions.

We will use second-order probabilities, formally de-
fined below in Definition 4, in short, these are proba-
bility distributions on random variables that take val-
ues on [0, 1] and sum to 1. The intuition of a second-
order probability distribution is that it is a distribu-
tion that assigns probabilities to the probabilities of
the possible outcomes of an event. So such a distri-
bution will have to be defined on the hyper-surface
defined by

∑n
i=1 xi = 1, xi ≥ 0, i = 1, . . . , n or,

equivalently on the n − 1-dimensional simplex where∑n−1
i=1 xi ≤ 1, xi ≥ 0, i = 1, . . . , n − 1 and xn is an

abbreviation of 1 −∑n−1
i=1 xi. In this paper we will

only consider continuous distributions.

The uniform distribution with support on the simplex
where

∑n−1
i=1 xi ≤ 1, xi ≥ 0, i = 1, . . . , n − 1 with

constant value the inverse of the volume of the simplex
and the Dirichlet distribution are examples of second-
order probability distributions.

Such second-order probability distributions is one way
of handling uncertainty of probabilities in a decision
situation, see e.g. [11], [14] and [5]. Instantly, new
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difficulties appear; on the one hand it may seem that
there are too many distributions to choose from given
the available knowledge, on the other hand it is not
certain that any set of univariate second-order distri-
butions is consistent with the fact that the variables
are themselves probabilities. Even if they are consis-
tent, the marginal distributions and the joint distri-
bution may represent different information, e.g. it is
shown in [13] that the uniform joint distributions have
marginal distributions that are far from uniform.

1.1 Definitions

Definition 1 [1] For a k-dimensional random vector
(X1, . . . , Xk) the (joint) distribution µ is defined by

µ(A) = Pr[(X1, . . . , Xk) ∈ A] , A ∈ Rk

where Rk is the σ-field generated by the bounded rect-
angles [x = (x1, . . . , xk) : ai < xi ≤ bi, i = 1, . . . , k].

Definition 2 [1] A k-dimensional random vector
(X1, . . . , Xk) and its distribution have density f with
respect to Lebesgue measure if f is a nonnegative
Borel function on Rk and

µ(A) =
∫

A

f(x) dx, A ∈ Rk .

Definition 3 [1] If the k-dimensional vector X =
(x1, . . . xk) has distribution µ and if πj : Rk → R
is defined by πj(x1, . . . , xn) = xj, the (univariate)
marginal distributions of µ are µj = µ ◦ π−1

j given
by µj(A) = µ[(x1, . . . , xk) : xj ∈ A] = Pr[Xj ∈ A] for
all A ∈ R.

Definition 4 A second-order probability distribu-
tion is a distribution µ with support on a set P =
{(x1, . . . , xk) : 0 ≤ ai ≤ xi ≤ bi, i = 1, . . . , k,

∑k
i=1 ≤

1}.

1.2 The Problem

Below we will only consider densities and for simplic-
ity abuse terminology as to identify distributions with
their probability density functions.

For most decision makers it would be easiest to con-
sider univariate distributions since it is harder to
think in several dimensions [4]. In general, though,
the marginal distributions together contain more in-
formation than the corresponding multivariate distri-
bution. The random variables are the probabilities
of the possible outcomes of an event. If the variables
are dependent in other than relating to the same event
this information discrepancy between local and global
is natural since information would be shared between
the local variables. But settings where the opposite

holds comes easier to mind, and such cases would be
better modelled with random variables that are as in-
dependent as possible modulo that they sum to one.

The above reasoning motivates us to consider whether
there are joint second-order probability distributions
that have the same information content as its univari-
ate marginal distributions. This condition will be seen
to be equivalent to the joint probability distribution
function being equal to the product of its own univari-
ate marginal distributions multiplied with a normalis-
ing constant that comes from us working in the prob-
ability simplex rather than in the unit cube. That is,
the information-theoretic constraint of not losing in-
formation when taking marginals coincides with the
practical concern of being able to construct a joint
probability density from given marginals in the sim-
plest possible way. In terms of copulas (see e.g. [10] or
[12]), the condition is that the copula is the product
copula multiplied by some constant.

We show that the condition of a joint probability dis-
tribution function being equal to the product of its
own univariate marginal distributions multiplied with
a normalising constant is met by a family of distribu-
tions that have the same shape as the Dirichlet dis-
tribution. The first-order probability variables can be
given arbitrary bounds only from below. When the
lower bounds are zero, we have a special case of the
Dirichlet distribution where all parameters are equal.
With general lower bounds xi ≥ ai, the support of xi

is the interval [ai, 1 + ai −
∑n

i=1 ai], the joint Dirich-
let distribution and the corresponding marginal Beta
distribution are shifted and re-scaled accordingly.

2 Minimal Kullback-Leibler
Divergence

To capture the notion that no information other than
that of being on the probability simplex is either
lost or gained when going between a joint probability
distribution and its marginals, we use the Kullback-
Leibler divergence or relative entropy [8], see also
[6, 7].

Definition 5 If P and Q are probability measures
over a set X and if µ is a measure such that p = dP

dµ

and q = dQ
dµ exist the Kullback-Leibler divergence

from P to Q is

DKL (P‖Q) =
∫

X

p log
p

q
dµ .

Since we want, as far as possible given that we are
on the probability simplex P, that the joint distribu-
tion f(x1, . . . , xn) contains the same information as
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the product of marginals
∏n

i=1 fi(xi), we want the
Kullback-Leibler divergence DKL(f‖∏n

i=1 fi), also
known as the total correlation [17] of X1, . . . , Xn to be
minimal. Gibbs’ inequality states that DKL (P‖Q) ≥
0 with equality only if P = Q. Since the prob-
ability simplex P is measurable we can calculate
DKL(f‖∏n

i=1 fi) as a Lebesgue integral.

But restricting the support of
∏n

i=1 fi to the probabil-
ity simplex P means that

∏n
i=1 fi must be normalised

in order to be a distribution, i.e. we must find a real
number K such that

∫
P
∏n

i=1 fi(xi)/K dx = 1. So
minimising the Kullback-Leibler divergence of

∏n
i=1 fi

from the joint probability distribution entails finding
f such that

f(x1, . . . xn) =
1
K

n∏

i=1

fi(xi) ,

where fi(xi) is the marginal distribution of f(x) with
respect to xi and K =

∫
P
∏n

i=1 fi(xi) dx. Let us say
that such distributions factors into marginals.

3 Characterisation of Distributions
that Factors into Marginals

Theorem 1 A probability distribution f(x) factors
into marginals if and only if its marginal distributions
are

fi(xi) =
1

(n− 1)
(

1−∑n
j=1 aj

) 1
n−1

(xi − ai)
n−2
n−1

with support [ai, 1−∑j 6=i aj ], where
∑n

j=1 aj < 1.

Corollary 1 A joint probability distribution func-
tion f(x) on the probability simplex P factors into
marginals if and only if

f(x1, . . . , xn−1) =
(1−∑n

i=1 ai)
∏n

i=1 fi(xi)

Γ1−n
(

n
n−1

) ,

where xn = 1 −∑n−1
i=1 xi, fi(xi), i = 1, . . . , n are the

marginal distributions of f and fi(xi) = 0 for xi ≥
ai, xi ≤ 1−∑j 6=i aj.

When the first-order probability variables xi are min-
imally restricted, i.e. ai = 0, x = (x1, . . . , xn) are
Dirichlet distributed with parameters αi = 1

n−1 and
the marginal distributions fi are Beta distributions
f(x; α, β) with parameters α = 1

n−1 and β = 1. The
marginal distributions fi also have the same shape as
Pareto distributions, but cut off so that the support
has upper bound 1−∑j 6=i aj rather than infinity.

We make a quick note on the degenerate case where∑n
j=1 aj = 1; then the marginal distributions are

Dirac pulses fi(xi) = δ(xi − ai), i.e. all belief is con-
centrated in the points xi = ai and the joint proba-
bility distribution is

∏n
i=1 δ(xi − ai).

We proceed with the proof of Theorem 1. The proof is
based on the fact that an integral

∫
P
∏n

i=1 gi(xi) dx of
a product of univariate functions over the probability
simplex P is the repeated convolution g1 ∗ g2 ∗ · · · ∗
gn(1). E.g. when n = 3 we have
∫ 1

0

∫ 1−x1

0

g ∗1 (x1)g2(x2)g3(1− x1 − x2) dx2 dx1 =
∫ 1

0

g1(x1)[g2 ∗ g3(1− x1)] dx1 = g1 ∗ g2 ∗ g3(1) .

If f(x) factors into marginals the marginal distribu-
tion with respect to xi is

1
K

fi(xi)∗
j 6=i

fj (1− xi) ,

where ∗i 6=jfj is the n − 1-fold repeated convolution
f1 ∗ f2 ∗ · · · ∗ fi−1 ∗ fi+1 ∗ · · · ∗ fn and K is the n-
fold convolution ∗n

i=1fi(1). Assume that {fi}n
i=1 are

the marginal distributions of a joint distribution that
factors into marginals. Then for all i, i = 1, . . . , n,

∗
j 6=i

fj(1−xi) = KH(ci−xi) = KH((1−xi)−(1−ci)) ,

where ci is such that fi(xi) = 0 when xi > ci.

Then the distributions fk must have Laplace trans-
forms Fk such that

∏

k 6=i

Fk =
Ke−(1−ci)s

s

and if fk is on the form gk(xk − ak)H(xk − ak) where
fk(xk) = 0 when xk < ak, gk must have Laplace

transform
(

K
s

) 1
n−1 , that is gk(xk) = K

1
n−1

Γ( 1
n−1 )x

n−2
n−1
k

and

fk(xk) =
K

1
n−1 H(xk − ak)

Γ
(

1
n−1

)
(xk − ak)

n−2
n−1

since the Laplace transform of tα is Γ(1+α)
s1+α , where

Γ(1 + α) =
∫∞
0

e−xxα dx.

Further, since the Laplace transform of fk(xk) is
K

1
n−1 e−sak

s
1

n−1
,

∗
j 6=i

fj(1− xi) =
Ke−s(

P
j 6=i aj)

s
,

the upper limit of the support of xi is ci = 1−∑j 6=i aj

and the n-fold convolution
n∗

i=1
fi(t) is the inverse
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Laplace transform of K
n

n−1 e−s
Pn

i=1 ai

s
n

n−1
, i.e.

n∗
i=1

fi(t) =

K
n

n−1 H(t−Pn
i=1 ai)(t−

Pn
i=1 ai)

1
n−1

Γ( n
n−1 ) , so

K =
n∗

i=1
fi(1) =

K
n

n−1 (1−∑n
i=1 ai)

1
n−1

Γ
(

n
n−1

)

and K =
Γn−1( n

n−1 )
1−Pn

i=1 ai
.

But since Γ(z + 1) = zΓ(z), Γ
(

n
n−1

)
= 1

n−1Γ
(

1
n−1

)

and

K =
Γn−1

(
1

n−1

)

(n− 1)n−1 (1−∑n
i=1 ai)

.

4 Some Properties of Second-Order
Distributions that Factors into
Marginals

The second-order probability distributions that fac-
tors into marginals are, as we have seen above, deter-
mined by the n-dimensional vector (a1, . . . , an), where
ai is the lower bound of the support of the marginal
distribution fi. Thus we can by Corollary 1 define
its probability density function with respect to the
Lebesgue measure as

f(x1, . . . , xn−1; a1, . . . , an) =
(1−∑n

i=1 ai)
∏n

i=1 fi(xi)

Γ1−n
(

n
n−1

) ,

for x1, . . . , xn−1 such that
∑n

i=1 xi ≤ 1 and where∑n
i=1 ai < 1.

Likewise the marginal distributions are

fi(xi, a1, . . . , an) =
1

(n− 1) (1−∑n
i=1 ai)

1
n−1 (xi − ai)

n−2
n−1

with support [ai, 1 −∑j 6=i aj ]. When ai = 0 for all
i = 1, . . . , n, (x1, x2, . . . , xn−1) have the Dirichlet dis-
tribution f(x1, . . . , xn; 1/(n − 1), . . . , 1/(n − 1)) and
the individual variables xi have Beta distributions
f(x; 1/(n− 1), 1).

Regarding the intervals of support, one may choose
the lower bounds ai freely as long as the sum a1 +
· · ·+ an is less than one (and lower bounds summing
to a number greater than one is unreasonable since
the variables xi have a sum less than one). But if
we want a joint second-order distribution that factors
into marginals, the upper bounds are determined by
the lower bounds ai. A consequence of this is that

arbitrary support intervals are not in general possible
to reconcile with this type of distributions. If the sup-
port intervals of the marginal distributions are [ai, bi],
we cannot form the joint second-order probability dis-
tribution as the normalised product of the marginal
distributions unless bi = 1−∑j 6=i ai.

Let us list some properties of the marginal distribu-
tions; if a second-order probability distribution f with
parameters a1, . . . an factors into marginals the uni-
variate marginal distributions have

• mean ai +
1−Pn

j=1 aj

n ,

• median ai +
(

1−Pn
i=1 ai

2

)n−1

and

• variance (n−1)2

n2(2n−1)

(
1−∑n

j=1 aj

)2

.

4.1 Multivariate Marginal Distributions

We may generalise the argument in the proof of The-
orem 1 to achieve the multivariate marginal distribu-
tion of x1, . . . xk, k < n as

1
K

k∏

i=1

fi(xi)
n∗

i=k+1
fi

(
1−

k∑

i=1

xi

)
.

Since the Laplace transform of fi(xi)H(xi − ai) is
K

1
n−1 e−sai

s
1

n−1
with K =

Γn−1( n
n−1 )

1−Pn
i=1 ai

we have the following

Corollary.

Corollary 2 If f(x1, . . . , xn−1) is a second-order
probability distribution that factors into marginals, the
multivariate marginal distribution f(x1, x2, . . . , xk) is

∏k
i=1 fi(xi) (1−∑n

i=1 ai)
k−1
n−1

Γ
(

n−k
n−1

)
Γk−1

(
n

n−1

)(
1−∑k

i=1 xi −
∑n

i=k+1 ai

) k−1
n−1

.

Corollary 2 in turn gives us a result on conditional
distributions.

Corollary 3 The conditional distribution of xk given
x1, x2, . . . , xk−1 is

C
fk(xk)

(
1−∑k−1

i=1 xi −
∑n

i=k ai

) k−2
n−1

(
1−∑k

i=1 xi −
∑n

i=k+1 ai

) k−1
n−1

,

where

C =
Γ
(

n−k+1
n−1

)
(1−∑n

i=1 ai)
1

n−1

Γ
(

n
n−1

)
Γ
(

n−k
n−1

)

if xi, i = 1, . . . n− 1, are distributed by a second-order
probability distribution that factors into marginals.
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5 Examples

Example 1 With n = 3, let us take a1 =
1/3, a2 = 1/5 and a3 = 1/8. Then 1 −∑3

i=1 ai =
120−40−24−15

120 = 41
120 .

f1(x1) =
1

2
√

41/120(x1 − 1/3)
,

f2(x2) =
1

2
√

41/120(x2 − 1/5)

and
f3(x3) =

1
2
√

41/120(x3 − 1/8)
,

with support [1/3, 27/40] , [1/5, 13/24] and [1/8, 7/15]
and mean 161

360 , 113
360 and 43

180 , respectively.

The joint distribution f(x1, x2) is

41f1(x1)f2(x2)f3(1− x1 − x2)
120Γ2(3/2)

=
√

120/41
Γ2(3/2)

√
(x1 − 1/3)(x2 − 1/5)(7/8− x1 − x2)

,

see Figure 1 for a plot.

Figure 1: The joint probability density function of
Example 1

Given that we in Example 1 wanted to represent
knowledge about lower bounds on probabilities, the
joint and marginal distribution seem rather rich in in-
formation and far from uniform. But we do not wish
to minimise entropy in either the joint or the marginal
distributions, instead the goal is to balance the en-
tropy of the joint distributions and the marginals.
The local effects of maximising entropy globally have
partly been studied in [13]. To further study this ef-
fect and the converse global effect of local entropy
maximisation is a topic for future research.

Example 2 Let n = 5 and ai = 1/10.
Then f1, f2, f3, f4, f5 where fi(x) = f(x) =

1
4(1/2)1/4(x−1/10)1/4 = 1

27/4(x−1/10)3/4 are the marginal
distributions of a second-order distribution that fac-
tors into its own marginals, in Figure 2 we see a plot
of the marginal distributions.

Figure 2: The marginal probability density functions
fi(x) = 2−7/4(x− 1/10)−3/4 of Example 2 for 1/10 ≤
x ≤ 3/5.

The support of fi(xi) is [1/10, 3/5]. The means are
µi = 1/5 and

f(x1, x2, x3, x4) =
(1− 1/2)

∏5
i=1 fi(xi)

Γ4(5/4)
.

The three variable marginal distribution f(x1, x2, x3)
is

f(x1)f(x2)f(x3)
Γ(1/2)Γ2(5/4)

√
2
√

4/5− x1 − x2 − x3

,

and the conditional distribution f(x4|x1, x2, x3) is

f(x4)Γ(1/2)
√

4/5− x1 − x2 − x3

24Γ(5/4)Γ(1/4)(9/10− x1 − x2 − x3 − x4)3/4

E.g. The conditional distribution f(x4|x1 =
1/10, x2 = 1/5, x3 = 2/5) is shown in Figure 3.

Figure 3: The conditional density of x4 given x1 =
1/10, x2 = 1/5, x3 = 2/5 in Example 2
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The two variable marginal distribution f(x2, x4) is

f(x2)f(x4)
21/4Γ(3/4)Γ(5/4)(7/10− x2 − x4)1/4

,

and the conditional distribution f(x1|x2, x4) is

f1(x1)Γ(3/4)(7/10− x2 − x4)1/4

21/4Γ(5/4)Γ(1/2)(3/5− x1 − x2 − x4)1/2

The variance of fi is

42

529
(1/2)2 =

4
225

.

6 Conclusion

We have found a characterisation of the second-order
probability distributions that can be expressed as a
normalised product of its own marginal distributions.
For such distributions there is a direct path from
local to global information. From an information-
theoretical standpoint, such probability distributions
are unique in that given that the variables are prob-
abilities, no information is either lost or gained when
going between the joint distribution and the univari-
ate marginal distributions.

The family of distributions with the properties men-
tioned above can be said to be a generalisation of a
special case of the Dirichlet distribution. When all
lower bounds on the first-order probabilities are zero,
we get the Dirichlet distribution will all parameters
equal to 1/(n − 1), where n is the number of pos-
sible outcomes whose probabilities are the variables.
In this case, of course, the marginal distributions are
Beta distributions. But in general, with first-order
probability variables bounded from below by positive
numbers, we have shifted and re-scaled versions of
the Dirichlet and Beta distributions, respectively. It
is a matter for future research to investigate to which
degree properties of Dirichlet and Beta distributions
carry over to their shifted counterparts.
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Abstract

An axiomatic approach for solving a multi-criteria de-
cision making problem is studied in the paper, which
generally allows reducing a set of Pareto optimal so-
lutions. The information about criteria in the prob-
lem is represented as the decision maker judgments
of a special type. The judgments have a clear behav-
ior interpretation and can be used in various decision
problems. It is shown in the paper how to combine the
judgments and to use them for reducing the Pareto set
when they are provided by several decision makers.
Two global criteria of decision making are introduced
for comparing of decision alternatives. The first crite-
rion based on the lower expectation, the second one is
based on determining the belief and plausibility func-
tions in the framework of Dempster-Shafer theory and
uses the “threshold” probability for the final decision
making. The numerical examples illustrate the pro-
posed approach.

Keywords. Multi-criteria decision making, desirable
gambles, Dempster-Shafer theory, judgments, prefer-
ences, Pareto set

1 Introduction

Most methods of multi-criteria decision making
(MCDM) problems are somehow or other based on
combining or aggregating criteria. According to these
methods, decision alternatives (DA’s) are compared
by using the aggregated criterion. There are different
ways for criteria combining. The widely-spread ways
are linear, multiplicative and maximin combinations
[3, 8]. For instance, the well-known analytic hierarchy
process method proposed by Saaty [8] is based on the
linear combination of criteria. However, in spite of
the popularity of the aggregation methods for solving
MCDM problems, they are ad hoc and have some jus-
tification related to certain applied areas. The main
shortcoming of ad hoc methods is that it is often dif-
ficult to validate or to justify the optimal solutions.

Another shortcoming is the necessity to have criteria
with identical numerical scales.

Another part of methods is axiomatic, i.e., they are
based on some axioms or properties and can be called
strong methods. One of such the methods is reduc-
ing the so-called Pareto set of non-dominated solu-
tions by utilizing some additional information about
importance of criteria provided by experts, decision
makers (DM’s), etc. The amount of the additional
information and its consistency determines the num-
ber of solutions in a reduced Pareto set. Ideally, the
reduced Pareto set should consist of one solution.

Procedures for processing the additional information
and for reducing the Pareto set totally depend on
the type of available data or judgments. Many au-
thors use the “weights” of criteria v = (v1, ..., vr)
and different kinds of their ranking. For instance,
Park and Kim [7], Kim and Ahn [4] distinguish be-
tween the following approaches to the elicitation of
attribute weights: weak ranking (vi ≥ vj); strict rank-
ing (vi− vj ≥ λi); ranking with multiples (vi ≥ λivj);
interval form: (λi ≤ vi ≤ λi + εi); ranking of differ-
ences (vi − vj ≥ vk − vl). Here λi ≥ 0, εi ≥ 0.

Another very interesting type of judgments elicited
from DM’s or experts has been proposed by Noghin
[5, 6] for reducing the Pareto optimal set in the frame-
work of his theory of relative importance of criteria.
Some details of the theory will be considered below.
This type of judgments does not require to have iden-
tical numerical scales for criteria. It has a simple and
clear behavior interpretation. Moreover, it turns out
that many statements of the theory have analogues in
the framework of desirable gambles [13, 14]. There-
fore, MCDM problems in the framework of desirable
gambles by relying on the Noghin’s theory of relative
importance of criteria are studied in the paper.

An interesting approach for eliciting the additional
judgments from DM’s or experts in MCDM problems
(called the DS/AHP method) has been proposed by
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Beynon et al [1, 2]. This method uses Dempster-
Shafer theory in a framework of the analytic hierarchy
process and allows to compare not only single DA’s,
but also groups of DA’s. Beynon et al proposed to
compare DA’s, not criteria. However, a similar elici-
tation procedure can be applied to criteria [12]. Nev-
ertheless, this method is also ad hoc and uses in the
long run the linear aggregation (the analytic hierar-
chy process). Therefore, an attempt to modify it for
reducing the Pareto optimal set in the framework of
desirable gambles and Noghin’s theory is made in the
paper.

In the paper, “interval-valued” judgments as the ex-
tension of judgments proposed by Beynon et al are
analyzed. These judgments have the following form:
“I do not know which criterion is the most important,
but this criterion belongs to the subset B of the set
of criteria”. Then these simple judgments are gen-
eralized to a more complex form, for instance, “I’m
willing to pay wi for the i-th criterion in order to get
wj for the j-th criterion. I’m also willing to pay wk

for the k-th criterion in order to get wl for the l-th cri-
terion. However, I do not know what is better.” Their
analysis is the next task for solving in the paper.

At the same time, we have to note that these judg-
ments can be provided by several DM’s. Therefore,
the following problem to be solved is to combine them
by taking into account the quality or weights of DM’s.
This will be done by introducing two global criteria of
decision making, which are based on some statements
of the Dempster-Shafer theory. In fact, these crite-
ria can be regarded in the framework of second-order
models [11]. It will be shown in the paper how to re-
duce the Pareto set of optimal solutions by applying
the given information in the above forms and by using
two proposed criteria.

The paper is organized as follows. The main defi-
nitions of MCDM are provided in Section 2. Some
statements of Noghin’s theory of relative importance
of criteria are considered in Section 3. Noghin’s the-
ory is formulated in the framework of desirable gam-
bles in Section 4. Different types of “interval-valued”
judgments about criteria and their use for reducing
a Pareto set are studied in Section 5. An illustrative
numerical example is considered in the same section.

2 The MCDM problem statement

A general MCDM problem can be formulated in the
following way. Suppose that there is a set of DA’s
X = {X1, ..., Xn} consisting of n elements. Moreover,
there is a set of criteria C = {C1, ..., Cr} consisting of
r elements, r ≥ 2. For every DA, say the k-th DA, we
can write the value of the i-th criterion Ci(Xk) briefly

denoted xki, k = 1, ..., n, i = 1, ..., r. Below, we will
say that the i-th DA is characterized by the vector
Xi = (xi1, ..., xir). We will assume that the number
of criteria and the number of DA’s are finite.

To solve a MCDM problem is to find a set of all op-
timal solutions denoted by OptX ⊆ X, which can be
regarded as the best solutions under certain condi-
tions.

By making decisions, we usually have to take many
objectives or criteria into account. The main feature
here is that the different objectives are most likely
conflicting and the final decision is commonly called
a trade-off. When dealing with multiple objectives,
solutions can be incomparable since they can domi-
nate each other in different objectives. This lead to
the notion of Pareto optimality, which is based on a
partial order among the solutions. A solution is called
Pareto optimal, if it is not dominated by any other
solution, that is, if there is no other solution that is
better in at least one objective and not worse in any
of the other objectives. Naturally, Pareto optimal so-
lutions are the candidates for a trade-off.

Let us give some standard definitions related to
Pareto optimal solutions under assumption that there
is no information about importance of criteria.

Definition 1 X ∈ X dominates Y ∈ X, denoted X Â
Y iff ∀i = 1, ..., r, xi ≥ yi with at least one strict
inequality.

Definition 2 Y ∈ X is a Pareto optimal alternative,
also called an efficient alternative, iff @X ∈ X such
that X Â Y . The set of all Pareto optimal alternatives
in X or Pareto set is denoted P(X).

It follows from the above definitions that the following
inclusions are valid OptX ⊆P(X) ⊆ X.

For many optimization problems, the number of
Pareto optimal solutions can be rather large. There-
fore, the problem of reducing Pareto optimal sets by
obtaining the additional information is very impor-
tant.

3 Noghin’s relative importance of
criteria

For reducing the Pareto optimal set, Noghin in [5]
proposed the so-called theory of relative importance of
criteria. This theory is based on the standard axioms
and definitions of Pareto optimal solutions and the
following additional axiom.

Axiom 1 The preference relation Â is invariant with

412 Lev Utkin



respect to positive linear transformation1.

The main idea of Noghin’s theory is to compare cri-
teria by means of parameters.

Definition 3 Let i, j ∈ N = {1, 2, ..., r}, i 6= j. We
say that the i-th criterion is more important than the
j-th criterion with two positive parameters wi and wj

if for any two vectors X,Y ∈ X such that

xi > yi, xj < yj , xk = yk, ∀k ∈ N\{i, j},

xi − yi = wi, xj − yj = −wj ,

the relationship X Â Y is valid.

A behavior interpretation of the parameters wi and
wj is the following. The DM is willing to pay wj

units for the j-th criterion in order to get wi units for
the i-th criterion. The relative importance coefficient
is defined as

θij =
wj

wi + wj
.

It can be seen that 0 < θij < 1. At that, θij is close to
1 if wj À wi. Moreover, θij is close to 0 if wj ¿ wi.

Introduce the following vector

Wij = (0, ..., 0, wi, 0, ...,−wj , 0, ..., 0),

whose r− 2 elements are zero, the i-th element is wi,
the j-th element is −wj . If the relation X Â Y is
valid with the given parameters wi and wj , then we
can write that the relation Wij Â 0r is valid. Here 0r

is the vector of r zero elements. The relation Wij Â 0r

is equivalent to the relation Θij Â 0r, where

Θij = (0, ..., 0, 1− θij , 0, ...,−θij , 0, ..., 0).

One of the main results of Noghin’s theory of the rel-
ative importance of criteria is the following theorem.

Theorem 1 (Noghin [5]) Let the i-th criterion be
more important than the j-th criterion with the pair
of positive parameters wi and wj. Then for any
nonempty set of optimal vectors OptX, it follows that

OptX ⊆ P∗(X) ⊆ P(X),

where P(X) is a set of Pareto-optimal vectors with
respect to criteria C = {C1, ..., Cr}; P∗(X) is a set of
Pareto-optimal vectors with respect to criteria C∗ =
{C∗1 , ..., C∗r } such that

C∗j = wjCi + wiCj , C∗k = Ck, k 6= j.

1A binary relation R defined on Rr is said to be invariant
with respect to positive linear transformation if for any vectors
X, Y, c ∈ Rr and each positive number α the relationship XRY
implies (αX + c)R (αY + c).

In other words, Theorem 1 provides a simple compu-
tation way for reducing the Pareto optimal set P(X).
Its proof is based on properties of convex cones [6]
produced by preferences of the form Wij Â 0. Theo-
rem 1 is very important because it is a tool for dealing
with the information about the relative importance of
criteria. It can be easy written in terms of the relative
importance coefficients θij .

4 Sets of desirable gambles

A goal of this section is to consider Noghin’s theory of
the relative importance of criteria in the framework of
desirable gambles [13, 14] and to show that its results
and statements can be rather simply obtained on the
basis of the framework. Preliminaries of the frame-
work of desirable gambles given below can be found
in [14].

Let Ω denote the set of possible outcomes under con-
sideration. A bounded mapping from Ω to R (the real
numbers) is called a gamble. Let L be a nonempty set
of gambles. A mapping P : L → R is called a lower
prevision or lower expectation. The lower prevision
of a gamble X is interpreted as a supremum buying
price for X, meaning that it is acceptable to pay any
price smaller than P (X) for the uncertain reward X.
A lower prevision is said to be coherent when it is the
lower envelope of some set of linear expectations, i.e.,
when there is a nonempty set of probability measures,
M, such that P (X) = inf {EP (X) : P ∈M} for all
X ∈ L, where EP (X) denotes the expectation of X
with respect to P . The conjugate upper prevision is
determined by P (X) = −P (−X). It is interpreted as
an infimum selling price for X.

For X,Y ∈ L, write X ≥ Y to mean that X(ω) ≥
Y (ω) for all ω ∈ Ω, and write X > Y to mean X ≥ Y
and X(ω) > Y (ω) for some ω ∈ Ω. According to Wal-
ley [13], a gamble X is inadmissible in L when there is
Y ∈ L such that Y ≥ X and Y 6= X. Otherwise X is
admissible in L. The subset P of admissible gambles
in L is an analogue of the Pareto set in MCDM. A
set of desirable gambles, denoted by D, is a subset of
L. A set of desirable gambles is said to be coherent
when it satisfies the four axioms:

D1. 0 /∈ D.

D2. if X ∈ L and X > 0, then X ∈ D.

D3. if X ∈ D and c ∈ R+, then cX ∈ D.

D4. if X ∈ D and Y ∈ D, then X + Y ∈ D.

Thus a coherent set of desirable gambles is a con-
vex cone of gambles that contains all positive gambles
(X > 0) but not the zero gamble. Consequence of the
axioms: If X ∈ D and Y ≥ X, then Y ∈ D.
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It can be seen from the axioms of coherence that D3
and D4 coincide with Axiom 1 about positive linear
transformation used by Noghin in his theory. More-
over, it can be seen from Definition 3 that assessments
of the parameters wi and wj can be regarded as some
extension of the probability ratios studied by Walley
[13]. The probability ratios generalize the compara-
tive probability judgments and have the form “A is at
least l times as probable as B”, where l is a positive
number. The gamble A− lB is almost desirable. This
implies that A Â lB.

Walley states that there is a one-to-one correspon-
dence between coherent sets of desirable gambles and
coherent partial preference orderings, defined by X Â
Y if and only if X − Y ∈ D. This is very important
statement which allows to find the same correspon-
dence between the framework of desirable gambles
and Noghin’s theory.

If a closed convex set of probability measures M is
given, then we can define a set of desirable gambles
as follows:

D = {X ∈ L : X > 0 or EP (X) > 0, ∀P ∈M}. (1)

Then D is coherent and M can be recovered from it
by

M = {P : EP (X) ≥ 0, ∀X ∈ D} . (2)

Note that (1) can be rewritten as

D = {X ∈ L : X > 0 or EM(X) > 0} . (3)

Suppose that we have information about the relative
importance of the i-th and the j-th criteria, i.e. the i-
th criterion is more important than the j-th criterion
with two positive parameters wi and wj . Let us return
to the vector Wij produced by the parameters wi, wj

and consider again the relation Wij Â 0r (see Section
3). This relation can be written in the framework of
desirable gambles as the condition Wij−0r ∈ D or just
Wij ∈ D. In other words, the information about the
relative importance of the i-th and the j-th criteria
can be represented as the condition that the vector
Wij belongs to the set of desirable gambles.

Now we reformulate Noghin’s theorem and prove it in
terms of desirable gambles.

Let X and Y be two DA’s. We will denote below the
vector Z = X − Y and its components zk = xk − yk

for short.

Theorem 2 The preference X Â Y is valid if X∗ >
Y ∗ and Wij ∈ D. Here X∗ = (x∗1, ..., x

∗
r) and Y ∗ =

(y∗1 , ..., y∗r ) such that

x∗j = wjxi + wixj , x∗k = xk, k 6= j,

y∗j = wjyi + wiyj , y∗k = yk, k 6= j.

Proof. Note that X Â Y if X − Y = Z ∈ D or
EP (Z) > 0 for all P ∈ M. The condition Wij ∈ D
restricts the set M of possible probability measures
by the constraint EP (Wij) ≥ 0. If we denote P =
(π1, ..., πr), then the above constraint can be rewritten
as wiπi − wjπj ≥ 0. This implies that the set of
all probability measures M is reduced to the subset
M(ij) ⊆ M. The subset M(ij) is defined by the
constraints

r∑

k=1

πk = 1, πk ≥ 0, ∀k ∈ N,

wiπi − wjπj ≥ 0.

Here N = {1, 2, ..., r}.
Let us find extreme points of M(ij). They are

(0, ..., 0, 1k, 0, ..., 0), ∀k ∈ N\{j},

and
πi =

wj

wi + wj
, πj =

wi

wi + wj
,

πk = 0, ∀k ∈ N\{j}.
The last extreme point is produced by the equality
wiπi − wjπj = 0.

The extreme points define the set of probability dis-
tributions M(ij). Therefore, if we prove that the in-
equality EP (Z) > 0 is valid for extreme points, then
this inequality will be valid for all P ∈ M(ij). The
first k − 2 extreme points give

EP (Z) = zk, ∀k ∈ N\{i, j}.

The last extreme point gives

EP (Z) = πizi + πjzj =
wjzi

wi + wj
+

wizj

wi + wj
.

At the same time, the condition X∗ > Y ∗ implies that
zk > 0 or zk = 0 for all k 6= j, and wjzi + wizj > 0.
Hence EP (Z) > 0 for all P ∈ M(ij) and X Â Y , as
was to be proved.

Example 1 Consider the simplified and modified ex-
ample of the optimal choice of a place for the airport
construction given by Keeney and Raiffa in their book
[3] and solve it by using Noghin’s theory. The problem
is to decide where a new airport should be constructed
in accordance with the following criteria2: minimize
investment of capital in million dollars (C1), maxi-
mize carrying capacity in the daily number of air trav-
ellers (C2), maximize safety expressed in the 9-point

2The example is given with some changes.
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scale from 1 till 9 (C3), minimize remoteness in kilo-
meters (C4). There are four places for the construc-
tion (DA’s) denoted X1, X2, X3, X4. The MCDM
problem can also be represented by means of the ma-
trix

C1 C2 C3 C4

X1 −20 15000 6 −3
X2 −30 25000 4 −1
X3 −40 18000 7 −5
X4 −25 20000 5 −2

.

Here negative values are taken in order to replace the
“minimization” goals by the “maximization” ones.

It can be seen from the matrix that all the DA’s belong
to the Pareto set.

The DM is willing to pay w3 = 3 units for the third
criteria in order to get w1 = 2 units for the first cri-
terion. The provided information can be represented
by the gamble W13 = (2, 0,−3, 0) ∈ D or equivalently
by the gamble Θ13 = (2/5, 0,−3/5, 0) ∈ D.

Then we write the modified matrix by using Noghin’s
theorem

C1 C2 3 · C1 + 2 · C3 C4

X1 −20 15000 −48 −3
X2 −30 25000 −82 −1
X3 −40 18000 −106 −5
X4 −25 20000 −65 −2

.

Hence, we reduce the Pareto set which now consists of
three DA’s X1, X2 and X4. It can be seen that it is
not enough to have the supplied judgment for getting
one optimal solution.

5 Groups of the most important or
preferable criteria

Let us quickly return to the analytic hierarchy pro-
cess method. In addition to the fact that it must per-
form very complicated and numerous pairwise com-
parisons amongst alternatives the method uses precise
estimates of experts or DM’s. This condition can not
be satisfied in many applications because judgments
elicited from experts are usually imprecise and unre-
liable due to the limited precision of human assess-
ments. In order to overcome these difficulties and to
extend the analytic hierarchy process on a more real
elicitation procedures, Beynon et al [1, 2] proposed
a method using Dempster-Shafer theory and called
the DS/AHP method. The method was developed for
decision making problems with a single DM, and it
applies the analytic hierarchy process method for col-
lecting the preferences from the DM and for modelling
the problem as a hierarchical decision tree. It should

be noted that the main idea underlying the DS/AHP
method is not applying Dempster-Shafer theory to the
analytic hierarchy process method. It is comparison of
groups of alternatives with a whole set of alternatives.
Such the type of comparison is equivalent to the pref-
erences stated by the DM. In other words, Beynon et
al [1, 2] proposed to consider preferences of the form
B Â X with some degree v of it, where B is a subset
or a group of DA’s, X is the set of all alternatives, v is
a positive number in accordance with some scale [8].
The same can be carried out for the criteria, i.e., we
can consider preferences of the form D Â C, where
D is a subset of criteria. It is obvious that this pref-
erence can be rewritten in the form D Â C\D. The
authors of the papers [1, 2] assign to every subset B
some basic probability assignment (BPA) [9] denoted
m(B). The same can be done for criteria.

Such the elicitation procedure has some virtues. First,
a DM does not need to choose the most important
criterion from the set of criteria. The DM chooses a
subset of criteria by assuming that one of these cri-
teria is the most important or important with some
degree of importance. However, these judgments are
used in the aforementioned aggregating criteria meth-
ods which are ad hoc. As a result, it is difficult to
validate the approach in specific applied problems.

Now we will formalize the above elicitation procedure
in the framework of Noghin’s theory and desirable
gambles. Then we will study how this procedure can
be applied to reducing the set of Pareto optimal solu-
tions.

Suppose that there is a set of t judgments of the
form Dl Â C with the corresponding BPA’s m(Dl),
l = 1, ..., t. The first question is to construct a crite-
rion (criteria) for the validity of the preference X Â Y .
These criteria will be called global in order to distin-
guish them from the criteria C1, ..., Cr of the consid-
ered MCDM problem.

The second question is the computation rules for the
validity of X Â Y .

5.1 Simple comparison judgments

First we consider simple comparison judgments of the
form: “I do not know which criterion is the most
important, but this criterion belongs to the subset
B ⊆ C”. Here the degree v is assumed to be un-
known. Suppose that the unknown important crite-
rion has the number k and the subset B contains t el-
ements with numbers from the index set3 B0. Denote
B1 = N\B0, N = {1, ..., r}. Then we can provide

3The set of indices of elements of B will be denoted B0. The
set of indices of elements of C\B will be denoted B1.
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r − t judgments:

“The k-th criterion is more important than the j-th
criterion from C\B with the pair of positive

parameters wk = 1 and wj = 1”.

Here k ∈ B0 and j ∈ B1. So, every judgment pro-
duces the gamble4

Wkj = (0, ..., 0, 1k, 0, ...,−1j , 0, ..., 0), (4)

such that Wkj Â 0r, k ∈ B0, j ∈ B1.

It should be noted that the simple comparison judg-
ment with the above desirable gamble Wkj can be ap-
plied to decision problems with uniform criteria, i.e.,
criteria have identical numerical scales.

Now we can find the subset M(k, B1) ⊆ M of prob-
ability distributions P = (π1, ..., πr) restricted by the
desirable gambles Wkj , j ∈ B1, or equivalently its ex-
treme points. The subset M(k, B1) is produced by
the judgment about comparison of the k-th criterion
and the j-th criterion.

Proposition 1 Given the additional information in
the form (4), the preference X Â Y is valid if the
condition

zk +
∑

j∈L

zj ≥ 0

is valid for all L ⊆ B1 and zi ≥ 0 for all i ∈ B0.

Proof. Let us find the subset M(k, B1). It follows
from (2) and from (4) that this set is produced by the
constraints5

πk − πj ≥ 0, j ∈ B1, πi ≥ 0, i ∈ N,

π1 + π2 + ... + πr = 1.

Consider r equalities instead of inequalities in the
above constraints. Hence, we get extreme points of
the form:

πk = 1, πi = 0, ∀i 6= k,

πk = 1/2, πj1 = 1/2, j1 ∈ B0,

πk = 1/3, πj1 = πj2 = 1/3, j1, j2 ∈ B0,

· ··
πk = 1/(r − t + 1), πji = 1/(r − t + 1),

ji, ∈ B0, i = 1, ..., r − t.

4The reason why the parameters wk = 1 and wj = 1
are taken for formalizing the simple comparison judgments is
clearly seen from the proof of Proposition 1.

5One can see from the first r − t constraints that they cor-
respond to the comparison of probabilities πk and πj , i.e., they
formalize the judgment “the k-criterion is as probable as j-th
criterion”. This implies that the parameters wk = 1 and wj = 1
form the simple comparison.

Only non-zero elements of extreme points are written
here. The proof directly follows from the condition of
desirability of gambles X − Y , which is of the form:
EP (X − Y ) ≥ 0, ∀P ∈ extr(M(k, B1)).

Several conditions in Proposition 1 can be replaced
by one equivalent condition

zk + min
L⊆B1

∑

j∈L

zj ≥ 0. (5)

So, the Pareto set can be reduced by using condition
(5) for every pair of DA’s.

It also follows from the proof of Proposition 1 and
from (5) that the lower expectation of the gamble Z =
X − Y under conditions Wkj Â 0r, j ∈ D1

l , denoted
EM(k,D1

l )(Z) is of the form

EM(k,D1
l )(Z) = min

L⊆D1
l

EP (Z)

= min
L⊆D1

l

1
qL + 1


zk +

∑

j∈L

zj


 . (6)

Here L is a subset of D1
l ; qL is the number of elements

in L (qL = card (L)).

We have considered how to formalize “one-side inter-
val” preference6. However, the additional information
about BPA’s of the corresponding “intervals” has not
been applied to the studied MCDM problem. In order
to take this additional information into account, we
have to introduce the so-called global criteria which
establish how to compare two DA’s from the Pareto
set in accordance with all the available information.
It should be noted that the global criteria differ from
the criteria (goals) C1, ..., Cr.

Below two global criteria for comparison DA’s X and
Y are proposed.

5.1.1 The first global criterion

The first global criterion is based on the definition of
the desirability (3) and can be written as follows. The
preference X Â Y is valid if EPEP (X −Y ) > 0. Here
P is a set of probability distributions defined on the
partition of M produced by the given information in
the form of preferences Dl Â C with BPA’s m(Dl),
l = 1, ..., t. For computing the lower expectation, we
can use the approach introduced by Strat [10], which
directly relies on belief functions based on some basic
probability assignment m(·). According to this ap-
proach, the lower expectation of Eh of a function h is

6We have still studied judgments with a fixed k and “inter-
val” C\D without analyzing the interval D.
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determined as follows:

Eh =
t∑

l=1

m(Dl) min
x∈Dl

h(x).

Let M(k, D1
l ) be a subset of probability distributions

produced by conditions Wkj Â 0r, j ∈ D1
l . Then

m(Dl) corresponds to the union of subsets

M(Dl) = ∪k∈D0
l
M(k, D1

l ).

Then the function h(x) in the considered case is the
expectation

∑r
i=1 πizi. Hence, we get

EPEP (Z) =
t∑

l=1

m(Dl)

(
min
k∈D0

l

inf
P∈M(Dl)

r∑

i=1

πizi

)
.

However, there holds

inf
P∈M(Dl)

r∑

i=1

πizi = EM(k,D1
l )(X − Y ).

Hence, Proposition 2 can be stated from the above
reasoning.

Proposition 2 Suppose that there is a set of t judg-
ments of the form Dl Â C with the corresponding
BPA’s m(Dl), l = 1, ..., t. The preference X Â Y
is valid in accordance with the first global criterion if
the condition

EPEP (X − Y )

=
t∑

l=1

m(Dl) min
k∈D0

l

EM(k,D1
l )(X − Y ) ≥ 0

is valid. Here EM(k,D1
l )(X − Y ) is defined from (6).

5.1.2 The second global criterion

The second criterion is based on the definition of be-
lief and plausibility functions. According to this cri-
terion, we can say about the preference X Â Y with
some “threshold” or confident probability which lies
between the belief and plausibility functions. Note
that the set M of all probability distributions can be
divided into two subsets M1 and M2. The subset
M1 satisfies the condition X − Y ∈ D. The subset
M2 satisfies the condition X − Y /∈ D. Then all sub-
sets M(Dl) belonging to M1 form the belief function
Bel (X − Y ∈ D). Note that the subset M(Dl) inter-
sects M1 if at least for one of the values k from D0

l

the subset M(k,D1
l ) belongs to M1. The proposition

follows from the above.

Proposition 3 Suppose that there is a set of t judg-
ments of the form Dl Â C with the corresponding
BPA’s m(Dl), l = 1, ..., t. The preference X Â Y
is valid in accordance with the second global criterion
with a probability belonging to the interval with the
following bounds

Bel (X − Y ∈ D) =
∑

l∈R

m(Dl),

Pl (X − Y ∈ D) =
∑

l∈G

m(Dl),

where R is a set of indices such that for every l ∈ R,
there holds

min
k∈D0

l

EM(k,D1
l )(X − Y ) > 0,

G is a set of indices such that for every l ∈ G, there
holds

max
k∈D0

l

EM(k,D1
l )(X − Y ) > 0.

Here EM(k,D1
l )(X − Y ) is defined from (6).

The belief function is the lower (pessimistic or con-
servative) bound for the probability of the preference
X Â Y .

Note that Propositions 2 and 3 are rather general and
their main results do not depend on the way of ob-
taining the lower expectation EM(k,D1

l )(X−Y ). This
implies that the propositions can be generalized by
studying a more practical case when we have parame-
ters of the criteria importance wk and wj (see Section
3).

5.2 General case

In this section, we generalize the simple comparison
judgments by introducing parameters for every pair
of criteria, i.e. for every k, DM’s supply different pa-
rameters w

(k)
j for all j ∈ B1. This is a possible for-

malization of judgments: “The k-th criterion from B
is more important than the j-th criterion from C\B
with the pair of positive parameters wk and wj”. A
special case of the above judgment is the preferences
provided by DM’s with some degree v under condition
that the criteria have identical scales. In this case, we
have v = wj/wk or v = θkj/ (1− θkj). However, we
consider the general case.

Assume for example that C = {C1, C2, C3}, B =
{C1, C2}, and C\B = {C3}. Then the correspond-
ing judgment of a DM might also have the form: “I’m
willing to pay w3 for C3 in order to get w1 for C1. I’m
also willing to pay w3 for C3 in order to get w2 for
C2. However, I do not know what is better. ”

ISIPTA’09: Multi-Criteria Decision Making with Special Type Of Information 417



Suppose that we have a set of judgments such that
every judgment produces the gamble

Wkj = (0, ..., 0, wk, 0, ...,−wj , 0, ..., 0), (7)

such that Wkj Â 0r, k ∈ B0, j ∈ B1.

Now we can find the set M restricted by the desirabil-
ity of gambles Wkj or equivalently its extreme points.

Proposition 4 Given the additional information in
the form (7), the preference X Â Y is valid if the
condition

zk +
∑

j∈L

wk

wj
zj ≥ 0

is valid for all L ⊆ B1 and zi ≥ 0 for all i ∈ B0.

Proof. Denote vkj = wk/wj . It follows from (2) and
from (7) that the setM is produced by the constraints

vkjπk − πj ≥ 0, j ∈ B1,

πi ≥ 0, i ∈ N,

π1 + π2 + ... + πr = 1.

Case 1. vkjπk = πj , πi = 0, ∀i ∈ N\{k, j}. Then for
every j ∈ B1, we get the extreme points

πk =
1

1 + vkj
, πj =

vkj

1 + vkj
,

πi = 0, ∀i = N\{k, j}.

Case 2. vkj1πk = πj1 , vkj2πk = πj2 , πi = 0, ∀i ∈
N\{k, j1, j1}. Then for every pair j1, j2 ∈ B1, we get
the extreme points

πk =
1

1 + vkj1 + vkj2

, πj1 =
vkj1

1 + vkj1 + vkj2

,

πj2 =
vkj2

1 + vkj1 + vkj2

, πi = 0, ∀i = N\{k, j1, j2}.

By continuing the analysis of the cases, we write the
following last case.

Case r − t + 1. vkjiπk = πji , i = 1, ..., r − t, πl = 0,
∀l ∈ B0\{k}. Then we get the extreme points

πk =
1

1 +
∑r−t

i=1 vkji

,

πji =
vkji

1 +
∑r−t

i=1 vkji

, i = 1, ..., r − t,

πl = 0, ∀l ∈ B0\{k}.

The proof directly follows from the condition of desir-
ability of the gamble Z = X−Y , which is of the form:

EP (Z) ≥ 0, ∀P ∈ extr(M). Hence, for every subset
L ⊆ B1, we can write the expectations as follows:

EP (Z) =
zk

1 +
∑

i∈L vki
+
∑

j∈L

vkjzj

1 +
∑

i∈L vki
.

Since vkji
≥ 0 for all k, j, i, then EP (Z) ≥ 0 for every

extreme point if

zk +
∑

j∈L

vkjzj ≥ 0, L ⊆ B1,

as was to be proved.

We get the rather simple expressions for reducing the
Pareto set.

Generally speaking, the values wk in Proposition 4
may be different for different values of j ∈ L and
the index kj should be used. However, we assume
for simplicity that the parameters wk are identical for
every Wkj . Moreover, it can be seen from the proof
of Proposition 4 that the condition of the preference
X Â Y depends only on the ratio wk/wj and we can
always change wk and wj without changing the above
ratio.

Let us considers a special case when each of the sub-
sets B1 and B0 consists of one element.

Corollary 1 Suppose that B1 = {k} and B0 = {j}.
Then the preference X Â Y is valid if the conditions

wjzk + wkzj ≥ 0, zi ≥ 0, ∀i 6= j,

are valid.

One can see that the conditions in Corollary 1 coincide
with the conditions in Theorems 1 and 2.

Several conditions in Proposition 4 can be replaced
by one equivalent condition

zk + wk min
L⊆B1

∑

j∈L

zjw
−1
j ≥ 0. (8)

By using (8) and Propositions 2, 3 we can write the
following corollary.

Corollary 2 If there are judgments of one DM (l =
1, D1 = D) with the BPA m(Dl) = 1, then the prefer-
ence X Â Y is valid in accordance with the first global
criterion if the conditions

min
k∈D0

{zk + Twk} ≥ 0

are valid. Here

T = min
L⊆D1

∑

j∈L

zjw
−1
j .
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Moreover, the belief function Bel (X − Y ∈ D) is 1 in
accordance with the second global criterion if the above
conditions are valid.

It also follows from the proof of Proposition 4 and
from (8) that the lower expectation of the gamble Z =
X − Y under conditions Wkj Â 0r, j ∈ D1

l , denoted
EM(k,D1

l )(Z) is of the form

EM(k,D1
l )(Z) = min

L⊆D1
l

EP (Z)

= min
L⊆D1

l

zk + wk

∑
j∈L zjw

−1
j

1 + wk

∑
i∈L w−1

i

. (9)

Then Propositions 2 and 3 can be used in the consid-
ered case of the elicited information if we replace (6)
by (9).

Example 2 Let us return to Example 1. The judg-
ment of the first DM is the following:

“I’m willing to pay w2 = 15000 for C2 in order to get
w1 = 15 for C1 and I’m willing to pay w4 = 7 for
C4 in order to get w1 = 15 for C1. I’m also willing
to pay w2 = 24000 for C2 in order to get w3 = 1 for
C3 and I’m willing to pay w4 = 10 for C4 in order to
get w3 = 1 for C3. However, I do not know what is
better. ”

The above judgment can be formalized as D1 =
{C1, C3} Â {C2, C4}. The judgment of the second
DM is the following:

“I’m willing to pay w3 = 6 for C3 in order to get
w1 = 30 for C1. I’m also willing to pay w3 = 8 for C3

in order to get w2 = 10000 for C4. I’m also willing
to pay w3 = 20 for C3 in order to get w4 = 1 for C4.
However, I do not know what is better. ”

This judgment can be formalized as D2 =
{C1, C2, C4} Â {C3}.
The BPA of the first DM is m(D1) = 0.6. The BPA
of the second DM is m(D2) = 0.4.

Let us find EM(k,D1
l )(X − Y ). If D1

1 = {2, 4} and
k = 1, 3, then it follows from (9) that

EM(1,D1
1) = min

(
z1,

z1 + 15z2/15000
1 + 15/15000

,

z1 + 15z4/7
1 + 15/7

,

z1 + 15z2/15000 + 15z4/7
1 + 15/15000 + 15/7

)
,

Table 1: Comparison of DA’s by using two criteria
X Â Y EPEP (X − Y ) Bel Pl
X1 Â X2 −1199 0.6 1
X1 Â X3 0.14 0.4 1
X1 Â X4 0.09 0.6 1
X2 Â X1 −10 0 0.4
X3 Â X1 −1614 0 0.6
X4 Â X1 −1614 0 0.6
X2 Â X3 −2.13 0 1
X2 Â X4 −5 0 0.4
X3 Â X2 −2810 0 0.6
X3 Â X4 −810.2 0 0.6

EM(3,D1
1) = min

(
z3,

z3 + 1z2/24000
1 + 1/24000

,

z3 + 1z4/10
1 + 1/10

,

z3 + 1z2/24000 + 1z4/10
1 + 1/24000 + 1/10

)
.

If D1
2 = {3} and k = 1, 2, 4, then it follows from (9)

that

EM(1,D1
2) = min

(
z1,

z1 + 30z3/6
1 + 30/6

)
,

EM(2,D1
2) = min

(
z2,

z2 + 10000z3/8
1 + 10000/8

)
,

EM(4,D1
2) = min

(
z4,

z4 + 1z3/20
1 + 1/20

)
.

The computation results with using Propositions 2
and 3 are shown in Table 1. It can be seen from
Table 1 that the reduced Pareto set in accordance
with the first criterion EPEP (X −Y ) > 0 of deci-
sion making consists of two DA’s X1 and X2 because
EPEP (X1 −X3) = 0.14 > 0 and EPEP (X1 −X4) =
0.09 > 0. However, by using the second criterion
of decision making with the “threshold” probabil-
ity 0.6 for the belief function, we can construct the
reduced Pareto set consisting of two DA’s X1 and X3.

6 Conclusion

A method for solving a MCDM problem with the
elicited information about criteria of a special form
has been proposed in the paper. The main feature
of the method is that it is based on reducing a set of
Pareto optimal solutions and does not use aggregation
of criteria for solving the problem. The additional in-
formation applied in the proposed method is rather
natural because DM’s or experts are usually able to
provide parameters wi and wj whose simple behavior
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interpretation is considered in Section 3 and in Ex-
ample 2.

It has been shown in the paper that Noghin’s theory
of relative importance of criteria can be easy repre-
sented in terms of sets of desirable gambles and many
statements of the theory can be proved by means of
desirable gambles and the imprecise probability the-
ory.

Two global criteria of decision making are introduced.
The first criterion based on the lower expectation uses
the second-order models as a main tool for determin-
ing whether a preference X Â Y is valid or not. The
second criterion is based on determining the belief and
plausibility function in the framework of Dempster-
Shafer theory. It uses the so-called “threshold” prob-
ability for the final decision making.

One can see from the proposed expressions (6), (9)
and Propositions 2 and 3 that all the mathemati-
cal expressions are rather simple from the compu-
tation point of view and they do not require spe-
cial procedures for computing the lower expectation
EPEP (X − Y ) and the belief and plausibility func-
tions.

Some specialists in Dempster-Shafer theory might ob-
ject that the condition of independence of DM’s in
combining their judgments is not taken into account.
Of course, we could assume that the DM’s are in-
dependent and use, for instance, Dempster rule of
combination. However, the main aim of the paper
is to propose an approach for reducing the Pareto set
on the basis of the special information, in particular,
on judgments producing sets of gambles (7). Vari-
ous modifications and features of the approach can
be studied in further research.

It should be noted that the simple case has been stud-
ied in the paper when only judgments of the special
type are provided by DM’s. However, the proposed
approach can be extended on a more complicated
case. Therefore, a direction for further work is to
investigate the general cases.
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Abstract

A new framework is explored for combining imprecise
Bayesian methods with likelihood inference, and it is
presented in the context of reliability growth mod-
els. The main idea of the framework is to divide a
set of the model parameters of interest into two sub-
sets related to fundamentally different aspects of the
overall model, and to combine Walley’s idea of im-
precise Bayesian models related to one of the sub-
sets of the model parameters with maximum likeli-
hood estimation for the other subset. In accordance
with the first subset and statistical data, the impre-
cise Bayesian model is constructed, which provides
lower and upper predictive probability distributions
depending on the second subset of parameters. These
further parameters are then estimated by a maximum
likelihood method, based on a novel proposition for
maximum likelihood estimation over sets of distribu-
tions following from imprecise Bayesian models for the
other subset of parameters. Use of this hybrid method
is illustrated for reliability growth models and regres-
sion models, and some essential topics that need to be
addressed in order to fully justify and further develop
this framework are discussed.

Keywords. Bayesian inference, imprecise probabil-
ities, linear regression, lower and upper probability
distributions, maximum likelihood estimation, relia-
bility growth models

1 Introduction

One of the main goals of system analysis is to pre-
dict its future behaviour on the basis of past experi-
ence, for which one typically constructs a statistical
model to quantify uncertainties and to enable learn-
ing from data. There is a variety of statistical theo-
ries and methods for such inference, and researchers
often strongly advocate one specific general theory,
e.g. the Bayesian approach, whilst rejecting other ap-
proaches that also have their merits. In this paper we

explore combined use of imprecise Bayesian methods,
where sets of prior distributions are used, with maxi-
mum likelihood estimation, both on different subsets
of all parameters appearing in a statistical model. At
first look, these methods may appear to have little in
common and one may favour either a complete (im-
precise) Bayesian approach or maximum likelihood es-
timation of all parameters. However, if one considers
a Bayesian approach as using a weighted likelihood
function, with weights reflecting prior knowledge, the
two are less contradictory and exploration of the op-
portunity to combine both into a hybrid method can
be of interest. In this paper we set the first steps
in this direction, which include a crucial proposition
on maximum likelihood estimation for a subset of pa-
rameters following imprecise Bayesian inference on a
different subset of parameters. Detailed fundamen-
tal analysis and further exploration of this hybrid ap-
proach will be important for its full justification, in
particular with regard to possible interpretations of
the resulting inferences. We present our ideas in the
context of reliability growth models.

An important feature of many systems is growth or
change of some of their characteristics over time,
which has to be taken into account when construct-
ing a statistical model for the system. For example,
a common approach for measuring software reliabil-
ity [18] is by using a statistical model whose param-
eters are generally estimated from available data on
software failures, and the model may be obtained by
observing the overall trend of reliability growth dur-
ing the debugging process. In other words, a software
reliability growth model describes how observation of
failures, and correcting the underlying faults – such
as occurs in software development when the software
is being tested and debugged – affect the reliability of
software. The word “growth” is rather conventional
to describe reliability models with important charac-
teristics changing over time, it does not restrict use
of such models to systems whose reliability actually
improves. In other words, a growth model can be
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regarded to be a mathematical expression which fits
experimental data from systems with some important
changes over time.

Suppose that X1, ..., Xn is a series of random vari-
ables, for instance, numbers of successful software
runs between the (i− 1)-th and i-th software failures.
We suppose that variable Xi is governed by a proba-
bility distribution function pi(x | b,d) depending on
two vectors of parameters b and d. The vector b con-
tains parameters of the probability distribution under
consideration. The vector d of parameters charac-
terizes the growth, i.e., the growth is modelled by a
function f(i,d) which characterizes the change of the
system behavior (‘growth’). For example in software
reliability analysis, the function f mainly shows how
parameters b of the probability distribution pi change
with the number of corrected errors or faults i. Gen-
erally, the vector b depends on d and the number i of
the random variable Xi under consideration.

It should be noted that the growth function in some
models is explicitly stated. For instance, Littlewood
and Verrall [8] suggest software reliability models with
linear and quadratic forms for the function f with
two parameters d = (d0, d1): f(i,d) = d0 + d1i or
f(i,d) = d0 +d1i

2. In these models, the growth func-
tion is included as parameter of a gamma distribution,
which changes with the number of corrected errors in
the software.

A similar feature occurs in regression models [9],
which in their simplest form provide a relation be-
tween predictor variables Xi, i = 1, ..., n, and a re-
sponse variable Y . A typical regression model can be
written as

Y = f(X,d) + ε.

Here X = (1, X1, ..., Xn); d is the vector of parame-
ters; ε are uncorrelated random errors or noise, usu-
ally assumed to have expected value 0 and unknown
variance σ2. In such a model, d can be a set of growth
parameters, for instance, coefficients in a linear re-
gression model, while setting b = (σ2) fits with the
generic notation suggested above.

Clearly, the growth function f may model different
characteristics. In software reliability models, it typi-
cally enables possible changes of the parameters b of
the probability distribution of random variables Xi

to reflect actual changes to software systems, mostly
due to error corrections. In regression models, the pa-
rameter b = (σ2) is assumed to be constant, but the
growth function characterizes the system behaviour.
Nevertheless, both types of models are equivalent
from mathematical point of view1. In both the cases,

1The software reliability growth models in the literature are
often called regression models due to some common features of

we assume a form of f and wish to learn about the
parameters d of f from data.

There are several approaches for inference about
growth models on the basis of statistical data. Nowa-
days, the most popular inferential methods tend to
use the likelihood function as main mechanism to link
model parameters and statistical data. For models
such as reliability growth models, estimation is re-
quired both for parameters of the basic probability
model and parameters explicitly modelling the growth
behaviour. This may involve a substantial number of
parameters, with possibly relatively few data avail-
able. In this paper, we explore a possible way for
dealing with this, by considering imprecise Bayesian
inference for one subset of parameters, and a maxi-
mum likelihood approach to estimate the other sub-
set of parameters. Such imprecise Bayesian inference
has been presented, without a link to maximum like-
lihood for further parameters, by Walter, Augustin
and Peters [17] with application to linear regression
models. Typically, a precise parametric model is as-
sumed, with imprecision following through the use of
sets of conjugated priors [1, 11, 16]. It is theoretically
feasible to use sets of priors for all parameters com-
bined, but this may well lead to very wide posterior
intervals for inferences of interest, and if one can esti-
mate some of the parameters by means of maximum
likelihood methods, it could be also be attractive with
regard to not needing to attempt to assign informa-
tive (sets of) prior distributions, in particular if they
are on a feature about which no clear expert judge-
ment is available or which one strongly wishes to infer
from the data.

The approach we propose in this paper is as follows.
By using imprecise Bayesian inference, we can exclude
all the parameters of the vector b from the model, and
derive a set of predictive cumulative distribution func-
tions (CDFs) such that their lower and upper bounds
are conditional on all the parameters of the vector d.
This is followed by estimation of the parameters of
the vector d, for which we use a modified maximum
likelihood estimation method described and justified
in Section 3. This approach allows us to reduce the
number of parameters in the model and to maximize
the likelihood function only over parameters of the
vector d without considering the parameters of vec-
tor b. Even further, it can be applied if one explicitly
wishes to take expert judgement into account on the
part of the model corresponding to parameters b, and
this expert judgement is best reflected by imprecise
probabilities, while no such prior information is avail-
able for the model aspects related to parameters d,
for which, however, one can use process data.

the models.
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To simplify the presentation of the proposed ap-
proach, we study discrete random variables Xi corre-
sponding to the number of successful software runs be-
tween the (i−1)-th and i-th software failures (for the
first software reliability growth model, Section 6) or to
the random number of failures between ti−1 and ti (for
the second software reliability growth model, Section
7), i = 1, ..., n. A general scheme for such combined
inference for regression models will be briefly consid-
ered in Section 8, to demonstrate that the proposed
framework can be applied to various problems.

2 The likelihood principle for
constructing standard models

Let K = (k1, ..., kn) be a realization of X1, ..., Xn,
with ki non-negative integers. If probability distri-
butions pi(ki | b,d) of the random variables Xi,
i = 1, ..., n, are known or assumed, then the stan-
dard way for obtaining the parameters b and d of a
growth model is to maximize the likelihood function

L(K | b,d) =
n∏

i=1

pi(ki | b,d)

over a set of parameters b and d. Values of the pa-
rameters b and d should be chosen in such a way that
makes L(K | b,d) achieve its maximum.

Many well-known software reliability growth models
presented in the literature have been implemented
with such standard maximum likelihood estimation.
Such models differ only by assumptions about the
probability distributions pi and the growth function
f . For example, pi in the Jelinski-Moranda model
[6] is exponential, the Rayleigh distribution is used in
the Schick-Wolverton model [13], and the Littlewood-
Verrall model [8] uses a Beta distribution.

3 Maximization of the likelihood
function over a set of distributions

Suppose that the random variable Xi is governed by
an unknown CDF Fi(k) which is only known to be-
long to the set Mi(d) defined by the lower and upper
CDFs

F i(k | d) = inf
Mi(d)

F (k), (1)

F i(k | d) = sup
Mi(d)

F (k). (2)

It should be noted that the set Mi(d) is the set of
all CDFs bounded by F i(k | d) and F i(k | d), so it
is not the set of parametric distributions having the
same parametric form as the bounding distributions.

This is an important feature of the proposed approach
for combined imprecise Bayesian and likelihood infer-
ence in this paper. Moreover, the bounds F i(k | d)
and F i(k | d) are assumed not to depend on the pa-
rameters b, which is achieved by taking the predictive
CDFs resulting from the imprecise Bayesian approach
applied with regard to the parameters b.

The likelihood function can be written in the following
form:

L(K | d) = Pr {X1 = k1, ..., Xn = kn} .

Proposition 1 explains how the above likelihood func-
tion is maximized over all distributions belonging to
M1(d), ...,Mn(d).

Proposition 1 Suppose that discrete random vari-
ables X1, ..., Xn are governed by a probability distri-
bution F (k) from sets Mi defined by bounds (1)-(2),
respectively. If X1, ..., Xn are independent, then there
holds

max
M1,...,Mn

Pr {X1 = k1, ..., Xn = kn}

=
n∏

i=1

{
F i(ki)− F i(ki − 1)

}
. (3)

Proof. Denote N = {1, 2, ..., n}, M = (m1, ..., mn).
Let I{1,...,ki}(m) be the indicator function taking the
value 1 if m ≤ ki. The indicator functions are used
in the proof to represent all probabilities as expecta-
tions of indicator functions, and to write the natural
extension in its standard form. The upper bound for
the joint probability Pr {X1 = k1, ..., Xn = kn} can be
found by solving the following optimization problem:

max
∞∑

m1=1

· · ·
∞∑

mn=1

I{k1,...,kn}(M)
n∏

i=1

pi(mi),

subject to
∞∑

m=1

pi(m) = 1,

F i(j) ≤
∞∑

m=1

I{1,...,j}(m)pi(m) ≤ F i(j),

i = 1, ..., n, j = 1, 2...

The objective function can be rewritten as follows:

n∏

i=1

∞∑

mi=1

(
I{1,..,ki}(mi)− I{1,..,ki−1}(mi)pi(mi)

)
.

Introduce new variables

Fi(j) =
∞∑

mi=1

I{1,...,j}(mi)pi(mi).
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Then we can rewrite the optimization problem as

max
n∏

i=1

{Fi(j)− Fi(j − 1)} ,

subject to
F i(j) ≤ Fi(j) ≤ F i(j),

F i(j − 1) ≤ Fi(j − 1) ≤ F i(j − 1), i = 1, ..., n.

By using the known rules of interval analysis, we ob-
tain (3), which completes the proof.

Proposition 1 generalizes the standard likelihood es-
timation for precise probability models.

4 Imprecise Bayesian models as a
way for obtaining the set M

We now consider how to derive the set M(d). A
straightforward way is to use ideas similar to Walley’s
imprecise Bayesian approach [16].

4.1 Standard Bayesian analysis

One of the efficient approaches to estimation of the
model parameters is Bayesian analysis [2, 4, 12]. It
treats parameters of concern as random variables
which are assigned a prior probability distribution be-
fore observations become available. If we assume that
the random variable has a probability distribution
with vector of unknown parameters b, then these pa-
rameters would be regarded as random variables with
a prior probability density π(b | c), characterized by
(hyper-)parameters c. In this case, the Bayesian ap-
proach can be applied for computing the CDF for the
random variable of interest, with the parameter b in-
tegrated out:

F (k | c) =
∫

Ω

F (k | b) · π(b | c)db.

Here Ω is the set of values of b.

Central to the Bayesian approach is the derivation
of the posterior distribution of the unknown parame-
ters, given both the data and the assumed prior den-
sity for these parameters, and achieved by application
of Bayes’ theorem. Suppose that the prior distribu-
tion π(b | c) represents our uncertainty with regard
to b prior to collecting information in the form of a
set K = (k1, ..., kn) of observed values of independent
random variables X1, ..., Xn. Let p(k) be the prob-
ability mass function for the observed data k given
b. Then the posterior distribution π(b | K, c) as the
conditional distribution of b given the observed data
K and prior parameters c is computed as

π(b | K, c) ∝ p(k1) · · · p(kn) · π(b | c).

Here π(b | K, c) represents updated beliefs about b,
with information K taken into account.

The prior distribution is often chosen to facilitate
calculation of the prior, especially through the use
of conjugate priors [2]. If the posterior distribution
π(b | K, c) and the prior distribution π(b | c) both
belong to the same family of distributions, the π and
p are called conjugate distributions and π is called a
conjugate prior for p.

4.2 Imprecise prior models

A critical feature of any Bayesian analysis is the
choice of a prior distribution, which is often done
by considering the choice of (hyper-)parameters of
an assumed parametric prior probability distribu-
tion. This is both important if one aims at mod-
elling prior information and if one aims to choose a
prior distribution in order to reflect the absence of
prior information about the parameters. In this pa-
per we focus on the latter case, where a so-called
non-informative prior has to be constructed. Many
criteria for non-informativeness, and methods to de-
termine non-informative priors, have been proposed in
the literature [2, 12], with many methods applying the
Bayes-Laplace postulate or the principle of insufficient
reason. However, this choice meets some difficulties or
problems. In particular, Walley [16] provides exam-
ples illustrating possible problems and shortcomings
of the principle of insufficient reason. Syversveen [14]
presents a detailed review of methods for constructing
non-informative priors.

An alternative way for using the Bayesian approach if
one wishes not to take prior knowledge into account
is through the use of a class P of (non-informative)
prior distributions π [15], which can overcome most
problems that can occur when single non-informative
priors are used. Such a class of priors can be consid-
ered through the lower P and upper P probabilities
of an event A as

P (A) = sup{Pπ(A) : π ∈ P},
P (A) = inf{Pπ(A) : π ∈ P}.

As pointed out by Syversveen [14] and Walley [16],
the class P under some conditions is “not a class of
reasonable priors, but a reasonable class of priors”.
This means that each single member of the class is
not a reasonable model for prior ignorance, because
no single distribution can model ignorance satisfacto-
rily, but the whole class is a reasonable model for prior
ignorance. When we have little prior information,
the upper probability of a non-trivial event should
be close to one and the lower probability should be
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close to zero. This means that the prior probability
of the event may be arbitrary from 0 to 1.

Quaeghebeur and de Cooman [11] proposed a class
of imprecise probability models in the framework of
the so-called exponential families of probability dis-
tributions [2]. These models significantly extend a
set of Bayesian imprecise models and give a possi-
bility to develop a framework for imprecise growth
models. In our approach, the set P is used in the im-
precise Bayesian framework to take data into account
with regard to parameters b, and thus to generate the
set M of predictive distributions with lower and up-
per bounds which allow us to apply Proposition 1 for
maximum likelihood estimation of the parameters d.

5 A general scheme of the model
construction

We now present a general scheme for our proposed
method that combines imprecise Bayesian inference
and maximum likelihood estimation. We present it
using the setting of reliability growth models dis-
cussed earlier in this paper, but the general idea is
more widely applicable. The first task is to define the
sets M1(d), ...,Mn(d) or their bounds by using an
appropriate imprecise Bayesian model. It consists of
four steps.

1. We divide the set of parameters into two subsets.
The first subset contains the parameters b of the
assumed probability distribution p of the random
variables X1, ..., Xn. The second subset consists
of the growth parameters d.

2. For the assumed probability distribution p of the
random variables, we choose an appropriate type
of the conjugate prior π(b | c) with parameters
c.

3. We construct the corresponding Bayesian impre-
cise model on the basis of results of Walley [16] or
Quaeghebeur and de Cooman [11]. At that point
we replace the parameters c by new parameters
including the hyperparameter s (see [11, 16] and
examples below). The produced set P depends
on the hyperparameter s.

4. By using n observations k1, ..., kn, we write the
lower F i(k | d, s) and upper F i(k | d, s) pre-
dictive CDFs as functions of the parameters
d and the hyperparameter s for every debug-
ging period. These functions form the sets2

M1(d), ...,Mn(d).
2It should be noted that the set Mi(d) also depends on the

hyperparameter s. However, we omit this parameter for shorter
notation.

After completing the four steps of the first task, the
sets M1(d), ...,Mn(d) have been derived and these
sets do not depend on the parameters b or c. They
depend only on the growth parameters d, the hyper-
parameter s for the imprecise prior class, and the
number of debugging periods i. The second task is
to estimate the parameters d, it consists of two steps.

1. The likelihood function L(K | d, s) is derived by
applying Proposition 1.

2. Values of the parameters d for a fixed s should
be chosen in such a way that makes L(K | d, s)
achieve its maximum.

Note that the parameters b do not appear in the pro-
cess, as they have been integrated out with the use
of a class of priors to derive predictive distributions,
and this process also implicitly replaced the param-
eters c by s. Clearly, the step to get b out of the
model, without explicitly estimating their values, is
imprecise and leads to predictive imprecise probabili-
ties for the random variables of interest. For example,
if we construct a software reliability model, then we
are looking for the predictive behavior of the analyzed
software after n corrections of errors. In other words,
we have to compute the probability measures of time
to the (n + 1)-th failure, in particular, the lower and
upper probability distributions of time to the (n+ 1)-
th failure. These bounds are totally determined by
the parameters d and s in our approach, with s cho-
sen to specify the class of priors, and d to be estimated
by our proposed maximum likelihood approach in the
second stage of our method.

In the following sections, we illustrate our method
by considering some special cases which apply known
imprecise Bayesian models and consider well-known
software reliability growth models.

6 A software run reliability growth
model

The detailed description of software run reliability
models is given in [3]. A run is a minimum execu-
tion unit of software. Any software execution process
can be divided into a series of runs. When a run is
executed, the software either passes or fails. Usually
it is assumed that after observing a software failure,
the software is corrected and it is usually assumed
that this action actually removes the software error
that caused the failure, hence the software improves
due to this action and therefore the term reliability
growth tends to be used. There are many variations
to this basic scenario in the software reliability liter-
ature, we do not address these here.
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Let X be a run lifetime of software, that is, X is
a discrete random variable taking the value k if the
software fails during the k-th run after k−1 successful
runs. The run lifetime distribution (probability mass
function) is defined as p(k) = Pr{X = k}.

6.1 The imprecise beta-geometric model

If we assume that the random variable X is governed
by the geometric distribution with parameter r and
the probability mass function

p(k | r) = (1− r)k−1r, k = 1, 2, ...,

then the set M can be constructed by using an im-
precise model that is very similar to the beta-binomial
model proposed by Walley [16]. The prior Beta distri-
bution of the random variable r, denoted Beta(α, β)
with parameters α > 0 and β > 0, has probability
density function

π(r) =
1

B(α, β)
rα−1(1− r)β−1, 0 ≤ r ≤ 1.

Here B(α, β) is the standard beta function.

Using the general notation introduced before in this
paper for our new method, we write b = (r), c =
(α, β). If we observe k runs of software between the
(i − 1)-th and i-th software failures, and we assume
that the number of such runs is geometrically dis-
tributed with parameter r, then the posterior distri-
bution π(r | k, c) is again a beta distribution, namely

π(r | k, c) = Beta(α + 1, β + k).

Here Bayesian analysis leads to the probability dis-
tribution of the number of events with parameters
α and β. We can call this a beta-geometric model.
In the beta-binomial model, Walley proposed to re-
place these parameters by introducing s and γ, with
α = sγ and β = s − sγ, and then the parameter γ
is allowed to take on any value in the interval from
0 to 1, hence a set of prior distributions is created
which only depends on the choice of s > 0, and which
trivially leads to a corresponding set of posterior dis-
tributions. The hyperparameter s determines the in-
fluence of the prior distribution on posterior probabili-
ties [16]. The beta-geometric model proposed here can
be given exactly the same imprecise Bayesian treat-
ment, resulting in what we call the imprecise beta-
geometric model. The lower and upper bounds can
be obtained by minimizing and maximizing the prob-
abilities of events over all values γ in [0, 1].

6.2 The imprecise beta-geometric growth
model

Suppose that the probability r = ri is a random vari-
able having a beta distribution with prior parameters
α and β + f(i, ϕ). Here f(i, ϕ) is a function charac-
terizing the software reliability growth, in particular,
assume for simplicity that f(i, ϕ) = (i−1) ·ϕ. In this
case, we get a model with three parameters, includ-
ing two prior parameters α and β of the probability
distribution and one parameter ϕ which characterises
the reliability growth. The notation introduced above
can be used by defining c = (α, β) and d = (ϕ).

The construction of the model is based on the idea
of dividing the set of parameters α, β, ϕ into two
subsets and to consider the imprecise Bayesian model
on the set Mi(ϕ) of CDFs bounded by some lower
F i(k | ϕ, α, β) and upper F i(k | ϕ, α, β) CDFs which
are defined by the set of parameters c = (α, β) for a
fixed parameter ϕ, for i = 1, ..., n. In other words,
we fix ϕ and construct the sets of CDFs Fi(k) with
bounds depending on f(i, ϕ) by using the imprecise
beta-geometric model.

After constructing the set Mi(ϕ) of CDFs Fi(k | ϕ)
having the lower F i(k | ϕ, α, β) and upper F i(k |
ϕ, α, β) CDFs for every i = 1, ..., n, and by assuming
that the random variables X1, ..., Xn are independent,
the likelihood function can be written and maximized
by application of Proposition 1, leading to the value
ϕ0 that maximises this likelihood, so which we con-
sider an appropriate estimate of ϕ.

Denote the parameters of the i-th posterior beta dis-
tribution after n observations

α∗ = α + n− 1, β∗i = β + Di(ϕ),

where

Di(ϕ) = Kn + f(i, ϕ), Kn =
n−1∑

j=1

(kj − 1).

We have to draw attention that the prior parame-
ter β for the i-th posterior beta distribution is β∗i =
β + f(i, ϕ). In addition, we get Kn runs of the soft-
ware during n periods of observations. This implies
that the posterior parameter β∗i for i-th period of de-
bugging is defined by n periods of observations. This
is a very important feature and that is why we use
index i for the posterior parameter β∗.

It can be also seen from the above that the posterior
parameters depend on d. In the considered special
case, β∗ depends on f(i, ϕ).

Now we can write the predictive CDF for the i-th
step of the software debugging after n observations as
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follows:

Fi(k | ϕ, α, β) =
∫ 1

0

(1− (1− p)k) · Beta(α∗, β∗i )dp

= 1− B(α∗ + β∗i , k)
B(β∗i , k)

.

By using the introduced notation α = sγ, β = s− sγ,
we write

Fi(k | ϕ, γ, s) = 1− B(s + n− 1 + Di(ϕ), k)
B(s− sγ + Di(ϕ), k)

.

The function Fi(k | ϕ, γ, s) increases as γ increases in
the interval [0, 1], because the beta function B(x, y) is
decreasing in x for x > 0. This implies that the lower
bound for Mi(ϕ) is determined as

F i(k | ϕ, s) = sup
γ∈(0,1)

Fi(k | ϕ, γ, s)

= 1− B(s + n− 1 + Di(ϕ), k)
B(s + Di(ϕ), k)

.

The upper bound is determined as

F i(k | ϕ, s) = inf
γ∈(0,1)

Fi(k | ϕ, γ, s)

= 1− B(s + n− 1 + Di(ϕ), k)
B(Di(ϕ), k)

.

By having the lower and upper CDFs, it follows from
Proposition 1 that the likelihood function maximized
over Mi(ϕ) by given s and ϕ is of the form:

max
M(ϕ)

L(K | ϕ, s)

=
n∏

i=1

(
F i(ki | ϕ, s)− F i(ki − 1 | ϕ, s)

)

=
n∏

i=1

(
B(Ci, ki − 1)

B(s + Di(ϕ), ki − 1)
− B(Ci, ki)

B(Di(ϕ), ki)

)
.

Here Ci = s + n− 1 + Di(ϕ).

The parameter ϕ should be chosen in such a way that
makes ln L(K | ϕ, s) achieve its maximum. The opti-
mal value ϕ0 of ϕ can be found by numerically solving
the equation ∂ ln L(K | ϕ, s)/∂ϕ = 0. Once we have
calculated the estimate of the parameter ϕ, we can de-
rive the lower and upper software run failure functions
after the n-th software failure, i.e., we can compute
the lower and upper CDFs of the (n + 1)-th failure

Fn+1(k, s) = 1− B(s + n + Dn+1(ϕ0), k)
B(s + Dn+1(ϕ0), k)

,

Fn+1(k, s) = 1− B(s + n + Dn+1(ϕ0), k)
B(Dn+1(ϕ0), k)

.

7 NHPP software reliability models

One of the important frameworks for developing soft-
ware reliability models dealing with numbers N(t) of
software failures occurring up to a certain time period
t is the non-homogeneous Poisson process (NHPP).
Let Xi = N(ti) − N(ti−1) be the random number
of failures between ti−1 and ti. For any time points
0 < t1 < t2 < ... (for ease of notation, let t0 = 0), the
probability that the number of failures between ti−1

and ti is k, k = 0, 1, 2, ..., can be written as

Pr {N(ti)−N(ti−1) = k}

=
{m(ti)−m(ti−1)}k

k!
e{−(m(ti)−m(ti−1))}. (4)

Here m(t) is the mean number of failures occurring
up to time t. The NHPP models differ through the
function m(t), popular examples of which for soft-
ware reliability models are m(t) = a(1 − exp(−bt))
(Goel-Okumoto model [5]) and m(t) = a ln(1 + bt)
(Musa-Okumoto model [10]). Our goal is to estimate
the parameters a and b for such a model, based on
statistical data consisting of numbers of failures ki

per subintervals (ti−1, ti], i = 1, ..., n. As before, we
denote these data by the vector K = (k1, ..., kn).

7.1 The imprecise negative binomial model

When the number of failures has a Poisson distribu-
tion with the parameter λ, gamma distributions are
conjugate priors, denoted by Gamma(α, β). If we ob-
served K failures during a period of time T , then
the posterior distribution is Gamma(α∗, β∗), where
α∗ = α + K and β∗ = β + T . Hence, the predictive
probability of k failures during time t under condition
that K failures were observed during time T is [2]

P (k) =
∫ ∞

0

(λt)ke−λt

k!
Gamma(α∗, β∗)dλ

=
Γ(α∗ + k)
Γ(α∗)k!

(
β∗

β∗ + t

)α∗ (
t

β∗ + t

)k

. (5)

Here Γ(α) is the standard gamma function.

7.2 The imprecise negative binomial growth
model

A wide range of suitable mean value functions can be
represented in the form m(t; a, b) = a ·τ(t, b). The pa-
rameter λ of the Poisson distribution in (5) and the
argument t can be replaced by the parameter a and
the discrete time τ(ti, b) − τ(ti−1, b), respectively. In
fact, by replacing λ by a, we get the Poisson process
with a scaled time of the software testing, i.e., ev-
ery time interval [ti−1, ti] is replaced by the interval
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[τ(ti−1, b), τ(ti, b)]. Then we can write the predictive
CDF of the number of failures in the time interval be-
tween ti and t (t ∈ [ti, ti+1]) after n observation peri-
ods through the regularized incomplete Beta-function
[7] as follows:

Fi(k, t|c, b) = 1− Bq(i,t)(k + 1, α + Kn)
B(k + 1, α + Kn)

= 1− I (q(i, t), k + 1, α + Kn) .

Here t0 = 0, k0 = 0,

q(i, t) =
Ti(t, b)

β + τ(tn, b) + Ti(t, b)
,

Ti(t, b) = τ(t, b)− τ(ti, b), Kn =
n∑

j=1

kj ,

Bq(k + 1, r) is the incomplete Beta-function with
I (q, k, r) the regularized incomplete Beta-function.

We must select a bounded set for the vector (α, β),
in order to avoid ending up with vacuous posterior
predictive distributions. In analogy with imprecise
prior classes described above, we want this set to
be described by a single hyper-parameter s, and we
choose all vectors (α, β) within the triangle (0, 0),
(s, 0), (0, s). This implies that all possible prior ‘rates
of occurrence of failures’ are represented, as the prior
allows interpretation of α/β = γ as this rate, hence
this would include all such rates in (0,∞). This prior
set, and related inferences, is of course similar in na-
ture to the work by Quaeghebeur and de Cooman [11],
yet it is slightly different. This prior set leads to the
lower and upper bounds for Mi(b) by t ∈ [ti, ti+1]

F i(k, t | s, b) = 1

− I

(
Ti(t, b)

τ(tn, b) + Ti(t, b)
, k + 1, s + Kn

)
,

F i(k, t | s, b) = 1

− I

(
Ti(t, b)

s + τ(tn, b) + Ti(t, b)
, k + 1, Kn

)
.

The next step is to use Proposition 1 and to maximize
the likelihood function over the set of b

L(K|b, s) =
n∏

i=1

(
F i(ki, ti | s, b)− F i(ki − 1, ti | s, b)

)
.

Once we have the maximum likelihood estimator, fol-
lowing Proposition 1, of the parameter b, we can con-
struct the lower and upper bounds for the CDF of
the number of failures in time interval [tn, t] after n
periods of debugging.

8 Regression model (general scheme)

We briefly explain how the combined imprecise Bayes
and likelihood approach, proposed in this paper, can
be applied to basic regression problems. Suppose that
we have n+1 variables Y and Xj , j = 1, ..., n, with Y
being a dependent variable and {X1, ..., Xn} being n
independent predictor variables, related to Y accord-
ing to the relation Y = f(X1, ..., Xn). The standard
linear regression model3 is a special case and can be
written as

Y = Xd + ε.

Here X = (1, X1, ..., Xn); d = (d0, ..., dn)T is the vec-
tor of parameters; ε are random errors or noise having
zero mean and the unknown variance σ2.

To fit with the presentation in this paper, we assume
that ε is a discrete variable4. Let us construct the im-
precise Bayesian model for ε. If ε is governed by some
probability distribution p(z | σ) and there is the cor-
responding conjugate distribution π(σ | c), then we
can find the predictive CDF Fn(z | s, γ) after having
n observations (y1,x1), ..., (yn,xn) depending on new
parameters s, γ [11] and its bounds F (z | s), F (z | s).

Denote zi = yi − xid and Z = (z1, ..., zn). Having
derived the lower and upper CDFs, it follows from
Proposition 1 that the likelihood function that is to
be maximized over M, with given s, is of the form:

max
M

L(Z | s) =
n∏

i=1

(
F (zi | s)− F (zi − 1 | s)

)
.

Denote zi = yi − xid. Hence

max
M

L(Z | s)

=
n∏

i=1

(
F (yi − xid | s)− F (yi − xid− 1 | s)

)
.

Now we can find parameters d by maximizing the
obtained likelihood function.

In the regression model, we again separate the pa-
rameters of the probability distribution of ε and the
parameters d. However, in contrast to the software
reliability models, the parameters c directly do not
change with the growth parameters d (see the pa-
rameter β∗ and the function f(i) in Subsection 6.2
for comparison). Moreover, the set M and its bounds
do not depend on the parameters d. This allows us
to avoid the index i and to consider identical sets M.
Nevertheless, the general approach for modelling and
inference is the same as described in this paper.

3The more general model Y = f(X,d) + ε which can be
analyzed in the same way.

4See Section 9 for comments relevant to the more usual case
with continuous ε
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9 Concluding remarks

In this paper we have proposed a way towards devel-
opment of statistical methods that combine imprecise
Bayesian inference for one subset of all parameters
with maximum likelihood estimation for the other pa-
rameters. The key to this approach is Proposition
1, which provides a generalization of maximum likeli-
hood estimation for discrete variables with sets of dis-
tributions. There are many important research ques-
tions that need answering, in particular with regard to
the interpretations of these inferences and their appli-
cation to large scale problems. We particularly see a
benefit in models with differing features related to dif-
ferent parameters, for example the reliability growth
models discussed in some detail and used to present
and illustrate the novel approach in this paper, where
some parameters are specifically used to model the
growth aspect. It should also be studied in which sit-
uations this approach is most valuable. For example,
it may well be most suitable in situations where one
has significant prior knowledge on some parameters,
yet does not feel confident enough to assign precise
prior distributions to them, whereas on another as-
pect of the model one has no prior knowledge and
explicitly wishes only to estimate those parameters
using the data. Some statisticians might object if the
same data set is used for related inference in two dif-
ferent stages, feeling that the same data might be used
twice. This would be wrong, as the parameters esti-
mated at the different stages play different roles, and
hence estimates are based on different aspects of the
information within the total data set available.

We presented the main idea of the new framework
in this paper as an extension of the known impre-
cise Bayesian models [11, 16] to situations where the
process considered has some changeable behaviour,
which we also wish to estimate using the data. In line
with most reported developments in such imprecise
Bayesian models, we presented it from the perspective
of a non-informative prior set of distributions, but it
may indeed well be more useful to apply this combined
method with an informative prior set of distributions.
When such sets are also defined using conjugate pri-
ors in the same way as for these non-informative prior
sets, that is done in a straightforward manner which
we will discuss and explore further elsewhere. We
chose to focus our presentation on software reliabil-
ity growth models, as these typically have clear di-
visions of the parameters according to the different
roles, which we consider very suitable for the method
proposed. As indicated, the general approach might
also provide a promising method for imprecise regres-
sion models.

We have stated in Section 3 that the set Mi(d) is the
set of all CDFs bounded by F i and F i. One could
also consider the use of only a set of parametric dis-
tributions, all with the same parametric form as the
bounding distributions. However, following this ap-
proach, maximization of the likelihood function over
a set of distributions with parameters c derived in
Section 3 is reduced to its maximization over a set of
parameters c. In this case, we get the standard statis-
tical model completely based on the maximum like-
lihood estimation, which does not differ from many
well-known models of software reliability and regres-
sion models.

Due to limited size of this paper, we did not illustrate
the proposed models by data examples, such exam-
ples will be included in specific topic oriented presen-
tations elsewhere, where we also compare these infer-
ences to other inferences including full Bayesian and
full likelihood approaches. Nevertheless, we wish to
point out that initial indications from computational
examples suggest that this new combined method per-
forms well, also so if there are relatively few data, but
further study is required in order to draw general con-
clusions.

We did not consider continuous random variables, but
of course this case is very important. However, Propo-
sition 1 can be extended on the continuous case, so it
looks like the method can also be applied for contin-
uous random variables X1, ..., Xn. In this case, the
likelihood function can be written as

L(X) = lim
41→0,...,4n→0

Pr {x1 ≤ X1 ≤ x1 +41, .., xn ≤ Xn ≤ xn +4n}
41 · · · 4n

,

and this suggests that maximum likelihood estimates
for the parameters can be derived by maximizing

max
M1,...,Mn

L(X) =
n∏

i=1

(
F i(xi)− F i(xi)

)
δ(xi). (6)

Here δ(xi) is Dirac function which has unit area con-
centrated in the immediate vicinity of points xi. The
likelihood function achieves its maximum by taking
the probability density functions such that ρi(xi) =(
F i(xi)− F i(xi)

)
δ(xi). However, whether or not

condition (6) is fully correct is yet to be established,
which is an important topic for further research.

The continuous case would enable many application
models. For example, it would enable our combined
method to be applied to regression models with the
common assumption that the random variable ε is
normally distributed, N (0, σ2), where a gamma distri-
bution Gamma(α, β) can be used as conjugate prior
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for 1/σ2. Hence, the predictive probability density
function after having n observations is of the form:

p(z|s, γ) =
1√
π

Γ
(

s+k+3
2

)

Γ
(

s+k+2
2

) (sγ + τk)
s+k+2

2

(sγ + τk + z2)
s+k+3

2

,

where

τk =
k∑

j=1

z2
j =

k∑

j=1

(yi − f(Xi,d))2 .

By using the imprecise Bayesian normal model [11],
we can then construct the imprecise regression model
combining imprecise Bayesian inference with maxi-
mum likelihood estimation as briefly discussed in Sec-
tion 8 where only discrete random variables were used
in line with the general presentation in this paper. So,
establishing the detailed and fully justified generaliza-
tion of the approach in this paper to continuous ran-
dom variables is very important, and we are hopeful
to report on this in the near future.
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Abstract

The goal of this paper is to introduce a new concept of
conditional independence in evidence theory, to prove
its formal properties, and to show in what sense it
is superior to the concept introduced previously by
other authors.
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1 Introduction

Any application of artificial intelligence models to
practical problems must manage two basic issues: un-
certainty and multidimensionality. The models cur-
rently most widely used to manage these issues are
so-called probabilistic graphical Markov models.

In these models, the problem of multidimensional-
ity is solved using the notion of conditional indepen-
dence, which enables factorisation of a multidimen-
sional probability distribution into small parts, usu-
ally marginal or conditional low-dimensional distri-
butions (or generally into low-dimensional factors).
Such a factorisation not only decreases the storage
requirements for representation of a multidimensional
distribution, but it usually induces efficient computa-
tional procedures allowing inference from these mod-
els as well. Many results analogous to those concern-
ing conditional independence, Markov properties and
factorisation from probabilistic framework were also
achieved in possibility theory [12, 13].

It is easy to realise that our need of efficient meth-
ods for representation of probability and possibility
distributions (requiring an exponential number of pa-
rameters) logically leads us to greater need of an effi-
cient tool for representation of belief functions, which
cannot be represented by a distribution (but only by
a set function), and therefore the space requirements
for their representation are superexponential.

After a thorough study of relationships
among stochastic independence, possibilistic
T -independence, random set independence and
strong independence [14, 15], we came to the con-
clusion that the most proper independence concept
in evidence theory is random set independence.
Therefore, this contribution is fully devoted to two
different generalisations of random set independence
to conditional independence.

The contribution is organised as follows. After a short
overview of necessary terminology and notation (Sec-
tion 2), in Section 3 we introduce a new concept of
conditional independence and show in which sense it
is superior to the previously suggested independence
notions [10, 1]. In Section 4 we prove its formal prop-
erties.

2 Basic Notions

The aim of this section is to introduce as briefly as
possible basic notions and notations necessary for un-
derstanding the following text.

2.1 Set Projections and Extensions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be
a system of variables, each Xi having its values in a
finite set Xi. In this paper we will deal with multidi-
mensional frame of discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N)

XK =×i∈KXi.

When dealing with groups of variables on these sub-
frames, XK will denote a group of variables {Xi}i∈K

throughout the paper.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK

will be denoted x↓K , i.e., for K = {i1, i2, . . . , ik}
x↓K = (xi1 , xi2 , . . . , xik

) ∈ XK .
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Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will
denote a projection of A into XM :1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will also
need an opposite operation, which will be called an
extension. By an extension of two sets A ⊆ XK and
B ⊆ XL (K, L ⊆ N) we will understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that if K and L are disjoint, then

A⊗B = A×B.

2.2 Set Functions

In evidence theory (or Dempster-Shafer theory) two
measures are used to model the uncertainty: belief
and plausibility measures. Both of them can be de-
fined with the help of another set function called a
basic (probability or belief) assignment m on XN , i.e.,

m : P(XN ) −→ [0, 1] (1)

for which ∑

A⊆XN

m(A) = 1. (2)

Furthermore, we assume that m(∅) = 0.

Belief and plausibility measures are defined for any
A ⊆ XN by the equalities

Bel(A) =
∑

B⊆A

m(B),

P l(A) =
∑

B∩A6=∅
m(B),

respectively.

It is well-known (and evident from these formulae)
that for any A ∈ P(XN )

Pl(A) = 1−Bel(AC) (3)

holds, where AC is a set complement of A ∈ P(XN ).
Furthermore, basic assignment can be computed from
belief function via Möbius inversion:

m(A) =
∑

B⊆A

(−1)|A\B|Bel(B), (4)

i.e., any of these three functions is sufficient to define
values of the remaining two.

1Let us remark that we do not exclude situations when M =
∅. In this case A↓∅ = ∅.

In addition to belief and plausibility measures, com-
monality function can also be obtained from basic as-
signment m:

Q(A) =
∑

B⊇A

m(B).

The last notion plays an important role in the def-
inition of so-called (conditional) noninteractivity of
variables (cf. Section 3.2) and in Shenoy’s valuation-
based systems [10]. Similarly to (4), one can obtain
basic assignment from commonality function via an
analogous formula

m(A) =
∑

B⊇A

(−1)|B\A|Q(B). (5)

A set A ∈ P(XN ) is a focal element if m(A) > 0. A
pair (F , m), where F is the set of all focal elements,
is called a body of evidence. A basic assignment is
called Bayesian if all its focal elements are singletons.
A body of evidence is called consonant if its focal
elements are nested.

For a basic assignment m on XK and M ⊂ K, a
marginal basic assignment of m is defined (for each
A ⊆ XM ):

m↓M (A) =
∑

B⊆XK :B↓M=A

m(B).

Analogously, Bel↓M , Pl↓M and Q↓M will denote the
corresponding marginal belief measure, plausibility
measure and commonality function, respectively.

Having two basic assignments m1 and m2 on XK and
XL, respectively (K, L ⊆ N), we say that these as-
signments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic as-
signment m on XK∪L such that both m1 and m2 are
marginal assignments of m.

3 Random Set Independence and Its
Generalisations

3.1 Marginal Case

Let us start this section by recalling the notion of
random sets independence [2].2

Definition 1 Let m be a basic assignment on XN

and K, L ⊂ N be disjoint. We say that groups of

2Klir [6] uses the notion noninteractivity.
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variables XK and XL are independent with respect to
basic assignment m (and denote it by K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L) (6)

for all A ⊆ XK∪L for which A = A↓K × A↓L, and
m(A) = 0 otherwise.

It has been shown in [14] that application of Defini-
tion 1 to two consonant bodies of evidence leads to a
body of evidence which is no longer consonant.

It seemed that this problem could be avoided if we
took into account the fact that both evidence and pos-
sibility theories could be considered as special kinds
of imprecise probabilities. Nevertheless, in [15] we
showed that the application of strong independence to
two general bodies of evidence (neither Bayesian nor
consonant) leads to models beyond the framework of
evidence theory.

From these examples one can see that although mod-
els based on possibility measures, belief measures and
credal sets can be linearly ordered with respect to
their generality, nothing similar holds for the corre-
sponding independence concepts.

Therefore, random sets independence presently seems
to be the most appropriate independence concept
within the framework of evidence theory from the
viewpoint of multidimensional models.3 For this rea-
son in this section we will deal with two generalisa-
tions of this concept.

Before doing that, let us present an assertion show-
ing that conditional noninteractivity and conditional
independence (presented in the following two subsec-
tions) are identical if the condition is empty.

Lemma 1 Let K, L be disjoint, then K ⊥⊥ L [m] if
and only if

Q↓K∪L(A) = Q↓K(A↓K) ·Q↓L(A↓L) (7)

for all A ⊆ XK∪L.

Proof can be found in [5].

From this lemma one can conjecture why the gener-
alisation of (7) to the conditional case became widely
used, while, as far as we know, no direct generalisation
of (6) has been suggested up to now.

In the following example we will show that nothing
similar holds for beliefs and plausibilities; more ex-
actly, application of formulae analogous to (7) leads
to models beyond the theory of evidence.

3Let us note that there exist different independence concepts
suitable in other situations, for details the reader is referred to
[3]

Table 1: Basic assignments mX and mY .

A ⊆ X mX(A) BelX(A) PlX(A)
{x} 0.3 0.3 0.8
{x̄} 0.2 0.2 0.7
X 0.5 1 1

A ⊆ Y mY (A) BelY (A) PlY (A)
{y} 0.6 0.6 0.9
{ȳ} 0.1 0.1 0.4
Y 0.3 1 1

Table 2: Results of application of formula (8).

C ⊆ X×Y BelXY (C) mXY (C)
{xy} 0.18 0.18
{xȳ} 0.03 0.03
{x̄y} 0.12 0.12

{x̄ȳ} 0.02 0.02

{x} ×Y 0.3 0.09
{x̄} ×Y 0.2 0.06
X× {y} 0.6 0.3
X× {ȳ} 0.1 0.05
{xy, x̄ȳ} 1 0.8
{xȳ, x̄y} 1 0.85

X×Y \ {x̄ȳ} 1 −1.08
X×Y \ {x̄y} 1 −0.43
X×Y \ {xȳ} 1 −0.92
X×Y \ {xy} 1 −0.52

X×Y 1 0.45

Example 1 Consider two basic assignments mX and
mY on X = {x, x̄} Y = {y, ȳ} specified in Table 1
together with their beliefs and plausibilities.

Let us compute joint beliefs and plausibilities via for-
mulae

Bel↓K∪L(A) = Bel↓K(A↓K) ·Bel↓L(A↓L), (8)
Pl↓K∪L(A) = Pl↓K(A↓K) · Pl↓L(A↓L). (9)

Their values are contained in Tables 2 and 3, respec-
tively, together with the corresponding values of basic
assignments computed via (4) (and also (3), in the
latter case). As some values of the “joint basic as-
signments” are negative, which contradicts to (1) it is
evident that these models are beyond the framework
of evidence theory. ♦

Therefore, it seems that a definition of independence
in terms of beliefs or plausibilities would be much

ISIPTA’09: On Conditional Independence in Evidence Theory 433



Table 3: Results of application of formula (9).

C ⊆ X×Y PlXY (C) BelXY (C) mXY (C)
{xy} 0.72 0 0
{xȳ} 0.32 0 0
{x̄y} 0.63 0 0

{x̄ȳ} 0.28 0 0

{x} ×Y 0.8 0.3 0.3
{x̄} ×Y 0.7 0.2 0.2
X× {y} 0.9 0.6 0.6
X× {ȳ} 0.4 0.1 0.1
{xy, x̄ȳ} 1 0 0
{xȳ, x̄y} 1 0 0

X×Y \ {x̄ȳ} 1 0.72 −0.18
X×Y \ {x̄y} 1 0.37 0.07
X×Y \ {xȳ} 1 0.68 −0.12
X×Y \ {xy} 1 0.28 −0.02

X×Y 1 1 0.05

more complicated than Definition 1.

3.2 Conditional Noninteractivity

Ben Yaghlane et al. [1] generalised the notion of non-
interactivity in the following way: Let m be a ba-
sic assignment on XN and K, L,M ⊂ N be disjoint,
K 6= ∅ 6= L. Groups of variables XK and XL are
conditionally noninteractive given XM with respect to
m if and only if the equality

Q↓K∪L∪M (A) ·Q↓M (A↓M )
= Q↓K∪M (A↓K∪M ) ·Q↓L∪M (A↓L∪M ) (10)

holds for any A ⊆ XK∪L∪M .

Let us note that the definition presented in [1] is
based on conjunctive Dempster’s rule, but the authors
proved its equivalence with (10). Let us also note that
(10) is a special case of the definition of conditional
independence in valuation-based systems4 introduced
by Shenoy [10].

The cited authors proved in [1] that conditional nonin-
teractivity satisfies the so-called graphoid properties.5

Nevertheless, this notion of independence does not
seem to be appropriate for construction of multidi-
mensional models. As already mentioned by Studený

4Nevertheless, in valuation-based systems commonality
function is a primitive concept (and basic assignment is derived
by formula (5)).

5The reader not familiar with graphoid axioms is referred to
the beginning of Section 4.

[11], it is not consistent with marginalisation. What
that means can be seen from the following definition
and illustrated by a simple example from [1] (origi-
nally suggested by Studený).

An independence concept is consistent with marginal-
isation iff for arbitrary projective basic assignments
(probability distributions, possibility distributions,
etc.) m1 on XK and m2 on XL there exists a basic
assignment (probability distribution, possibility dis-
tribution, etc.) on XK∪L satisfying this independence
concept and having m1 and m2 as its marginals.

Example 2 Let X1, X2 and X3 be three binary vari-
ables with values in X1 = {a1, ā1}, X2 = {a2, ā2},
X3 = {a3, ā3} and m1 and m2 be two basic assign-
ments on X1 ×X3 and X2 ×X3 respectively, both of
them having only two focal elements:

m1({(a1, ā3), (ā1, ā3)}) = .5,
m1({(a1, ā3), (ā1, a3)}) = .5,
m2({(a2, ā3), (ā2, ā3)}) = .5,
m2({(a2, ā3), (ā2, a3)}) = .5.

(11)

Since their marginals are projective

m
↓3
1 ({ā3}) = m

↓3
2 ({ā3}) = .5,

m
↓3
1 ({a3, ā3}) = m

↓3
2 ({a3, ā3}) = .5,

there exists (at least one) common extension of both
of them, but none of them is such that it would im-
ply conditional noninteractivity of X1 and X2 given
X3. Namely, the application of equality (10) to basic
assignments m1 and m2 leads to the following values
of the joint “basic assignment”:

m̄(X1 ×X2 × {ā3}) = .25,
m̄(X1 × {a2} × {ā3}) = .25,
m̄({a1} ×X2 × {ā3}) = .25,
m̄({(a1, a2, ā3), (ā1, ā2, a3)}) = .5,
m̄({(a1, a2, ā3)}) = −.25,

which is outside of evidence theory. ♦

Therefore, instead of the conditional noninteractivity,
in [5] we proposed to use another notion of condi-
tional independence which will be introduced in the
following subsection.

3.3 Conditional Independence

Definition 2 Let m be a basic assignment on XN

and K, L,M ⊂ N be disjoint, K 6= ∅ 6= L. We say
that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote
it by K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M (A) ·m↓M (A↓M ) (12)
= m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )
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holds for any A ⊆ XK∪L∪M such that A = A↓K∪M ⊗
A↓L∪M , and m(A) = 0 otherwise.

Let us note that for M = ∅ the concept coincides
with Definition 1, which enables us to use the term
conditional independence. Let us also note that (12)
resembles, from the formal point of view, the defini-
tion of stochastic conditional independence [7].

The following assertion expresses the fact (already
mentioned above) that this concept of conditional in-
dependence is consistent with marginalisation. More-
over, it presents a form expressing the joint basic as-
signment by means of its marginals.

Theorem 1 Let m1 and m2 be projective basic as-
signments on XK and XL, respectively. Let us define
a basic assignment m on XK∪L by the formula

m(A) =
m1(A↓K) ·m2(A↓L)

m↓K∩L
2 (A↓K∩L)

(13)

for A = A↓K ⊗ A↓L such that m↓K∩L
1 (A↓K∩L) > 0

and m(A) = 0 otherwise. Then

m↓K(B) = m1(B), (14)
m↓L(C) = m2(C) (15)

for any B ∈ XK and C ∈ XL, respectively, and (K \
L) ⊥⊥ (L \ K)|(K ∩ L) [m]. Furthermore, m is the
only basic assignment possessing these properties.

Proof. To prove equality (14) we have to show that
for any B ⊆ XK

∑

A⊆XK∪L:A↓K=B

m(A) = m1(B). (16)

Since, due to the definition of m, m(A) = 0 for any
A ⊆ XK∪L for which A 6= A↓K ⊗A↓L, we see that

∑

A⊆XK∪L:A↓K=B

m(A)

=
∑

A⊆XK∪L:A↓K=B

A=A↓K⊗A↓L

m(A)

=
∑

C⊆XL

C↓K∩L=B↓K∩L

m(B ⊗ C).

To prove formula (16), we have to distinguish be-
tween two situations depending on the value of
m↓K∩L

2 (B↓K∩L). If this value is positive then

∑

A⊆XK∪L:A↓K=B

m(A)

=
∑

C⊆XL

C↓K∩L=B↓K∩L

m1(B) ·m2(C)

m↓K∩L
2 (B↓K∩L)

=
m1(B)

m↓K∩L
2 (B↓K∩L)

∑

C⊆XL

C↓K∩L=B↓K∩L

m2(C)

=
m1(B)

m↓K∩L
2 (B↓K∩L)

m↓K∩L
2 (B↓K∩L) = m1(B).

If m↓K∩L
2 (B↓K∩L) = 0 then, according to the defini-

tion of m, m(A) = 0. But m↓K∩L
1 (B↓K∩L) = 0 also,

due to the projectivity of m1 and m2, and therefore
also m1(B) = 0.

The proof of equality (15) is completely analogous due
to the projectivity of m1 and m2.

Now, let us prove that XK\L and XL\K are condition-
ally independent given XK∩L with respect to a basic
assignment m defined via (13) for any A ⊆ XK∪L,
such that A = A↓K ⊗ A↓L and m↓K∩L(A↓K∩L) > 0
and m(A) = 0 otherwise. First let us show, that

m↓K∪L(A) ·m↓K∩L(A↓K∩L) (17)
= m↓K(A↓K) ·m↓L(A↓L),

holds for all A = A↓K ⊗A↓L. If m↓K∩L(A↓K∩L) > 0,
then multiplying both sides of the formula (13) by
m↓K∩L(A↓K∩L) we obtain the equality (17), as (14)
and (15) are satisfied and m↓K∪L(A) = m(A) for any
A ⊆ XK∪L. If m↓K∩L(A↓K∩L) = 0 then m↓L(A↓L) =
0 also, and therefore both sides of (17) equal 0. If
A 6= A↓K ⊗A↓L, then m(A) = 0 by assumption.

Let XK\L and XL\K be conditionally independent
given XK∩L with respect to a basic assignment m,
and A ⊆ XK∪L be such that A = A↓K ⊗ A↓L and
m↓K∩L(A↓K∩L) > 0. Then (17) holds and therefore

m↓K∪L(A) =
m↓K(A↓K) ·m↓L(A↓L)

m↓K∩L(A↓K∩L)
,

i.e., (13) holds due to (14) and (15) and the fact
that m↓K∪L(A) = m(A) for any A ⊆ XK∪L.
If m↓K∩L(A↓K∩L) = 0 then also m↓K(A↓K) =
0, m↓K∩L(A↓L) = 0 and m(A) = 0. If A 6= A↓K⊗A↓L

then m(A) = 0, which directly follows from Defini-
tion 2. ut
Let us close this section by demonstrating application
of the conditional independence notion (and Theo-
rem 1) to Example 2.
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Example 2 (Continued) Let us go back to the prob-
lem of finding a common extension of basic assign-
ments m1 and m2 defined by (11). Theorem 1 says
that for basic assignment m defined as follows

m(X1 ×X2 × {ā3}) = .5,
m({(a1, a2, ā3), (ā1, ā2, a3)}) = .5,

variables X1 and X3 are conditionally independent
given X2. ♦

4 Formal Properties of Conditional
Independence

Among the properties satisfied by the ternary relation
K ⊥⊥ L|M [m], the following are of principal impor-
tance:

(A1) K ⊥⊥ L|M [m] ⇒ L ⊥⊥ K|M [m],

(A2) K ⊥⊥ L ∪M |I [m] ⇒ K ⊥⊥M |I [m],

(A3) K ⊥⊥ L ∪M |I [m] ⇒ K ⊥⊥ L|M ∪ I [m],

(A4) K ⊥⊥ L|M ∪ I [m] ∧ K ⊥⊥M |I [m]
=⇒ K ⊥⊥ L ∪M |I [m],

(A5) K ⊥⊥ L|M ∪ I [m] ∧ K ⊥⊥M |L ∪ I [m]
=⇒ K ⊥⊥ L ∪M |I [m].

Let us recall that stochastic conditional independence
satisfies the so-called semigraphoid properties (A1)–
(A4) for any probability distribution, while axiom
(A5) is satisfied only for strictly positive probability
distributions. Conditional noninteractivity referred to
in Section 3.2, on the other hand, satisfies axioms
(A1)–(A5) for general basic assignment m, as proven
in [1].

Before formulating an important theorem justifying
the definition of conditional independence, let us for-
mulate and prove an assertion concerning set exten-
sions.

Lemma 2 Let K ∩ L ⊆M ⊆ L ⊆ N . Then, for any
C ⊆ XK∪L, condition (a) holds if and only if both
conditions (b) and (c) hold true.

(a) C = C↓K ⊗ C↓L;

(b) C↓K∪M = C↓K ⊗ C↓M ;

(c) C = C↓K∪M ⊗ C↓L.

Proof. Before proving the required implications let us
note that C ⊆ C↓K ⊗C↓L, therefore C = C↓K ⊗C↓L

is equivalent to

∀x ∈ XK∪L

(
x↓K ∈ C↓K & x↓L ∈ C↓L =⇒ x ∈ C

)
.

(a) =⇒ (b). Consider x ∈ XK∪M , such that x↓K ∈
C↓K and x↓M ∈ C↓M . Since x↓M ∈ C↓M there must
exist (at least one) y ∈ C↓L, for which y↓M = x↓M .
Now construct z ∈ XK∪L for which z↓K = x↓K and
z↓L = y (it is possible because y↓M = x↓M ). From
this construction we see that z↓K∪M = x. Therefore
z↓K = x↓K ∈ C↓K and z↓L = y ∈ C↓L from which,
because we assume that (a) holds, we get that z ∈ C,
and therefore also x = z↓K∪M ∈ C↓K∪M .

(a) =⇒ (c). Consider now x ∈ XK∪L, with pro-
jections x↓K∪M ∈ C↓K∪M and x↓L ∈ C↓L. From
x↓K∪M ∈ C↓K∪M we immediately get that x↓K ∈
C↓K , which in combination with x↓L ∈ C↓L (due to
the assumption (a)) yields that x ∈ C.

(b) & (c) =⇒ (a). Consider x ∈ XK∪L such that
x↓K ∈ C↓K and x↓L ∈ C↓L. From the latter prop-
erty one also gets x↓M ∈ C↓M , which, in combination
with x↓K ∈ C↓K gives, because (b) holds true, that
x↓K∪M ∈ C↓K∪M . And the last property in combi-
nation with x↓L ∈ C↓L yields the required x ∈ C. ut
Since all I, K, L,M are disjoint, we will omit symbol
∪ and use, for example, KLM instead of K ∪ L ∪M
in the rest of the paper.

Theorem 2 Conditional independence satisfies
(A1)–(A4).

Proof. ad (A1) The validity of the implication im-
mediately follows from the commutativity of multipli-
cation.

ad (A2) The assumption K ⊥⊥ LM |I [m] means that
for any A ⊆ XKLMI such that A = A↓KI ⊗ A↓LMI

the equality

m↓KLMI(A) ·m↓I(A↓I) (18)
= m↓KI(A↓KI) ·m↓LMI(A↓LMI)

holds, and if A 6= A↓KI⊗A↓LMI , then m(A) = 0. Let
us prove first that also for any B ⊆ XKMI such that
B = B↓KI ⊗B↓MI , the equality

m↓KMI(B) ·m↓I(B↓I) (19)
= m↓KI(B↓KI) ·m↓MI(B↓MI)

is valid. To do so, let us compute

m↓KMI(B) ·m↓I(B↓I)

=
∑

A⊆XKLMI

A↓KMI=B↓KI⊗B↓MI

m↓KLMI(A) ·m↓I(A↓I)

=
∑

A⊆XKLMI

A=A↓KI⊗A↓LMI

A↓KMI=B↓KI⊗B↓MI

m↓KLMI(A) ·m↓I(A↓I)
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=
∑

A⊆XKLMI

A=A↓KI⊗A↓LMI

A↓KMI=B↓KI⊗B↓MI

m↓KI(A↓KI) ·m↓LMI(A↓LMI)

= m↓KI(A↓KI) ·
∑

C⊆XLMI

C↓MI=B↓MI

m↓LMI(C)

= m↓KI(B↓KI) ·m↓MI(B↓MI),

as

m↓I(B↓I) = m↓I(A↓I),
m↓KI(B↓KI) = m↓KI(A↓KI).

So, to finish this step we still must prove that if B 6=
B↓KI⊗B↓MI then m↓KMI(B) = 0. Also, in this case

m↓KMI(B) =
∑

A⊆XKLMI

A↓KMI=B

m↓KLMI(A),

but since B = A↓KMI 6= A↓KI ⊗A↓MI then, because
of Lemma 2, also A 6= A↓KI ⊗A↓LMI for any A such
that A↓KMI = B. But for these A’s, m↓KLMI(A) = 0
and therefore also m↓KMI(B) = 0.

ad (A3) Again, let us suppose validity of K ⊥⊥
LM |I [m], i.e., for any A ⊆ XKLMI such that A =
A↓KI⊗A↓LMI equality (18) holds, and m↓KLMI(A) =
0 otherwise. Our aim is to prove that for any C ⊆
XKLMI such that C = C↓KMI ⊗C↓LMI , the equality

m↓KLMI(C) ·m↓MI(C↓MI) (20)
= m↓KMI(C↓KMI) ·m↓LMI(C↓LMI)

is satisfied as well, and m↓KLMI(C) = 0 otherwise.
Let C be such that m

↓I
(C
↓I

) > 0. Since we assume
that K ⊥⊥ LM |I [m] holds, we have for such a C

m↓KLMI(C) ·m↓I(C↓I)
= m↓KI(C↓KI) ·m↓LMI(C↓LMI),

and therefore we can compute

m↓KLMI(C) ·m↓MI(C↓MI)

= m↓KLMI(C) ·m↓I(C↓I) · m
↓MI(C↓MI)
m↓I(C↓I)

= m↓KI(C↓KI) ·m↓LMI(C↓LMI) · m
↓MI(C↓MI)
m↓I(C↓I)

=
m↓KI(C↓KI) ·m↓MI(C↓MI)

m↓I(C↓I)
·m↓LMI(C↓LMI)

= m↓KMI(C↓KMI) ·m↓LMI(C↓LMI),

where the last equality is satisfied due to (A2) and
the fact that m↓I(C↓I) > 0. If m↓I(C↓I) = 0 then
also m↓KMI(C↓KMI) = 0, m↓LMI(C↓LMI) = 0 and
m↓KLMI(C) = 0 and therefore (20) also holds true.

It remains to be proven that m(C) = 0 for all C 6=
C↓KMI ⊗ C↓LMI . But in this case, as a consequence
of Lemma 2, also C 6= C↓KI ⊗ C↓LMI , and therefore
m(C) = 0 due to the assumption.

ad (A4) First, supposing K ⊥⊥ L|MI [m] and
K ⊥⊥M |I [m], let us prove that for any A ⊆ XKLMI

such that A = A↓KI⊗A↓LMI , the equality (18) holds.
Since from A = A↓KI ⊗ A↓LMI it also follows due to
Lemma 2 that A = A↓KMI ⊗ A↓LMI , and therefore
(since we assume K ⊥⊥ L|MI [m])

m↓KLMI(A) ·m↓MI(A↓MI) (21)
= m↓KMI(A↓KMI) ·m↓LMI(A↓LMI).

Now, let us further assume that m↓MI(A↓MI) > 0
(and thus also m↓I(A↓I) > 0). Since from A =
A↓KI ⊗ A↓LMI Lemma 2 implies A↓KMI = A↓KI ⊗
A↓MI , one gets from K ⊥⊥M |I [m] that

m↓KMI(A↓KMI) ·m↓I(A↓I)
= m↓KI(A↓KI) ·m↓MI(A↓MI),

which, in combination with equality (22), yields

m↓KLMI(A) ·m↓MI(A↓MI)

=
m↓KI(A↓KI) ·m↓MI(A↓MI)

m↓I(A↓I)
·m↓LMI(A↓LMI),

which is (for positive m↓MI(A↓MI)) evidently equiva-
lent to (18). If, on the other hand, m↓MI(A↓MI) = 0,
then also m↓LMI(A↓LMI) = 0 and m↓KLMI(A) = 0
and both sides of (18) equal 0.

It remains to prove that m↓KLMI(A) = 0 for all
A 6= A↓KI ⊗ A↓LMI . But m↓KLMI(A) = 0 because
Lemma 2 says that either A 6= A↓KMI ⊗A↓LMI (and
therefore m↓KLMI(A) = 0 from the assumption that
K ⊥⊥ L|MI [m]) or A↓KMI 6= A↓KI ⊗ A↓MI (and
then m↓KMI(A↓KMI) = 0 due to the assumption
K ⊥⊥M |I [m]), and therefore also m↓KLMI(A) = 0).

ut
Analogous to a probabilistic case, conditional inde-
pendence K ⊥⊥ L|MI [m] does not generally satisfy
(A5), as can be seen from the following simple exam-
ple.

Example 3 Let X1, X2 and X3 be three variables
with values in X1, X2 and X3 respectively, Xi =
{ai, āi}, i = 1, 2, 3, and their joint basic assignment
is defined as follows:

m({(x1, x2, x3}) = 1
16 ,

m(X1 ×X2 ×X3) = 1
2 ,

for xi = ai, āi, values of m on the remaining sets being
0. Its marginal basic assignments on X1 ×X2, X1 ×
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X3, X2 ×X3 and Xi, i = 1, 2, 3 are

m↓12({x1, x2}) = 1
8 ,

m↓12(X1 ×X2) = 1
2 ,

m↓13({x1, x3}) = 1
8 ,

m↓13(X1 ×X3) = 1
2 ,

m↓23({x2, x3}) = 1
8 ,

m↓23(X2 ×X3) = 1
2 ,

and
m↓i(xi) = 1

4 ,

m↓i(Xi) = 1
2 ,

respectively. It is easy (but somewhat time-
consuming) to check that

m(A↓13 ⊗A↓23) ·m↓3(A↓3)
= m↓13(A↓13) ·m↓23(A↓23)

and

m(A↓12 ⊗A↓23) ·m↓2(A↓2)
= m↓12(A↓12) ·m↓23(A↓23),

the values of remaining sets being zero, while e.g.

m({(a1, ā2, ā3)}) =
1
16

6= 1
4
· 1

8
= m↓1({a1}) ·m↓23({(ā2, ā3)}),

i.e., {1} ⊥⊥ {2}|{3} [m] and {1} ⊥⊥ {3}|{2} [m] hold,
but {1} ⊥⊥ {2, 3}|∅ [m] does not. ♦

This fact perfectly corresponds to the properties of
stochastic conditional independence. In probability
theory (A5) need not be satisfied if the joint prob-
ability distribution is not strictly positive. But the
counterpart of strict positivity of probability distri-
bution for basic assignments is not straightforward.
It is evident that it does not mean strict positivity on
all subsets of the frame of discernment in question —
in this case variables are not (conditionally) indepen-
dent (cf. Definitions 1 and 2). On the other hand,
it can be seen from Example 3 that strict positivity
on singletons is not sufficient (and, surprisingly, as we
shall see later, also not necessary). At present we are
able to formulate Theorem 3. To prove it, we need
the following lemma.

Lemma 3 Let K, L,M be disjoint subsets of N ,
K, L 6= ∅ and m be a joint basic assignment on XN .
Then the following statements are equivalent:

(i) K ⊥⊥ L|M [m].

(ii) The basic assignment m↓KLM on XKLM has for
A = A↓KM ⊗A↓LM the form

m↓KLM (A) = f1(A↓KM ) · f2(A↓LM ), (22)

where f1 and f2 are set functions on XKM and XLM ,
respectively, and m(A) = 0 otherwise.

Proof. Let (i) be satisfied. Then for any A = A↓KM⊗
A↓LM we have

m↓KLM (A) ·m↓M (A↓M )
= m↓KM (A↓KM ) ·m↓LM (A↓LM ).

If m↓M (A↓M ) > 0, we may divide both sides of the
above equality by it and we obtain

m↓KLM (A)

=
m↓KM (A↓KM ) ·m↓LM (A↓LM )

m↓M (A↓M )
.

Therefore (ii) is obviously fulfilled, e.g. for

f1(A↓KM ) = m↓K∪M (A↓K∪M )

and

f2(A↓LM ) =
m↓L∪M (A↓L∪M )

m↓M (A↓M )
.

If, on the other hand, m↓M (A↓M ) = 0, then
also m↓KM (A↓KM ) = 0, m↓LM (A↓LM ) = 0 and
m↓KLM (A↓KLM ) = 0, and therefore (22) trivially
holds. To finish the proof of this implication we must
prove that m(A) = 0 if A 6= A↓KM ⊗ A↓LM , but it
follows directly from the definition.

Let (ii) be satisfied. Then denoting

f↓M1 (A↓M ) =
∑

C⊆XKM

C↓M=A↓M

f1(C)

and
f↓M2 (A↓M ) =

∑

C⊆XLM

C↓M=A↓M

f2(C),

we have

m↓KM (A↓KM )

=
∑

C⊆XKLM

C↓KM=A↓KM

m↓KLM (C)

=
∑

C⊆XKLM

C↓KM=A↓KM

f1(C↓KM ) · f2(C↓LM )

= f1(A↓KM ) ·
∑

D⊆XLM

D↓M=A↓M

f2(D)

= f1(A↓KM ) · f↓M2 (A↓M )
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and similarly

m↓LM (A↓LM ) = f2(A↓LM ) · f↓M1 (A↓M ).

Therefore

m↓M (A↓M )

=
∑

C⊆XKLM

C↓M=A↓M

m↓KLM (C) =
∑

D⊆XKM

D↓M=A↓M

m↓KM (D)

=
∑

D⊆XKM

D↓M=A↓M

f1(D↓KM ) · f↓M2 (D↓M )

= f↓M2 (A↓M ) ·
∑

D⊆XKM

D↓M=A↓M

f1(D↓KM )

= f↓M2 (A↓M ) · f↓M1 (A↓M ).

Hence, multiplying both sides of (22) by m↓M (A↓M )
one has

m(A) ·m↓M (A↓M )

= f1(A↓KM ) · f2(A↓LM ) · f↓M1 (A↓M ) · f↓M2 (A↓M )

= f1(A↓KM ) · f↓M2 (A↓M ) · f2(A↓LM ) · f↓M1 (A↓M )
= m↓KM (A↓KM ) ·m↓LM (A↓LM ),

i.e., (i) holds (as m(A) = 0 if A 6= A↓KM ⊗ A↓LM by
assumption). ut

Theorem 3 Let m be a basic assignment on XN such
that m(A) > 0 if and only if A =×i∈NAi, where Ai

is a focal element on Xi. Then (A5) is satisfied.

Proof. Let K ⊥⊥ L|MI [m] and K ⊥⊥ M |LI [m].
Then by Lemma 3 there exist functions f1, f2, g1 and
g2 such that

m↓KLMI(A) = f1(A↓KMI) · f2(A↓LMI)
m↓KLMI(A) = g1(A↓KLI) · g2(A↓LMI)

for any A = A↓KMI ⊗ A↓LMI and any A = A↓KLI ⊗
A↓LMI , respectively.

If m(A) > 0 we can write

f1(A↓KMI) =
g1(A↓KLI) · g2(A↓LMI)

f2(A↓LMI)
. (23)

Let us note, that if m(A) > 0, then by assumption
A =×i∈NAi and therefore it can be written as A =
A↓K×A↓L×A↓M×A↓I . Hence (23) may be rewritten
into the form

f1(A↓K ×A↓M ×A↓I) (24)

=
g1(A↓K ×A↓L ×A↓I) · g2(A↓L ×A↓M ×A↓I)

f2(A↓L ×A↓M ×A↓I)
.

Let us choose B ⊆ XL such that B = A↓L. Then (24)
can be written in the form

f1(A↓K ×A↓M ×A↓I) = h1(A↓KI) · h2(A↓MI),

where

h1(A↓KI) = g1(A↓K ×B ×A↓I),

h2(A↓MI) =
g2(B ×A↓M ×A↓I)
f2(B ×A↓M ×A↓I)

.

Therefore

m↓KLMI(A) = h1(A↓KI) · h2(A↓MI) · f2(A↓LMI)
= h1(A↓KI) · h′2(A↓LMI). (25)

Now, we shall prove that (25) is valid also for A =
A↓KI ⊗A↓LMI such that m(A) = 0. The validity of

m↓KLMI(A) ·m↓M (A↓MI)
= m↓KMI(A↓KMI) ·m↓LMI(A↓LMI)

for A = A↓KMI ⊗ A↓LMI implies that at least one of
m↓LMI(A↓LMI) and m↓KMI(A↓KMI) must also equal
zero. In the first case, (25) holds for h′2(A↓LMI) =
m↓LMI(A↓LMI) and h1 arbitrary.

If, on the other hand, m↓LMI(A↓LMI) > 0, then
m↓KMI(A↓KMI) must equal zero. We also must prove
that in this case m↓KI(A↓KI) = 0, from which (25)
immediately follows. To prove it, let us suppose the
contrary. Since A↓KMI = ×i∈KMIAi, there must
exist at least one j ∈ M such that Aj is not a fo-
cal element on Xj . From this fact it follows that
also m↓LMI(A↓LMI) = 0, as m↓j(Aj) is marginal to
m↓LMI(A↓LMI), and it contradicts the assumption
that m↓LMI(A↓LMI) > 0.

It remains to be proven that m(A) = 0 if A 6= A↓KI⊗
A↓LMI . But it follows directly from the assumption,
as m(A) > 0 only for A =×i∈NAi. ut

Example 3 suggests that the assumption of positivity
of m(A) on any A = ×i∈NAi, where Ai is a focal
element on Xi, is substantial. On the other hand,
the assumption that m(A) = 0 otherwise may not be
so substantial and (A5) may hold for more general
bodies of evidence than those characterised by the
assumption of Theorem 3 (at present we are not able
to find a counterexample).

Let us note that, for Bayesian basic assignments, as-
sumption of Theorem 3 seems to be more general than
that of strict positivity of the probability distribution.
But the generalisation is of no practical consequence
— if probability of a marginal value is equal to zero,
than this value may be omitted.
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5 Summary and Conclusions

This paper started with a brief discussion, based on
recently published results, why random sets indepen-
dence is the most appropriate independence concept
(from the viewpoint of multidimensional models) in
evidence theory. Then we compared two generalisa-
tions of random sets independence — conditional non-
interactivity and the new concept of conditional inde-
pendence. We showed that, although from the view-
point of formal properties satisfied by these concepts,
conditional noninteractivity seems to be slightly bet-
ter than conditional independence, from the view-
point of multidimensional models the latter is superior
to the former, as it is consistent with marginalisation.

There is still a problem to be solved, namely: can
the sufficient condition be weakened while keeping the
validity of (A5)?
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Abstract

Imprecision arises naturally in the context of com-
puter models and their relation to reality. An im-
precise treatment of general computer models is pre-
sented, illustrated with an analysis of a complex
galaxy formation simulation known as Galform. The
analysis involves several different types of uncertainty,
one of which (the Model Discrepancy) comes di-
rectly from expert elicitation regarding the deficien-
cies of the model. The Model Discrepancy is therefore
treated within an Imprecise framework to reflect more
accurately the beliefs of the expert concerning the dis-
crepancy between the model and reality. Due to the
conceptual complexity and computationally intensive
nature of such a Bayesian imprecise uncertainty anal-
ysis, Bayes Linear Methodology is employed which
requires consideration of only expectations and vari-
ances of all uncertain quantities. Therefore incorpo-
rating an Imprecise treatment within a Bayes Lin-
ear analysis is shown to be relatively straightforward.
The impact of an imprecise assessment on the input
space of the model is determined through the use of
an Implausibility measure.

Keywords. Bayesian Inference, Computer models,
Calibration, Imprecise model discrepancy, Implausi-
bility, Galaxy Formation, Graphical Representation
of Model Imprecision.

1 Introduction

Computer models make imprecise statements about
physical systems. This arises because of compromises
made in the physical theory and in approximations
to solutions of very complex systems of equations.
Therefore any statement about a physical system, for
example climate change, which is derived from the
analysis of computer models will be necessarily imper-
fect, as it will usually be very difficult to put a precise
quantification on the discrepancy between the model
analysis and the physical system [1]. A full probabilis-

tic representation of the imprecision arising from such
model discrepancy will typically be very complex and
difficult to analyse. However, there is an alternative
way to express such imprecision, based on viewing
expectations rather than probability as the natural
primitive for expressing uncertainty statements. This
formulation allows us to focus directly on ‘high level’
summary expressions of imprecision. This approach
is termed Bayes Linear Analysis; for a detailed treat-
ment see [2].

In this paper we show how the Bayes Linear approach
may be used to capture the most important features
of the imprecision arising from the use of complex
physical models. We illustrate our approach with
the galaxy formation model known as Galform. Gal-
form simulates the formation and evolution of approx-
imately 1 million galaxies from the beginning of the
Universe until the current day (a period of approxi-
mately 13 billion years). It gives outputs representing
various physical features of each of the galaxies which
can be compared with observational data [3].

This paper is structured as follows: in section 2 we
discuss the Galform model in more detail, in section
3 the theory of computer models and the incorpora-
tion of the imprecise model discrepancy is described,
and in section 4 we develop appropriate graphical dis-
plays for such imprecise analyses and demonstrate the
application of these methods to the Galform model.

2 Cosmology and Galaxy Formation

2.1 Understanding the Universe

Over the last 100 years, major advances have been
made in understanding the large scale structure of
the Universe. Current theories of cosmology suggest
that the Universe began in a hot, dense state approx-
imately 13 billion years ago, and that it has been ex-
panding rapidly ever since. However, there exists a
major problem: observations of galaxies imply that
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there must exist far more matter in the Universe than
the visible matter that makes up stars, planets and us.
This is referred to as ‘Dark Matter’ and understand-
ing its nature and how it has affected the evolution
of galaxies within our Universe is one of the most im-
portant problems in modern cosmology.

In order to study many of the effects of Dark Mat-
ter, cosmologists try to model Galaxy formation using
complex computer models. In this paper, we develop
the Bayesian treatment of imprecision for computer
models, and illustrate our analysis using one such
model, known as Galform (developed by the Galform
group at the Institute for Computational Cosmology,
Durham University).

2.2 Galform: a Galaxy Formation
Simulation

Simulating the formation of large numbers of galax-
ies from the beginning of the Universe until the cur-
rent day is a difficult task and so the process is split
into two parts. First a Dark Matter simulation is
performed to determine the behaviour of fluctuations
of mass in the early Universe, and their subsequent
growth into millions of galaxy sized lumps in the fol-
lowing 13 billion years. Second, the results of the
Dark Matter simulation are used by a more detailed
model called Galform which models the far more com-
plicated interactions of normal matter including: gas
cloud formation, radiative cooling, star formation and
the effects of central black holes.

The first simulation is run on a volume of space of
size (1.63 billion light-years)3. This volume is split
into 512 sub-volumes which are independently simu-
lated using the second model Galform, which is the
subject of the Imprecise Uncertainty Analysis in this
paper (see figure 1). Each run of Galform takes 20-30
minutes per subvolume per processor.

2.3 Galform Inputs and Outputs

The Galform simulation provides many outputs re-
lated to approximately 1 million simulated galaxies.
We consider the two most important types of out-
put: the bj and K band luminosity functions. The
bj band luminosity function gives the number of blue
(i.e. young) galaxies of a certain luminosity per unit
volume, while the K band luminosity function de-
scribes the number of red (i.e. old) galaxies (see Fig-
ure 1). The colour of a galaxy comes from the stars
it contains, stars which on average burn bluer early
in their lifecycle and redder as they age. These out-
puts can be compared to observational data gathered
by the 2dFGRS galaxy survey (see [3] and references
therein).

Figure 1: Top 4 panels: the evolution of both the Dark
Matter Simulation and Galform over a 13 billion year
period. Darker areas show higher concentrations of
Dark Matter, leading to the formation of bright galax-
ies (the white dots). Bottom 2 panels: the bj and K
luminosity functions. The grey lines are from 60 runs
of the Galform simulation. The black points are ob-
served data from the 2dFGRS survey with associated
measurement errors.
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Galform has 17 input parameters that the cosmolo-
gists were interested in varying. Due to expert judge-
ments regarding the impact of these inputs on the
luminosity functions we attempted to calibrate Gal-
form over only 8 of the input parameters (while taking
into account the possible effects of the remaining 9).
These input parameters and their initial ranges are:

vhotdisk: 100 - 550
aReheat: 0.2 - 1.2
alphacool: 0.2 - 1.2
vhotburst: 100 - 550
epsilonStar: 0.001 - 0.1
stabledisk: 0.65 - 0.95
alphahot: 2 - 3.7
yield: 0.02 - 0.05

The other 9 parameters are: VCUT, ZCUT, alphas-
tar, tau0mrg, fellip, fburst, FSMBH, epsilonSMB-
HEddington and tdisk.

2.4 Galaxy Formation: Main Issues

The main physical questions that the cosmologists
are interested in are: do we understand how galax-
ies form, and could the galaxies we observe have been
formed in the presence of large amounts of dark mat-
ter? In order to answer these questions it is vital to
correctly analyse all relevant sources of uncertainty
within this situation. Many of the sources of uncer-
tainty derive from aspects of the problem for which we
have a good physical understanding, for example, the
various types of measurement error associated with
the observational data (which mainly come from op-
tical deficiencies of telescopes).

However, by far the most important uncertainties
arise from the fact that we are uncertain about the
discrepancy between the Galform model and the real
system, and we are also uncertain about which choice
of input should be made when running the model.

3 Bayes Linear Analysis for
Computer Simulators

To understand and describe all the sources of uncer-
tainty in the Galform simulator we apply computer
model emulation techniques. Although here we will
only discuss the Galform simulator, these techniques
are very general and can be applied to any com-
plex model of a physical system. Indeed they have
been successfully applied to a wide variety of physi-
cal models (see [5] for a Bayes Linear approach, [4]
for a fully Bayesian approach, and for an overview
of computer experiments in general see [6] or the
Managing Uncertainty in Complex Models website

http://mucm.group.shef.ac.uk/index.html).

3.1 Main Objectives

A common aim of computer experiment analysis is to
use observed data to reduce uncertainty about possi-
ble choices of the input parameters x (see [5] and [4]).
In many problems the major interest lies in whether
there is any choice of x that would lead to an ac-
ceptable match between model outputs and observed
data. The larger the assessed discrepancy between
model and system, the weaker the constraints the ob-
servations will impose on this choice. In this work
we treat this discrepancy as imprecise. Therefore one
of the most important aspects of the analysis of the
model lies in identifying and quantifying the impact
of such imprecision on the choice of possible input
values.

3.2 Computer simulators

The simulator (Galform) is represented as a function,
which maps the input parameters x to the outputs
f(x). We use the “Best Input Approach”, where we
assume there exists a value x∗ independent of the
function f such that the value f∗ = f(x∗) summarises
all the information the simulator conveys about the
system. In order to make meaningful statements
about the system, denoted y, in relation to the model,
we link the simulator to the system using the model
discrepancy denoted εmd via the equation:

y = f∗ + εmd, (1)

and assume that εmd is independent of f and x∗, that
is, independent in terms of our own beliefs.

The Model Discrepancy term εmd links the real sys-
tem y to the best evaluation of the model represented
by f∗. This is distinct from other sources of uncer-
tainty in our analysis and comes directly from expert
opinion regarding the ‘accuracy’ of the model. Un-
derstanding the nature of εmd is a non-trivial task
as there are various other sources of uncertainty that
are present that interfere with any assessment of εmd.
For example, we can never measure the real system
y directly. Instead we have measurements z observed
with experimental error εobs which are linked to the
system by:

z = y + εobs. (2)

Another important source of uncertainty is due to lack
of knowledge about the form of the function f(x). As
the model takes a significant time to run and has a
high dimensional input space we only have limited
knowledge about its behavior. Further, there is un-
certainty regarding the best input value of x∗ that
features in the definition of εmd (equation (1)).
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These other types of uncertainty make understanding
εmd difficult, which is a significant problem as often
εmd is the most important source of uncertainty due
to its size and nature. Due to these difficulties, the ex-
pert will often be imprecise over the assessment of the
model discrepancy, and even more imprecision could
occur when we consider the opinions of a group of ex-
perts. It is therefore reasonable to analyse εmd within
an imprecise framework, while treating other less sig-
nificant (and more understood) sources of uncertainty
as precise.

We need to understand the behavior of the Galform
simulation f(x): this is done by representing our be-
liefs about f(x) as a statistical function known as
an Emulator, described in the next section. We ad-
dress the calibration problem (that of finding inputs
x that give rise to good matches between the outputs
of f(x) and the observed data z) by use of a tech-
nique known as History Matching [5]. This involves
discarding regions of the input parameter space that
we are reasonably sure will give bad fits to the ob-
served data, and we do this using an Implausibility
measure. Analysing the effect on this measure of hav-
ing an imprecise Model Discrepancy εmd (and the cor-
responding effect on the History Match) is the main
goal of this work.

3.3 Representing beliefs about f using
emulators

An emulator is a stochastic belief specification for a
deterministic function. This would be constructed af-
ter performing a large, space filling set of runs of the
model [6]. Our emulator for component i of f is given
by:

fi(x) =
∑

j

βij gij(x) + ui(x)

where B = {βij} are unknown scalars, gij are known
deterministic functions of x, and u(x) is a weakly sta-
tionary stochastic process. A simple specification is
to suppose, for each x, that ui(x) has zero mean with
constant variance and Corr(ui(x), ui(x′)) is a func-
tion of ‖x− x′‖. From the emulator, we may extract
the mean, variance and covariance for the function,
at each input value x.

µi(x) = E[fi(x)], κi(x, x′) = Cov(fi(x), fi(x′))

Often, because of the mode of construction, the ex-
pectation of the emulator interpolates known runs of
the model, while the variance represents uncertainty
of the function at x inputs that have not been run. A
key feature of an emulator is that it is (in most cases)
several orders of magnitude faster to evaluate than the
model itself. This is important as we will be exploring

high dimensional input spaces that necessitate large
numbers of evaluations. Emulator techniques are vital
in the analysis of any model that has a moderate/long
run time and a high dimensional input space.

3.4 Bayes Linear approach

For large scale problems involving computer models,
a full Bayes analysis is hard for the following reasons.
Firstly, it is very difficult to give a meaningful full
prior probability specification over high dimensional
input spaces. Secondly, the computations for learning
from both observed data and runs of the model, and
choosing informative runs, may be technically very
challenging. Thirdly, in such computer model prob-
lems, often the likelihood surface is extremely compli-
cated, and therefore any full Bayes calculation may
be extremely non-robust. However, the idea of the
Bayesian approach, namely capturing our expert prior
judgements in stochastic form and modifying them by
appropriate rules given observations, is conceptually
appropriate.

The Bayes Linear approach is (relatively) simple in
terms of belief specification and analysis, as it is based
only on the mean, variance and covariance specifica-
tion which, following de Finetti, we take as primitive.
It also allows a relatively straightforward description
of imprecision which is vital for this work.

We replace Bayes Theorem (which deals with proba-
bility distributions) by the Bayes Linear adjustment
which is the appropriate updating rule for expecta-
tions and variances. The Bayes Linear adjustment of
the mean and the variance of y given z is:

Ez[y] = E[y] + Cov(y, z)Var(z)−1(z − E[z]),
Varz[y] = Var(y)− Cov(y, z)Var(z)−1Cov(z, y)

Ez[y], Varz[y] are the expectation and variance for y
adjusted by z.

The Bayes linear adjustment may be viewed as an ap-
proximation to a full Bayes analysis, or more funda-
mentally as the “appropriate” analysis given a partial
specification based on expectation (with methodology
for modelling, interpretation and diagnostic analysis).
For more details see [2].

3.5 History Matching using Implausibility
Measures.

We can now use the emulator, the model discrepancy
and the measurement errors to calculate a Univariate
Implausibility Measure, at any input parameter point
x, for each component i of the computer model f(x).
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This is given by:

I2
(i)(x) = |E[fi(x)]− zi|2/Var(fi(x)− zi) (3)

which now becomes:

I2
(i)(x) = |E[fi(x)]− zi|2/(Var(fi(x)) + IMD + OE)

(4)
where E[fi(x)] and Var(fi(x)) are the emulator ex-
pectation and variance, zi are the observed data and
IMD = Var(εmd) and OE are the (univariate) Impre-
cise Model Discrepancy variance and Observational
Error variance.

When I(i)(x) is large this implies that, even given all
the uncertainties present in the problem, we would
be unlikely to obtain a good match between model
output and observed data were we to run the model
at input x. This means that we can cut down the
input space by imposing suitable cutoffs on the im-
plausibility function (a process referred to as History
Matching). Regarding the size of I(i)(x), if we as-
sume that for fixed x the appropriate distribution of
(fi(x∗)− z) is unimodal, then we can use the 3σ rule
which implies that if x = x∗, then I(i)(x) < 3 with
a probability of approximately 0.95 (even if the dis-
tribution is asymmetric). Values higher than 3 would
suggest that the point x should be discarded.

It should be noted that since the implausibility relies
purely on means and variances (and therefore can be
evaluated using Bayes Linear methodology), it is both
tractable to calculate and simple to specify and hence
to use as a basis of imprecise analysis.

One way to combine these univariate implausibilities
is by maximizing over outputs:

IM (x) = max
i

I(i)(x) (5)

Using the above unimodal assumptions, values of
IM (x) of around 3.5 might suggest that x can be dis-
carded, as is discussed in section 4.2.

If we construct a multivariate model discrepancy, then
we can define a multivariate Implausibility measure:

I2(x) = (E[f(x)]− z)T Var(f(x)− z)−1(E[f(x)]− z),

which becomes:

(E[f(x)]−z)T (Var(f(x))+IMD+OE)−1(E[f(x)]−z).

Again, large values of I(x) imply that we would be un-
likely to obtain a good match between model output
and observed data were we to run the model at input
x. Choosing a cutoff for I(x) is more complicated. As
a simple heuristic, we might choose to compare I(x)
with the upper critical value of a χ2 distribution with
degrees of freedom equal to the number of outputs.

4 Application to a Galaxy Formation
Simulation

One of the long-term goals of the Galform project is
to identify the set of input parameters that give rise
to acceptable matches between outputs of the Gal-
form model and observed data. We do this using the
History Matching ideas outlined above, the full de-
tails of which will be reported elsewhere. Before one
can embark on such a process, the imprecise model
discrepancy must be constructed, and its impact un-
derstood, as we now describe.

We proceed to analyse the Galaxy Formation model
Galform using the computer model techniques de-
scribed above. We choose to examine the mean of
the first 40 sub-volumes (following the cosmologists’
own attempts to calibrate) and select 11 output points
from the bj and K luminosity graphs for use in our
analysis, as shown in figure 2.

First, 1000 evaluations of the model were made (also
shown in figure 2) using a space filling latin hypercube
design across the 8-dimensional input space. These
runs were used to construct an emulator for Galform
as discussed in section 3.3.

We now describe the imprecise model discrepancy
used to capture the cosmologist’s assessment of the
discrepancy between model and reality, and then go
on to examine the imprecise implausibility measures
this generates, and their impact on the judgement as
to which inputs x are deemed acceptable.

4.1 Imprecise Model Discrepancy

At this stage we need to assess the Model Discrep-
ancy εmd related to all 11 outputs of interest. This
is obtained from an expert opinion regarding the dis-
crepancy between the model and reality, derived from
opinions about potential deficiencies of the model. As
this is a difficult assessment to make, an imprecise
quantification of the model discrepancy will often be
the most realistic representation of such uncertainty.

As we are doing a Bayes Linear analysis we only need
to consider the assessment of E[εmd] and Var(εmd).
This is a major benefit of the Bayes Linear approach
as we can represent any imprecision by letting some
of these quantities vary over specified ranges and can
then explore the consequences in the rest of our anal-
ysis. This is straightforward in comparison to a fully
probabilistic analysis where such an imprecise specifi-
cation would be extremely difficult, and a subsequent
examination of the impact of such imprecision would
often be intractable.

A leading expert stated that his beliefs regard-
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Figure 2: The bj and K luminosity outputs from 1000
runs of the model. The vertical black lines show the
11 outputs chosen for emulation. The error bars now
incorporate the (univariate) model discrepancy with
a = a.

ing the model discrepancy were symmetric in that
E[εmd] = 0. Define IMD = Var(εmd). Even for the
univariate case (i.e. considering only one of the 11
outputs) the individual expert was unwilling to assess
the size of IMD precisely. However, the expert was
willing to make an imprecise assessment by specifying
lower and upper bounds IMD and IMD.

For the multivariate case, we needed to assess
IMD = Var(εmd) which is now an 11x11 matrix. The
structure of this matrix will come from the expert’s
opinion as to the deficiencies of the model. In the case
of Galform there are two major physical defects that
can be identified. The first is the possibility that the
model has too much (too little) mass in the simulated
universe. This would lead to the 11 luminosity out-
puts all being too high (or too low), and would lead
to positive correlation between all outputs in the MD
matrix. The second possible defect is that the galaxies
might age at the wrong rate leading to more/less blue
galaxies and therefore less/more red galaxies. This
would be represented as contributing a smaller nega-
tive correlation between the bj and K luminosity out-
puts. To respect the symmetries of these possible de-
fects, the multivariate Imprecise Model Discrepancy

(IMD) was parameterised in the following form:

IMD = a2




1 b .. c .. c
b 1 .. c . c
: : : : : :
c .. c 1 b ..
c .. c b 1 ..
: : : : : :




(6)

where now a, b and c are imprecise quantities,
and we obtain the following expert assessments:
a = 3.76× 10−2, a = 7.52× 10−2, b = 0.4, b = 0.8,
and c = 0.2, c = b.

It is possible to build in far more structure into IMD
if required. The more detailed the structure, the more
difficult eliciting expert information becomes. How-
ever, note the relative ease of specifying useful high-
level imprecise statements using expectation as prim-
itive, as compared to the corresponding effort for a
fully probabilistic analysis. Exploring the effects of
these specifications is also an easier task, as we now
show by examining the effects of varying choices of a,
b and c on the appropriate implausibility measures.

4.2 Implausibility Measures

In section 3.5 we showed how to construct the
maximised and multivariate Implausibility measures
IM (x) and I(x). As these are derived using the impre-
cise model discrepancy we can write the dependence
of these two implausibility measures on a, b and c ex-
plicitly. We can now explore the effects on IM (x, a)
and I(x, a, b, c) of varying a, b and c within the credal
set C defined by:

a < a < a, b < b < b, c < c < b,

as is described in the next section. As the implausibil-
ity measures are now imprecise, in order for regions of
the input space x to be discarded as Implausible, they
must violate the implausibility cutoff for all values of
a, b and c, that is:

I(x, a, b, c) > Icut ∀ a, b, c ∈ C, (7)

with a similar relation for IM (x, a):

IM (x, a) > IMcut ∀ a ∈ C. (8)

In section 4.3 we set Icut = 26.75 corresponding to a
critical value of 0.995 from a χ2 distribution with 11
degrees of freedom (and IMcut = 3.5) which were felt
to be appropriate, conservative choices for the cutoffs.
Note that if an input x satisfies either constraint (7) or
constraint (8) then it is deemed implausible and will
be discarded. As can be seen from equations (6),(3)
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and (5), IM (x, a) is a monotonically decreasing func-
tion of a and hence constraint (8) will be equivalent
to:

min
a∈C

IM (x, a) = IM (x, a) > IMcut (9)

The constraint for I(x, a, b, c) is more complex and in
general no such monotonicity arguments can be used.
In a full calibration analysis we would, for fixed x,
evaluate I(x, a, b, c) over a large number of points in
the credal set C, and only discard the input x if it does
not satisfy the implausibility cutoffs for every one of
these points. However, here we are more interested in
understanding the impact of different choices of a, b
and c on the input space, which we do in the next
section.

4.3 Effect of the Imprecise Model
Discrepancy on the Assessment of the
Best Input x∗

The most important effect of an imprecisely specified
model discrepancy is its impact upon the choice of
acceptable input parameters x∗. Above we showed
how to construct the implausibility measures and de-
scribed their use in deciding which inputs would be
deemed acceptable. Here we will explore the impact
of the imprecision on the multivariate measure itself,
then on the percentage of input space remaining, by
analysing the effects of varying a, b and c. Note that
while we present all the pictures in greyscale, these
displays are designed for presentation in colour.

Figure 3 shows the multivariate implausibility
I(x, a, b, c) as a function of a, b and c for two dif-
ferent fixed values of x. In the top (bottom) panel x7

i.e. alphahot is set to its minimum (maximum) value
of 2 (3.7). In both panels x1 i.e. vhotdisk is at its
maximum value of 550, and all other inputs are at
their midrange values. In these and subsequent fig-
ures we examine slightly larger ranges for a, b and c
than are defined by the Credal Set: here they sat-
isfy 0.5a < a < 2a, 0 < b < 0.95 and 0 < c < b.
The top panel shows that I(x, a, b, c) is minimised
for large values of a, b and c attaining a minimum
of approximately I(x, a, b, c) = 14.2. In the bot-
tom panel however, the implausibility is minimised
for low values of b and c and only attains a minimum
of I(x, a, b, c) = 38.3. This shows the dramatically
different behaviour of the implausibility measure as a
function of a, b and c for two different parts of the
input space, and specifically that general monotonic-
ity arguments (such as used in equation (4.2)) can-
not be applied to the imprecise parameters b and c.
Plots such as those shown in figure 3 are very useful
in helping to understand the impact of an imprecise
assessment. However, one cannot examine such plots

20

30

40

50

60

70

40

50

60

70

80

90

Figure 3: Both panels shows the multivariate implau-
sibility I(x, a, b, c) as a function of a, b and c for two
different fixed values of x, with darker colours repre-
senting lower implausibility. Here a, b and c vary over
the ranges 0.5a < a < 2a, 0 < b < 0.95 and 0 < c < b.
Note that the scale on the a-axis is in terms of mul-
tiples of a. Top panel: vhotdisk = 550, alphahot =
2, Bottom panel: vhotdisk = 550, alphahot = 3.7, all
other inputs set to their midrange values.
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Figure 4: Fraction of input space that survives the multivariate implausibility cutoff given by equation (7) with
Icut = 26.75 as a function of a, b and c in the ranges 0.5a < a < 2a, 0 < b < 0.95 and 0 < c < b. Note that the
scale on the a-axis is in terms of multiples of a.

for all points in the 8-dimensional input space. We
therefore look at other ways to summarise and visu-
alise the analysis.

We can summarise the effect of the imprecise mul-
tivariate implausibility cutoff given by equation (7)
on the whole of the input space by looking at the
fraction of space remaining once the cutoff has been
imposed. Here we display the results corresponding
to Icut = 26.75, a value which was thought to be a
reasonably conservative choice. Figure 4 shows this
fraction of space remaining as a function of a, b and
c in the ranges 0.5a < a < 2a, 0 < b < 0.95 and
0 < c < b, with darker colours representing higher
fractions. Figure 5 shows the same 3D plot from a
different perspective. The 3D object has been cut in
3 places to allow one to see slices of the function at
fixed values of a. This shows that for large values of
a, the maximum space remaining would occur for in-
termediate values of b and c (approximately b = 0.7
and c = 0.6 for a = 2), however for smaller values of
a the space remaining would be maximised by large b
and c (e.g. for a = 0.5a = a, b = 0.95 and c = 0.95:
see figure 5). These plots also suggest that the space
remaining is far less sensitive to variation in b and c
than in a: it is useful for the expert to know therefore
that their assessment for a is more significant than for
b and c.

Figure 6 shows the fraction of space remaining as a
function of a for fixed choices of b and c. The bound-
aries of the Credal Set are shown by dotted vertical
lines. Again one can see that to maximise the space

remaining requires intermediate values of b and c for
large a, and large values of b and c for small a. Also
note that as a tends to small values, the fraction of
space remaining varies only slowly: in fact setting
a = 0 (which is not shown in this figure) leads to
0.017 of the input space remaining: this is important
for the expert to know as it shows that some of the in-
put space would survive the cutoff even for zero model
discrepancy.

Examining the space remaining is useful in under-
stand the effects of the imprecise specification of
model discrepancy. However, it is also vital to assess
the effect on the input space directly i.e. to determine
which inputs x would not be discarded due to the im-
precise specification. One way to analyze this is to
ask what is the minimum value of a that is required
to ensure that a particular input point x satisfies the
implausibility cutoff. Figure 7 shows 3D plots of the
required value of a as a function of the input parame-
ters x1 and x7, and of b (with the other inputs at their
midrange values , with c = 0, and the key in terms of
multiples of a). The darkest areas are those that have
a required a of less than a and hence would survive the
cutoff for the current specification. These plots show
that while the value of b has effects in some parts of
the input space, the region defined by required a < a
is relatively independent of the value of b (a similar re-
sult is seen for plots with varying c and fixed b). This
demonstrates that the required value of a is far more
sensitive to the value of x1 and x7 as opposed to the
specified range of the imprecise quantity b, and gives
more evidence to suggest that the experts assessment
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Figure 5: Alternative view of fraction of input space
that survives the multivariate implausibility cutoff
given by equation (7) with Icut = 26.75 as a function
of a, b and c in the ranges 0.5a < a < 2a, 0 < b < 0.95
and 0 < c < b. Note that the scale on the a-axis is in
terms of multiples of a.
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Figure 6: Fraction of input space that survives
the multivariate implausibility cutoff given by equa-
tion (7) with Icut = 26.75 as a function of a for the
range 0.25a < a < 2a, for various choices of b and c.
The scale on the a axis is in terms of multiples of a.
Note that a = 0.5a. It can be seen that more space
survives when b = 0.7 and c = 0.6 for large a, however,
for smaller a the more extreme values b = 0.95 and
c = 0.95 are preferred (which are not in the Credal
Set).

for a is far more significant than that for b and c.

We have seen the effects of the imprecise assess-
ment on the multivariate implausibility measure
I(x, a, b, c), on the fraction of space remaining after
the cutoff is imposed, and on the set of allowed values
of x1 and x7. We showed that these effects are non-
trivial as the multivariate implausibility measure is a
complicated function of x, a, b and c.

5 Conclusions

We have discussed how computer models make impre-
cise statements about physical systems. This impre-
cision arises due to the immense difficulty in giving
a precise quantification on the discrepancy between
the model analysis and the system. We have shown
how use of Bayes Linear methods can provide a rela-
tively straightforward description of this imprecision,
allowing a meaningful elicitation of imprecise model
discrepancy while leading to a tractable analysis of the
issues involved in computer model calibration, which
we demonstrated in the context of the galaxy forma-
tion simulation Galform.

The mathematical tractability of treating expectation
as primitive also allows a detailed study of the effects
of such imprecise assessments. In this case this in-
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Figure 7: Plots showing the value of a that is required
to ensure a point in input space satisfies the multi-
variate cutoff, as a function of the input parameters
vhotdisk and alphahot, and of the imprecise quantity
b (with c set to 0). The key is in terms of multi-
ples of a, and the darker areas represent low required
a. All other input parameters have been set to their
midrange values.

volved understanding the impact of the imprecision on
the implausibility measures; measures that were used
to discard regions on input parameter space thought
to be very unlikely to give rise to acceptable matches
between model output and observed data. In this way
we were able to show the direct impact on parts of the
input space of the expert’s imprecise judgements re-
garding model deficiency. The effects of the imprecise
assessments were found to be non-trivial and a variety
of methods were used to summarise the data in order
to produce meaningful visual representations of such
effects.
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Abstract 
This paper presents a model of how military commanders 
estimate the threat posed by the enemy in a tactical situa-
tion and how they use own forces to control that threat. 
The model is based on interviews with nine commanders 
from the Swedish navy and the purpose is to find auto-
matic and adequate methods for reasoning about strategic 
issues based on the long-time experience of highly quali-
fied military officers. The results show that the number 
of enemy units, the types of enemy units, the behavior of 
the enemy units, and the uncertainties regarding the 
number, types, and behavior determines the threat in a 
tactical situation. The own course of action works as a 
threat altering function to control that threat. When the 
commander should decide on a course of action, we sug-
gest that it should be selected so it minimizes the ex-
pected threat. 

Keywords. Military decision making, threat, worst case, 
expected value, imprecise probabilities 

1 Introduction 
Military decision-making means putting peoples life at 
stake in order to reach military objectives. The military 
decision makers are not only faced with risk of their own 
lives, their decisions also means subjecting own person-
nel and maybe even civilians to grave danger. Further-
more, the decisions often have to be made in highly 
stressful situations and in almost all cases under condi-
tions of uncertainty and time pressure. When deciding 
what to do the military commander has to weigh possible 
gains against possible losses to determine the worth of 
each alternative. If an alternative where the possible gain 
outweighs the possible losses can be found, the risk of 
that alternative is considered worth taking, and it is cho-
sen and implemented. 

How military decision makers make such tradeoffs have 
not been studied to any great extent and empiric data in 
this field is almost nonexistent [1, 2]. Consequently, re-
search is needed to investigate how military decision 
makers judge the risk of a certain course of action, and 
how they decide if that risk is worth taking. The rationale 
for this is that if we want to devise proper decision sup-
port we must first understand how such decisions are 
made in order to identify possible difficulties and pitfalls. 
This study is based on the assumption that determining 
acceptable risk means making a decision that strikes a 
balance between the factors that increase risk, the factors 
that decrease risk and the factors that justify risk. If such 
balance can be found, the risks following from the deci-
sion are acceptable and are worth taking. This paper fo-
cuses on how a commander estimates the threat posed by 
an enemy in a tactical situation and what he or she does 
to controls that threat. The results will be used as the 
groundwork aiming at devising a military decision sup-
port system.  

2 Background 
How a rational human being should make choices under 
conditions of uncertainty have been extensively studied 
in the field of normative decision-making, and a wide-
spread opinion is that utility theory captures the concept 
of rationality [3-6]. Nevertheless, people seem to make 
decision in other ways but those stated by expected util-
ity theory as has been demonstrated in a vast of psycho-
logical experiments [7, 8]. To accommodate deviations 
between the normative theories and the experimental re-
sults descriptive theories have been proposed [9, 10].  

Luce and Raiffa’s [5] distinction between certainty, risk 
or uncertainty has been further developed by Einhorn & 
Hogarth [11]. They distinguish between ignorance, am-
biguity and risk according to the degree to which one can 
rule out alternative distributions. In a state of ignorance 
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no distributions are ruled out, while in a state of risk all 
but one distribution are ruled out. Ambiguity is an inter-
mediate state between ignorance and risk and results 
from the uncertainty of specifying which of a set of dis-
tributions is appropriate in a given situation. Thus, ambi-
guity refers to not knowing the structure of the system 
that produces the outcomes. As showed by Ellsberg [12] 
people prefer risk to ambiguity). 

This observation is of special interest in the military do-
main. The problem facing a military decision maker is to 
decide how to solve a mission in a hostile environment, 
and the decision is made difficult by the uncertainties re-
garding the enemy [13]. These uncertainties regard both 
what the enemy looks like (the structure of the system) as 
well as what the enemy will do (the outcome of the sys-
tem). 

Further, military decision making comprises of more 
than just selecting the best course of action from a given 
set. Courses of actions do not present themselves in a 
ready-made fashion, they must be developed, and this is 
done according the methods prescribed in military plan-
ning manuals [14]. These manuals prescribe the military 
decision-making process as a process aiming at proce-
dural rationality [15] where course of action are first de-
veloped, and then the best is selected according to some 
criteria. Nevertheless, empirical research show that in 
many cases the decision maker only develops one ‘good 
enough’ course of action that is put to action [16, 17]. 
Thunholm [16] further showed that under conditions of 
time pressure rational methods do not produce better 
courses of action than intuitive methods. Even if this 
seems to spell bad news for the rational methods, it 
probably only means that better normative methods are 
yet to be found1. 

Another distinct feature of tactical decision-making in 
the navy is the decision-making tempo. The commander 
may only have a few hours to plan a mission before exe-
cution must begin. Once execution begins the focus 
changes; instead of devoting resources to decide what 
has to be achieved in the future, resources are redirected 
to figure out how the current operations are proceeding. 
Any difference between perceived state and the state 
predicted by the plan might be a potential problem. The 
commander must identify the situations that pose threats 
to the successful accomplishment of the mission. If a po-
tential problem is detected, appropriate action must be 
devised and implemented in order to prevent derailing of 
operations.  This makes military decision making an on-
going process. New courses of actions have to be devel-
oped and implemented as a reaction to the changing 
events [18]. 

                                                             
1 It should be noted that in some situations ‘good enough’ solutions, 
i.e., statisficing solutions, can be considered normative or even the only 
possible solution [26].  

How people make decisions in such an environment been 
studied in the fields of dynamic and naturalistic decision-
making. In the field of dynamic decision making the fo-
cus has been on how people in general control a dynamic 
system, and the difficulties they face in that task [19]. 
The results, however, are only on a general level and not 
immediately applicable to how military decision makers 
make judgments of threat and control. 

Naturalistic decision making (NDM), on the other hand, 
are interested in how experts make decisions within their 
own fields and some studies have focused on military 
personnel [20, 21]. Results from this field indicate that 
decision makers employ quite stable strategies that, de-
spite the presence of uncertainty, make it possible to 
make decisions. 

In one NDM study Lipshitz and Strauss [22] studied how 
Israeli Army officers coped with uncertainty and con-
cluded that the participants distinguished between three 
types of uncertainty: uncertainty caused by inadequate 
understanding, uncertainty caused by incomplete infor-
mation and uncertainty caused by undifferentiated alter-
natives. They coped with these by applying five different 
strategies: i) reducing uncertainty (by collecting more in-
formation), ii) assumption-based reasoning, iii) weighing 
pros and cons of competing alternatives, iv) suppressing 
uncertainty, and v) forestalling. Similar strategies have 
been obtained by others, although the context in their 
studies was not military [10, 23]. Hutton [24] has made 
an extensive review of strategies with focus on the mili-
tary context. But as in the case of dynamic decision-
making no studies have explicitly focused on threat or 
control judgments.  

Even if some effort has been made to describe how mili-
tary decision makers cope with uncertainty, very few at-
tempts have been made at investigating how they judge 
risk. What increases or decreases military risk, how un-
certainty affects military risk and what makes military 
risks worth taking have neither been investigated to any 
great extent. This paper presents a model of how military 
decision maker judge the threat posed by the enemy and 
what he or she does to control that threat, and will be 
used to establish the requirements for a military decision 
support system. It should be noted that what people do is 
not necessary a good guide to what they should do. Nev-
ertheless, a practical approach when designing support 
systems is to start with the problems people have in a 
task, helping people with things they find easy will 
probably leave that support unused. Thus, to identify 
these potential problems you need a descriptive account 
the task. 

3 Method 
The participants were nine officers who either were or 
had been in active duty in the Swedish navy. One of the 
participants had served as Chief of Navy, the highest 
commander of the Navy and a direct subordinate com-
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mander to the Supreme Commander. One had served as 
Chief of Fleet, the highest commander of the Fleet. Two 
participants had served as Commander of a Surface War-
fare Flotilla (the highest tactical commander of a naval 
mission consisting of 15-20 navy ships often coupled 
with support units such as helicopters, attack, fighter, or 
surveillance aircrafts). Three participants had served as 
Commanders of Surface Warfare Divisions (subordinate 
to a Flotilla Commander and in charge of approximately 
four to six navy ships). Two participants had served as 
Commanding Officers of a ship. Eight of the participants 
were specialized in anti surface warfare and/or anti sub-
marine warfare and one officer in mine warfare. The par-
ticipants had led between 10 to 100+ military planning 
processes on the tactical level or above, and they had led 
between 10 and 100 naval missions (exercise and/or 
live)2. All respondents were men. 

The study was conducted using semi-structured inter-
views, duration ranging between 0.5-1.5 hours. The ques-
tions were based on the steps and tasks prescribed by the 
Swedish Navy’s decision-making process (SNDMP), 
which like other military decision making processes is 
highly proceduralized process where of a number of dis-
tinct steps should be completed in sequence [25]. How-
ever, none of the steps or tasks in SNDMP explicitly 
states that the decision maker should carry out risk esti-
mates, so asking how the respondents made such esti-
mates would probably yield little or no data. Instead it 
was assumed that risk estimates would be embedded in 
the decision-making process and consequently all re-
spondents had to describe how they carried out each of 
the steps. 

The interviews were transcribed verbatim, leaving out 
pauses, humming etcetera and analyzed using content 
analysis. As no stage of the SNDMP explicitly calls for 
risk estimates it was suspected that the participants 
would use other phrases together with ‘risk’ when they 
accounted for how they made such considerations. Con-
sequently, all statements containing the words “risk”, 
“threat” and “danger” were excerpted. To determine if a 
statement related to judgments of threat or control, each 
were analyzed by the author. The data were reduced by 
amalgamation of similar statements and the result was 
checked for internal consistency (no contradictions 
within the statements) and integrated to form a coherent 
model of threat and control in military decision making. 

4 Results 
The results show that two things determine the level of 
threat in a tactical situation: i) the enemy and ii) the level 

                                                             
2 About half of the respondents have participated in countering the re-
peated violations of Swedish territorial waters by submarines during 
1980-1995, where several targets were engaged. If, and to what extent 
these violations took place are still causing controversy but this will not 
be further discussed here.   

of uncertainty regarding the enemy. All respondents ex-
pressed that the enemy is the major threat determinant (9 
of 9). When considering the enemy, two questions oc-
cupy the participants: what forces does the enemy have 
and what can the enemy do? As expected, the more 
forces the enemy have and the more capable the forces, 
the higher the threat. Further, the forces can be employed 
differently leading to more or less threatening actions. 

The other threat driver is uncertainty. The results indicate 
that the respondents (6 of 9) regard uncertainty almost 
synonymously with threat, risk or danger3. An uncertain 
situation is a threatening situation. As one of the lower 
experienced respondents put it “You often regarded dif-
ferent aspects of risk taking, what risks were acceptable, 
what uncertainties”. When faced with uncertainty, as un-
derstood by some of the participants in this study (4 of 
9), they deal with it by worst-case reasoning. This, how-
ever, gives a different bounding of risk than probability 
would give.  

Consider the uncertainty about the enemy forces. Given 
no uncertainty at all, all enemy units that pose a threat, 
are known. Thus, the risk is equivalent to the threat 
posed by those units. As uncertainty increases, the more 
the decision maker tends towards worst-case reasoning. 
Consequently, risk is bound on the lower end by the 
threat posed by the known forces, and on the upper end 
by the threat posed by the worst plausible combination of 
enemy forces. The same reasoning goes for what the en-
emy can do. When uncertainty is zero then the risk is 
equal to what the decision maker knows the enemy is go-
ing to do. As uncertainty increases the risk approaches 
the threat posed by the worst plausible enemy course of 
action. The following statements from two of the higher-
ranking respondents serve as examples: 

Let us say that you can get a decent understanding of what 
resources the enemy got, but what his possibilities are, 
how he thinks and ponders, that is not as easy. If you start 
to sort out, what are his resources? What kinds of ships are 
there, what kind of aircrafts, what other forces does he 
have? 

And then you lay low and wait. You know that he can ap-
proach this area, and your mission is to prevent him from 
entering and doing something in this area. […]  Then you 
must keep track of where he is and what the most danger-
ous thing he can do is, and decide how you can counter 
that. And yes, the difficult part is to know how big they 
are, how many they are, and how strong they are. That is 
what you are going to think about. 

In the military context, threat is controlled by employing 
own units and by devising an appropriate own course of 
action. On this point all respondents agree (9 of 9). The 
number of own units and the types of own units deter-
                                                             
3 This may be in part linguistic. The word ‘uncertainty’ has two mean-
ings in Swedish, which can be translated to ‘uncertain’ and ‘insecure’. 
However, when military personnel talk about ‘uncertainties’ regarding 
an operation they generally refer to the former meaning. 
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mines the control created by own units. The more own 
units, the higher the perceived control. The more capable 
the own types, the higher the perceived control. Follow-
ing statements from two of the highly experienced re-
spondents serve as examples: 

What is it that has to be done? What does the threat look 
like? What enemy forces are in the area? What forces will 
I have at my disposal? In that situation the first thought is: 
Do I have enough own forces or do I need support from 
other units? Do I need recognizance aircrafts, attack air-
crafts, surveillance helicopters, or support from other sur-
face attack forces? A first feeling; do I have enough 
forces, enough capability to solve this mission? 

I mean, what is level of risk you must be prepared to take? 
Of course there is a connection to the resources as I as tac-
tical commander can use. And the difficulty is of course 
what resources I can get. What support can my mission [as 
tactical commander] get from the mission commander [the 
higher command]? There is a discussion about the support-
ing functions that I can get related to the level of risk. As 
an example: Can I get air support, costal missile batteries 
or something else as an additional strength. Or can I get 
submarine missions as support?  

Control is also achieved by devising/selecting an own 
course of action that subjects own forces to more or less 
risk. The control achieved by own course of action is 
consequently transitive. Consider following statement 
from one of the high experienced respondents: 

It is embedded in this, the comparison of forces. How can 
I, so to say, protect my own forces and when can I strike, 
that is what it is all about. And if this comparison is to my 
advantage, which it seldom has through the years, it has 
always been an advantage to the enemy, both in numbers, 
size, resources, ranges, additional aircrafts and everything 
[…] well yes, then I must, to protect my own forces as 
much as possible, utilize the protection I can get from 
maybe the terrain or similar, that is the archipelago, in an-
other way than if we had an advantage of some sort in 
ranges. If that were the case, then you had been able to go 
out [on the open sea] in another way. 

The results indicate that the threat posed by an enemy 
force is a function of how large the enemy force is (how 
many units it contain), how capable it is (what kind of 
types of units it contains), what the enemy is doing (be-
havior), and the uncertainties regarding the number, 
types and behavior of the enemy. Beginning with the 
properties of a unit, the threat posed by a unit is deter-
mined by its ability to destroy other units. To destroy an-
other unit it must first be able to detect the other unit, and 
second, have a weapon that can be used to engage the de-
tected unit. Thus, the threat or control posed by a unit is 
determined by the unit’s ability to detect other units, to-
gether with the weapons carried by that unit.  

 
Figure 1 

Looking at Figure 1a, two identical ships with regard to 
armament and maneuverability are depicted. In this ex-
ample the right ship will be considered as more of a 
threat since it can detect units (and consequently fire a 
weapon against them) at a further distance than the left 
ship. 

If we continue to the weapons, a unit is perceived as 
more of a threat if it carries more powerful weapons. 
Figure 1b depicts two ships: a patrol boat (to the left) and 
a destroyer (to the right). The patrol boat carries a single 
gun while the destroyer carries two guns and six surface-
to-surface missiles. In this case, the destroyer will be 
perceived as the higher threat due to its heavier arma-
ment. Furthermore, the range of the weapons carried by a 
unit also determines its level of threat. A unit with long 
ranged weapons will be considered more of a threat than 
the same unit with shorter ranged weapons. The reason 
for this is that a unit with long ranged weapons may fire 
that weapon outside the detection range of friendly units. 

Yet another property that increases threat or control is a 
unit’s ability to avoid detection, its ability to stealth. If a 
unit has a high ability to stealth, the unit has the advan-
tage of coming into range with its own weapons and sen-
sors without being detected by the opposing unit.  

 
Figure 2 

Looking at Figure 2, three ships are illustrated: a friendly 
unit (left) a stealthy enemy (middle) and a normal enemy 
(right). Even though the stealthy and the normal enemy 
have the same weapons and sensors, the stealthy enemy 
will be perceived as more of a threat since it can detect 
and fire a weapon on the friendly unit without being de-
tected. Consequently, a unit with high ability to stealth 
may pose a higher threat than a normal unit, even if the 
normal unit is equipped with better sensors and arma-
ment. 
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As said earlier, the behavior of an enemy unit also affects 
the perceived threat. In Figure 3 an enemy ship is moving 
north, its weapon and sensor ranges illustrated by the 
dashed circle. Now suppose that the enemy unit suddenly 
changes course. If the course change will bring the en-
emy closer to the friendly unit, the perceived threat will 
increase since the friendly unit runs risk of coming 
within range of the weapons carried by the enemy. On 
the other hand, if the course change will bring the enemy 
further away from the friendly unit, the perceived threat 
will decrease for the opposite reasons. 

 

 
Figure 3 

The capability of a force is determined in the same way 
as the capability of a single unit, by its ability to detect 
and destroy targets. But on a force level a procedure of 
target sharing can enhance those abilities. Once a naval 
operation is underway all units use their sensors to sur-
vey their immediate surroundings. All contacts are re-
ported to designated units in the force, which compile the 
reports into a single, coherent view of the operation’s 
area. This view is then distributed to the whole force. 
This procedure allows all units to become aware of all 
contacts held by the force, including contacts out of 
range by their own sensors. 

 
Figure 4 

How this procedure can enhance the combined effect of 
the force is illustrated in Figure 4. The right ship with the 
greater sensor range detects a target with its radar. As the 
target is outside the range of its own weapons the right 
ship cannot itself destroy it. However, by sending the 
target to the partner to the left, the partner also becomes 
aware of the target. The left ship has much greater 
weapon range and as the target is within that range, the 
left ship can engage the target. 

This simple scenario illustrates that the more capable a 
force is to detect targets, the more threatening will it ap-
pear. However, a force with superior surveillance capa-
bility is no threat at all if it does not have the capability 
to destroy the targets it has detected. Thus, the weapons 
it can employ also determine threat. The more powerful 
and the longer ranged they are, the more threatening the 
force will be perceived. On the other hand, the force is of 
no threat at all if it cannot detect any targets. Thus, to be 
a superior force it must have the upper hand both when it 
comes to sensor capability and weapons capability. 

Figure 5 further illustrates the situation. To the left we 
see a force consisting of two ships of the same type. The 
inner zone, denoted by a dashed line, depicts the total 
area covered by the force’s sensors. The outer zone 
shows the area covered by the force’s weapons. The gray 
zone shows the area, in which this force can both detect 
and destroy targets; in this case it is the same as the area 
covered by sensors. If we now look at the right force we 
see that it consist of one ship and one helicopter. If we 
assume that this ship is of same type as the ships in the 
left force, we see that the area in which the right force 
has control is much larger that the left force’s. This is 
due to the superior sensor range provided by the helicop-
ter. If we now compare the threat perceived by the com-
manders in each force, the commander of the left force 
will probably perceive a higher degree of threat, despite 
the fact that he or she has twice as many weapons. This is 
quite evident since the right force can close in on the left 
force, use the helicopter to find the left force, fire its mis-
siles at max range, without risking detection of the left 
force. Thus, the threat or control provided by a force is 
determined by its composition of the own force, in the 
same way as the threat posed by the enemy is determined 
by the composition of the enemy force. 

 
Figure 5 

As have been illustrated above, the control provided by 
own units was determined in the same way as the threat 
posed by the enemy. The second way to handle the threat 
was to devise an appropriate own course of action. How 
this can be accomplished is illustrated in Figure 6. The 
mission is to move the ship from Port A on the mainland 
to Port B on the island. Intelligence has reported that dur-
ing the initial phases of the operation no enemy is in the 
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area, but as the operation is underway the enemy will 
most likely try to prevent the transport. The commander 
concludes that if we move quickly we might get the 
transport to Port B without giving the enemy a chance to 
interfere. The plan is to move the transport ship at high 
speed across the open water, thus minimizing exposure 
time to the enemy threat. The friendly units will establish 
a protective screen.  

 
Figure 6 

Now assume the operation is underway and the transport 
ship has reached a point on the open water between Port 
A and Port B. Suddenly, an enemy ship is detected and 
identified. Since the open sea does not provide any pro-
tection it is assumed that the enemy also has detected the 
transport ship. Figure 7 illustrates the situation. The en-
emy has a weapon range denoted by r1 and the friendly 
ship a weapon’s range of r2. This means that the enemy 
ship cannot be allowed to get any closer than r1 to the 
transport ship, or else the transport ship runs risk of being 
sunk. 

 
Figure 7 

The commander can handle the threat in two ways. One 
alternative is to order the transport ship to head south and 
hide in the archipelago. This makes the transport ship 
difficult to detect and consequently difficult to destroy. 
The other option is try to sink the enemy ship, removing 
the threat altogether. However, attacking the enemy is 
dangerous since the own ship is inferior when it comes to 
weapon ranges (r2< r1). On the other hand, it may be 

worth the risk since a successful attack will lower the 
overall threat for the rest of the operation.  

In this case the commander orders the transport ship to 
head south and seek cover in the archipelago. The idea is 
to let the transport ship move in the archipelago to the 
point on the mainland where the distance to the island is 
minimal. Once there, it will lay low and wait until the 
friendly units have cleared the route to Port B, as shown 
in Figure 8. Using same reasoning as before, the area that 
must be cleared is obtained by measuring the range of the 
enemy’s longest ranged weapon and apply that distance 
perpendicular to the planned route. When the area is 
cleared the transport ship will rush out at maximum 
speed, giving the enemy minimum amount of time to act 
before the transport ship reaches Port B. 

 
Figure 8 

As pointed out, one of the most difficult aspects of mili-
tary decision-making is the analysis of the enemy. Such 
analysis is made difficult because all information regard-
ing the enemy is afflicted with uncertainty. The uncer-
tainty regards three aspects of the enemy forces: (i) the 
number of units, (ii) the types of units and (iii) the behav-
ior of the units. All these aspects affect the perceived 
threat. 

This can be modeled in a tree structure (see Figure 9). 
The root node (S) represents the current scenario, i.e., the 
context in which the naval operation should be con-
ducted. The intermediate nodes consist of the three as-
pects describing the enemy, where the first level repre-
sents the number of enemy units (n), the second level the 
types of enemy units (t), and the third level the behavior 
of the enemy units (b). The value nodes (v) quantify the 
perceived threat of each branch in the tree.  

 
Figure 9 

But as we saw above, the threat posed by a naval force 
could not be obtained by just adding the threat values of 
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the single units. It was the composition of the force that 
created the actual threat value. The tree structure ac-
commodates this situation. Earlier it was illustrated that a 
force consisting of one surface ship and one helicopter 
posed a different threat than a force consisting of two 
surface ships (all surface ships are of the same type). A 
tree representation of this situation is presented in Figure 
10. The two forces consists of the same number of units, 
hence the number node is n=2. The types are however 
different giving two type-nodes: t1=2 surface ships; t2=1 
helicopter and one surface ship. If we assume the same 
behavior of each force, b1=Attacking, then different 
threat values are assigned to the value nodes, vn1t1b1

=4 
and vn1t2b1

=8. 

 
Figure 10 

When analyzing the own forces, the commander consid-
ers the same aspects as those of the enemy, the number 
of units, the types of units, and the behavior of the units. 
It is consequently tempting to model the own forces in a 
tree structure, similar to the enemy. There is, however, a 
difference. There is hardly any uncertainty at all regard-
ing the own forces. When an operation is initiated the 
commander receives a mission statement from higher 
command. This statement contains the task to be solved, 
a roster of the forces assigned to the commander, and in-
formation about the enemy. When planning begins all 
these pieces are fixed. The commander can neither influ-
ence the mission assigned, nor the forces, nor the intelli-
gence about the enemy. Representing the own force 
could be quite straight forward, as illustrated in Figure 
11: 

 
Figure 11 

Nevertheless, using a tree structure in the case presented 
here brings along two problems: (i) it is hard to deter-
mine the value nodes since the control provided by the 
own force depend on a comparison between the own 
force and the enemy, (ii) the probability assignments of 
the own behavior has no meaning because the com-

mander decides on a course of action given the own force 
and the threat. So, how should the own force be repre-
sented taking these constraints in mind? 

As we saw earlier, the roster of the own forces made both 
the numbers of ships (n) and the types of ships (t) fixed. 
The only thing the commander can influence is the be-
havior of the own forces. As a consequence, the own 
force can represented similar to the enemy, as a single 
type-node that is then used as an argument when decid-
ing how to solve the mission.  Thus, the own behavior 
can be seen as a threat-altering function that given the 
own force influence the enemy’s opportunity to pose 
threat to the own operation. Consider the situation de-
scribed in Figure 7. When the transport ship heads south 
to take cover in the archipelago the negative value of be-
ing sunk is the same, however the probability that the en-
emy will sink the ship has been reduced. The alternative 
behavior, attacking the enemy ship and trying to sink it, 
will lead to that the probabilities of the number of enemy 
ships are altered. 

To this point we have looked at how the commander 
analyses the threat and how the commander’s own course 
of action alters that threat. However, the problem facing 
the commander is of course how to devise a proper 
course of action, taking in to account all uncertainties in-
herent in the information about the enemy. As the results 
indicated, the commander copes with this situation by 
employing worst-case reasoning. Even if this strategy 
might reduce the cognitive load it brings along at least 
two problems. First, the commander may have to design 
a very specific course of action to deal with the worst 
possible threat. The risk of that is of course that the com-
mander may stretch the own resources towards the spe-
cific case so much that the solution might be fragile to 
other cases: by optimizing to solve a single case the ro-
bustness of the solution is lost. A second problem is that 
given limited resources the commander may end up in a 
situation where no solution can be found. In any case, if 
we want to analyze the situation beyond what is done in-
tuitively a more systematic approach is required. 

5 Representation and Evaluation 
The commander’s decision consists of selecting one of 
several scenarios. In such a scenario tree, the decision is 
represented in tree form as a sequence of probabilities 
leading to some final outcomes described by the end 
nodes. All decision trees consists of a root node, repre-
senting the decision, a set of intermediary nodes, repre-
senting the scenarios and uncertainty regarding the sce-
narios, and the outcome nodes describing the conse-
quences of the scenarios. For each intermediate node, 
there is a probability associated with the node (number 
node, type node, or behavior node). In real planning 
situations, there is uncertainty inherent in the input data 
to the planning process. In the model, this is represented 
by probabilities and outcome values being in the form of 
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interval variables, i.e. the variables having a lower and an 
upper bound. For example, the decision-maker statement 
that probability pi is between a1 and a2 is denoted pi ∈ 
[a1, a2] and translated into pi > a1 and pi < a2 in the model.  
Similarly, the value of the outcome i (vi) is between a1 
and a2 is denoted vi ∈ [a1, a2] and translated into vi > a1 
and vi < a2. In this way, sets of statements (inequalities) 
are formed.  

The collection of probability statements in a decision 
situation is called the node constraint set. A constraint set 
is said to be consistent if it can be assigned at least one 
real number to each variable so that all inequalities are 
simultaneously satisfied. The probability and value con-
straint sets are collections of linear inequalities. A mini-
mal requirement for such a system of inequalities to be 
meaningful is that it is consistent, i.e., there must exist 
some vector of variable assignments that simultaneously 
satisfies each inequality in the system. In other words, a 
consistent constraint set is a set where the constraints are 
not contradictory.  

Definition:  Given a tree T, let N be a constraint set 
in the variables { n…i…j… }. Substitute the intermedi-
ary node labels x…i…j… with n…i…j…. N is a node con-
straint set for T if for all sets {n…i1,…,n…im} of all 
sub-nodes of nodes n…i that are not leaves, the 
statements n…ij ∈ [0,1] and ∑j n…ij = 1, j∈[1,…,m] 
are in N. 

Thus, a node constraint set relative to a tree can be seen 
as characterizing a set of discrete probability distribu-
tions after a certain level (the probability constraint set). 
The core of these can be thought of as an attempt to es-
timate a class of mass functions by estimating the indi-
vidual discrete function values. The normalization con-
straints (∑j xij = 1) require the probabilities of sets of ex-
haustive and mutually exclusive nodes to sum to one.  

Requirements similar to those for node variables can be 
found for value variables. However, no dimension reduc-
ing normalization constraints (variables summing to one) 
exist for the value variables.  

Definition:  Given a tree T, let L be a constraint set 
in {t…1 }. Substitute the leaf labels x…1 with c…1. 
Then L is a value constraint set for T. 

Similar to probability constraint sets, a value constraint 
set can be seen as characterizing a set of value functions. 
The elements above constitute a command frame, which 
constitutes a complete description of the probabilistic 
threat situation. 

Definition:  A command frame is a structure 
〈T,N,V〉, where T is a scenario tree, N is a node con-
straint set for T and V is a threat constraint set for T.  

While an evaluation of a consequence set may result in 
an acceptable expected value, the consequences of select-
ing it might be so dire that it should nevertheless be 
avoided. The commander may want to exclude particular 

alternative courses of action that are, in some sense, too 
risky. It might, for example, endanger the entire purpose 
of the operation, and in that case even a consequence 
with a low probability is too risky to neglect.  

The intuition behind security levels is that they express 
when a scenario is undesirable. Thus, a decision-maker 
might regard a scenario as undesirable if it has conse-
quences with too low a value, and with too high a prob-
ability to occur. This means that if several consequences 
of a strategy are too dire (w.r.t. a certain value parame-
ter), their total probability should be considered even if 
their individual probability is too low to render the sce-
nario undesirable. Such exclusions can be dealt with by 
specifying a security level for the probability and a 
threshold for the value. Then a consequence set would be 
undesirable if it violates both of these settings. The secu-
rity level has the following basic form 

 

where r is the minimally tolerable value threshold and s 
is the maximally acceptable probability for events below 
the threshold to occur. This is a boolean function sorting 
out unwanted consequence sets.  

The remaining scenarios are selected according to a deci-
sion rule, usually by maximizing the expected value of 
an alternative. Looking at Figure 9 the expected threat in 
the situation s, T(s), is calculated using the following for-
mula: 

 

This structure is generalized into the following formula 
for calculating the generalized expected threat: 

Definition: Given a scenario Si for i=1,…,r the ex-
pected threat of that scenario is given by the expres-
sion 

 

where ni denotes the probability that the enemy has ni 
number of ships, tj denotes the probability that the enemy 
has tj types of ships, bk denotes the probability that the 
enemy will use behavior bk, and vijk denotes value of the 
perceived threat of the combination ni tj bk. 

Given the threat in a scenario, the own course of action 
was regarded as a threat-altering function, taking the own 
force and the threat as arguments: 

Definition: Given a scenario Si with the expected 
threat T(Si) and the own forces F(n,t) where 
n=number of ships and t=types of ships. Behavior Bj 
is a function such as:  

€ 

B :B F n,t( ),T Si( )( )→ T Si( )' 
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Faced with many possible own course of action the ques-
tion arises of which one to choose. What rule the com-
mander uses have not been established but we suggest 
that the commander should devise and select a behavior 
that given the own force solves the mission and mini-
mizes the expected threat. 

Definition: Given a scenario Si with the expected 
threat T(Si) and a set of own behaviors Bj, j=1...r 
such that  giving the set of 
expected threats . Minimiz-
ing the expected threat means selecting Bj such that 

 

Here we use expected utility, but the framework allows 
for other methods to be used. As an example, quantiles 
can be implemented using security levels. It seems how-
ever somewhat reasonable to use the mean as an initial 
assumption because this will distribute the own forces 
according to the ‘center of gravity’ of the threat. Never-
theless, if the commander uses such an approach has to 
be established empirically. 

Often, however, the expected value by itself is unable to 
discriminate between the scenarios. In such cases, a fur-
ther analysis is called for in the form of an automated 
analysis called contraction. Contraction is a generalized 
sensitivity analysis that can be carried out in any number 
of dimensions. In complex decision situations, when an 
information frame contains numerically imprecise infor-
mation, the different principles suggested above are often 
too weak to yield a conclusive result and will often yield 
a far too crowded set of candidates. One way to handle 
this could be to determine the stability of the relation be-
tween the considered consequence sets. As interval 
statements are deliberately imprecise, a natural way to 
investigate this is to consider values near the boundaries 
of the intervals as being less reliable than more central 
values. Using contractions we take this into account by 
indirectly measuring the dominated regions. 

The principle of contraction is justified by the difficulties 
of performing simultaneous sensitivity analysis in several 
dimensions at the same time. If one uses only one-
dimensional analyses, it can be hard to gain real under-
standing of the solutions to large decision problems be-
cause different combinations of dimensions can be criti-
cal to the evaluation results. Exploring all possible such 
combinations would lead to a highly complex procedure 
regarding the number of cases to investigate. Using con-
tractions circumvents this difficulty. By co-varying the 
contractions of a set of intervals, it is possible to gain a 
much better insight into the influence of the structure of 
the information frame on the solutions. Both the set of in-
tervals under investigation and the scale of individual 
contractions can be controlled. Further, contractions are 
measures of the strength of statements when original so-
lutions sets are modified in controlled ways, rather than 
measures of the solution sets as given by volume esti-

mates. Consequently, a contraction can be regarded as a 
focus parameter that zooms in on central sub-intervals of 
the full statement intervals. 

Definition: X is a base with the variables x1,…,xn, 
π ∈ [0,1] is a real number, and  
{πi ∈ [0,1] : i = 1,…,n} is a set of real numbers. [ai, 
bi] is the interval corresponding to the variable xi in 

the solution set of the base, and k  = (k1,…,kn) is a 
consistent point in X. A π-contraction of X is to add 
the interval statements {xi ∈ [ai+π·πi·(ki–ai),  
bi–π·πi·(bi–ki)] : i = 1,…,n} to the base X. k  is 
called the contraction point. 

By varying π from 0 to 1, the intervals are decreased 
proportionally using the gain factors in the πi-set, thereby 
facilitating the study of co-variation among the variables. 

6 Discussion and further work 
We have presented a model of how a commander esti-
mates the threat in a tactical situation and how an own 
course of action is selected to control that threat. In a tac-
tical situation the information about the enemy is almost 
always afflicted with uncertainty and the results indicated 
that the commander coped with this situation by worst-
case reasoning. This work is part of the groundwork for 
further study of how a decision support system for tacti-
cal decision-making could look like. If such system 
should be realized as automatic quantitative support or as 
verbal heuristics remains to be determined.   

Just considering alternatives and choosing in accordance 
with our like or dislike of risk can be considered a quite 
passive way of treating risk [23]. As we saw in this 
study, the own course of action was treated as a threat-
altering function, which points to a more active stance 
towards risk: When facing a risky situation the respon-
dents want to take action to influence and modify the 
risky situation. This is what [23] calls “adjusting the 
risks” and means gaining time, information or control. 
Time allows for information to be gathered, and informa-
tion may resolve the uncertainty that makes the situation 
appear risky. Gaining control means taking actions to re-
duce the magnitude or the chance of loss. It would not be 
too surprising to find similar strategies employed by the 
participants in this study. 

We suggested that a course of action should be selected 
that minimized the expected threat. It can be argued that 
a solution that tries to solve all ‘possible threats’ risk to 
end up being multi-useless instead of multi-purpose. 
However, statements like “…have enough width [in your 
COA]…” indicate a desire to devise a course of action 
that is easily adaptable so it can handle several develop-
ments of events.  

To enable automatic reasoning the necessary information 
must be extracted from the commander or the staff and 

ISIPTA’09: Threat and Control in Military Decision Making 459



structured rapidly. Populating the threat constraint set 
could be time consuming but a solution would be to find 
a formula that given the enemy forces and the own forces 
automatically can calculate the threat posed by any com-
bination of own and enemy forces. 

This study was based on the assumption that determining 
acceptable risk means making a decision that strikes a 
balance between the factors that increase risk, the factors 
that decrease risk and the factors that justify risk. Having 
dealt with the former two, our next work will focus on 
how a military decision maker judge if a risk is worth 
taking. 
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